CHARACTERISATION AND MANAGEMENT OF FUNGAL DISEASES OF *Carica papaya* (L.) IN A RESEARCH FARM

ONIHA, MARGARET IKHIWILI

(CUGP100271)

JUNE, 2021

CHARACTERISATION AND MANAGEMENT OF FUNGAL DISEASES OF *Carica papaya* (L.) IN A RESEARCH FARM

BY

ONIHA, MARGARET IKHIWILI (CUGP100271)

B.Sc, Botany, University of Lagos, Akoka M.Sc, Microbiology, Covenant University, Ota

A THESIS SUBMITTED TO THE SCHOOL OF POST GRADUATE STUDIES IN PARTIAL FUFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF DOCTOR OF PHIOSOPHY(Ph.D) IN MICROBIOLOGY IN THE DEPARTMENT OF BIOLOGICAL SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA.

JUNE, 2021

ACCEPTANCE

This is to attest that this thesis is accepted in partial fulfillment of the requirements for the award of the degree of Doctor of Philosophy in Microbiology, in the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Nigeria.

Mr John A. Philip

(Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams

(Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, **ONIHA**, **MARGARET IKHIWILI** (**CUGP100271**) declare that this research was carried out by me under the supervision of Dr. Angela O. Eni and Dr. Olayemi O. Akinnola of the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Nigeria. I attest that the thesis has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this thesis are duly acknowledged.

ONIHA, MARGARET IKHIWILI

Signature and Date

iv

CERTIFICATION

We certify that this thesis titled "Characterisation and Management of Fungal Diseases of *Carica papaya* (L.) in a Research Farm" is an original research work carried out by ONIHA, MARGARET IKHIWILI (CUGP100271), in the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Dr. Angela O. Eni and Dr. Olayemi O. Akinnola. We have examined and found this work acceptable as part of the requirements for the award of Doctor of Philosophy (Ph.D) degree in Microbiology.

Dr. Angela O. Eni Supervisor	Signature and Date
Dr. Olayemi O. Akinnola Co-Supervisor	Signature and Date
Prof. Solomon U. Oranusi Head of Deparment	Signature and Date
Prof. Ifeoma B. Enweani External Examiner	Signature and Date
Prof. Akan B. Williams Dean, School of Postgraduate Studies	Signature and Date

DEDICATION

I dedicate this project to God, the Almighty Father, for the manifestation of His divine and everlasting power. To Him alone be all the glory, honour and praises forever more.

ACKNOWLEDGEMENTS

My utmost and ever-lasting acknowledgement are to God Almighty, for His divine love, strength, protection and sustenance, for His guidance on this project and for helping me at all times. He is the power behind the achievement of this feat and whom all glory belongs to.

I deeply appreciate the dedication of the Chancellor of this great institution Dr. David O. Oyedepo for providing a good forum for the study of the program. May you remain blessed in Jesus name Amen. I say a big thank you to the Vice-Chancellor, Prof. Abiodun H. Adebayo, the Registrar, Dr. Oluwasegun P. Omidiora, the Dean School of Postgraduate Studies (SPS), Prof. Akan B. Williams, SubDean SPS, Dr. Emmanuel O. Amoo, the Dean CST, Prof. Temitayo V. Omotosho and the Head of Department Biological Sciences, Prof. Solomon U. Oranusi of Covenant University, Ota, Ogun State for giving me the opportunity to successfully run this programme.

I sincerely acknowledge my main supervisor and co-supervisor, Dr. Angela O. Eni and Dr. Olayemi O. Akinnola respectively for their supervision, assistance and contributions to the project work. I acknowledge Prof. Louis O. Egwari for initiating the research work and his contribution.

Special appreciation to Prof. Adesola A. Ajayi for her love, support and help to me particularly during her co-supervision period and to Dr. Grace I. Olasehinde for her words of advice, support and encouragement to me on this Ph.D programme.

I specially appreciate the fatherly role played by Mr Emmanuel A. Omonigbehin and for his efforts, support, words of advice, numerous prayers, encouragement, guidance, time, understanding, belief in me and great assistance. May God bless you and your family. My warm appreciation goes to Prof. Joseph A.O. Olugbuyiro for his time, patience, magnanimous prayers, understanding, assistance, tutelage and guidance in the course of this programme. Members of faculty who played significant roles in the success of this work include Dr. Jacob O. Popoola, Dr. Akinniyi. P. Akinduti, Prof. Olujoke O. Ogunlana, Dr. Theophilus A. Adagunodo, Dr. Moses E. Emetere, Dr. Maxwell Omeje, Prof. Olayinka O. Ajani Dr. Oluwole A. Odetunmibi and Dr. Hilary I. Okagbue all of whom are sincerely appreciated for their time, helps and support to me in the course of this programme. I also sincerely appreciate members of Molecular Laboratory staff and other staff who have immensely supported and assisted me during the course of the program and they include Miss Bose E. Adegboye, Mr. John S. Olorunshola, Mr. Ojo J. Ige, Mr. Olugbenga S. Taiwo, Mr. Oladipupo A. Adeyemi, Mr. Olawale M. Ezekiel, Mrs Omowunmi R. Afolabi, Mrs. Juliet C. Nwabuenu, Miss Catherine Wonder, Mr. Olawale J. Oke, Mr. Bamidele M. Durodola, Mr. E.G. Jolayemi, Miss F.E. Owolabi and Mr. D.A. Ozieme, I say a big thank you to other laboratory staff of the Dept. Biological Sciences and WAVE Laboratory of Covenant University, Ota for their assistance and they include, Miss Damilola A. Kuye, Mrs. Bosede T. Adekeye, Mrs. Faith Adetunji, Miss Pretty Efekemo and Mr Olabode A. Onile-ere.

Special thanks to my friends and colleagues in Department of Biological Sciences and other departments in Covenant University, Ota. To, Mr Taiwo S. Popoola, Mr Olabode Onileere, Dr. Bunmi K. Olopade, Mrs Chioma Agubo, Mrs Osayande Itua and Miss Yemisi D. Obafemi, as well as my undergraduate students all of whom had graduated in the course of the program (Regal Set and other sets) and had assisted with their prayers and efforts to the success of this work. They include Olurin Debra Ololade, Oyejide Stephen Oyenifesi, Thomas-ejor Valerie, Abimbola Sharon Bowofunoluwa, Ovbiagele Sharon Ehimeimoi, Olusola Afolabi Olakunle, Oke Akintayo Isaac, Atulegwu Paul Ehinanya and Bankole M. Oluwadamilola just to mention a few, thank you for your helps, support and kindness to me. May God reward you all.

My warmest and heartfelt gratitude go to my family for their unending love, encouragement, moral, spiritual and financial support and for being there for me. May God continue to bless you in Jesus name, Amen.

TABLE OF CONTENTS

CONTENT	Page
COVER PAGE	
TITLE PAGE	ii
ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	V
DEDICATION	vi
ACKNOWLEDGEMENTS	vii
TABLE OF CONTENTS	ix
LIST OF FIGURES	XV
LIST OF TABLES	xvii
LIST OF PLATES	xix
LIST OF SLIDES	xxi
ABBREVIATIONS	xxii
ABSTRACT	xxiii

CHAPTER ONE: INTRODUCTION11.1Background to the study11.2Statement of the research problem51.3Justification of the study6

1.4	Research Questions	6
1.5	Aim and Objectives of the study	7
1.5.1	Aim	7
1.5.2	Objectives	7
1.6	Scope of the study	7

1.7 Definitions of terms CHAPTER TWO: LITERATURE REVIEW

2.1	Features of Carica papaya	11
2.1.1	Taxonomy	12

8

11

2.1.2	Types of papaya	14
2.1.3	Varieties/Cultivars of papaya plant	17
2.1.4	Botanical description	24
2.1.5	Soil and growth habit	26
2.1.6	Pollination	28
2.1.7	Propagation	28
2.1.8	Harvesting	29
2.2	Nutritional value of Carica papaya	30
2.3	Economic importance of C. papaya	30
2.3.1	Industrial benefits of pawpaw (Carica papaya)	31
2.3.2	Health benefits of C. papaya	32
2.4	Microbial deterioration of C. papaya (L.)	34
2.4.1	Bacterial deterioration of C. papaya	35
2.4.2	. Fungal deterioration of <i>C. papaya</i>	36
2.4.3	Viral deterioration of C. papaya	38
2.5	Pests and vectors of C. papaya (L.)	39
2.6	Post harvest storage conditions of C. papaya (L.)	41
2.6.1	Physiological post harvest changes	42
2.6.2	Post harvest treatment	42
2.6.3	Packaging	43
2.7	Treatment methods for fungal diseases of C. papaya (L.)	43
2.7.1	Antimicrobial activities of leaf extracts of Moringa oleifera,	
	Chrysophyllum albidum, Celosia argentea,	
	Telfaira occidentalis and Bauhinia monandra	46
2.8	Identification and characterisation of fungi	52
2.8.1	Phenotypic characterisation of fungi	52
2.8.2	Molecular characterisation using Internal Transcribed Spacer (ITS)	
	Primers	53
2.9	Identified research gaps from previous studies	81

	CHAPTER THREE: MATERIALS AND METHODS	84
3.1	List of culture media, equipment, reagents and indicators	84
3.1.1	Culture media	84
3.1.2	2 Equipment	84
3.1.3	Reagents and indicators	85
3.2	Study Site	85
3.2.1	Study site: The pawpaw research demonstration farm	85
3.2.2	2 Cultivation and farm maintenance	87
3.2.3	Fruiting and harvest season considered for this study	87
3.2.4	Climatic conditions during study	87
3.2.5	Disease prevalence, incidence and severity	88
3.3	Isolation and phenotypic characterisation of the fungal pathogens	90
3.3.1	Sample collection	90
3.3.2	2 Sample preparation	90
3.3.3	B Preparation of culture media	90
3.3.4	Isolation of associated fungi	90
3.3.5	Preliminary identification of fungal isolates	91
3.3.6	5 Preservation of isolates	91
3.4	Genotypic identification of fungal isolates	91
3.4.1	DNA extraction	91
3.4.2	2 Detection of the ITS genes in fungal isolates	92
3.4.3	Procedure for purification of PCR amplicons for sequencing	93
3.4.4	Sequence Analysis	93
3.5	Pathogenicity tests	94
3.5.1	Preparation of fungal spore suspension	94
3.5.2	Pathogenicity test one	94
3.5.3	Pathogenicity test two	95
3.6	Evaluation of the antifungal activity of selected medicinal plants	
	(Moringa oleifera, Chrysophyllum albidum, Celosia argentea, Telfaira	
	occidentalis and Bauhinia monandra) on associated fungal isolates	
	of C. papaya	96

3.6.1 Collection and processing of plant material	96
3.6.2 Preparation of crude extracts	98
3.6.3 Phytochemical screening of plant extracts	98
3.6.4 <i>In vitro</i> antifungal activity of plant extracts	100
3.6.4.1 Standardization of microbial inoculum	100
3.6.4.2 Determination of antifungal activity of plant extracts	101
3.6.4.3 Determination of minimum inhibitory concentration (MIC)	
and minimum fungicidal concentration (MFC)	102
3.6.5 In vivo antifungal activity of selected plant extracts	103
3.6.5.1 In vivo assay of plant extracts	103
3.7 Data analyses	103
3.7.1 Data analysis for disease incidence and severity	103
3.7.2 Data analysis for <i>pathogenicity</i>	104
3.7.3 Data analysis for <i>in vitro</i> antifungal activity	105
3.7.4 Data analysis for <i>in vivo</i> antifungala activity	105
CHAPTER FOUR: RESULTS	107
4.1 Disease incidence and disease severity of fungi on papaya	107
4.1.1 Climatic factors of the study site	107
4.1.2 Disease observations on the pawpaw research farm	107
4.1.3 Visual evaluation, Disease incidence and severity of <i>C. papaya</i>	109
4.2 Identification of fungal isolates from fruit, leaf and stem samples	
of <i>C. papaya</i>	120
4.3 Genotypic identification of fungal isolates from <i>C. papaya</i>	127
4.3.1 Phylogenetic relationship of isolated fungi from <i>C. papaya</i>	130
4.4 Results of pathogenicity tests	136
4.4.1 Production of cellulolytic and pectinolytic enzymes by fungal isolates	136
4.4.2 Pathogenicity test for fungal isolates from C. papaya samples	141
4.4.3 Fungal disease symptoms observed from pathogenicity test during	
inoculation period	148
4.5 Evaluation of antifungal activity of selected medicinal plants on	

isolated fungal isolates of C. papaya	157
4.5.1 Phytochemical compounds present in M. oleifera, C. albidum,	
C. argentea, T. occidentalis and B. monandra	159
4.5.2 Antifungal activity of M. oleifera, C. albidum, C. argentea,	
T. occidentalis and B. monandra	163
4.5.3 In vivo antifungal assay of aqueous extracts of M. oleifera,	
T. occidentalis and B. monandra on C. papaya fruits	181
4.5.3.1 In vivo antifungal assay of aqueous extracts of M. oleifera,	
T. occidentalis and B. monandra based on average weights of	
C. papaya fruits during days post inoculation	181
4.5.3.2 In vivo antifungal assay of aqueous extracts of M. oleifera,	
T. occidentalis and B. monandra on C. papaya fruits based on	
disease incidence and disease severity during days post inoculation	199
CHAPTER FIVE: DISCUSSION	209
5.1 Report of measurement tools for fungal diseases of papaya	209
5.1.1 Climatic conditions associated with the pawpaw research demonstration	
farm of study site	209
5.1.2 Assessment of fungal diseases on the pawpaw research demonstration	
farm	209
5.1.3 Evaluation of disease incidence and severity of <i>C. papaya</i>	210
5.2 Phenotypic identification of fungal isolates from papaya samples	211
5.3 Phylogenetic relatedness of fungal isolates from <i>C. papaya</i>	214
5.4 Pathogenicity assays of isolated fungi from <i>C. papaya</i>	218
5.4.1 Cellulolytic and pectinolytic enzyme production by fungal isolates	218
5.4.2 Pathogenicity of isolated fungi s from <i>C. papaya</i>	220
5.5 Antifungal assay of selected medicinal plants	
(Moringa oleifera, Chrysophyllum albidum, Celosia argentea, Telfaira	
occidentalis and Bauhinia monandra) on associated fungal pathogens of	
C. papaya	222
5.5.1 Phytochemical assay of plant extracts	222

5.5.	2 In vitro antifungal activity of the plant extracts	223
5.5.	3 Evaluation of <i>in vivo</i> antifungal activity of aqueous extracts of	
	M. oleifera, T. occidentalis and B. monandra on C. papaya fruits	224
	CHAPTER SIX: CONCLUSION	226
6.1	Summary	226
6.2	Conclusion	227
6.3	Contributions to knowledge	228
6.4	Recommendations	228
	6.4.1 Areas of further study	229
	6.4.2 Limitations of the study	22
	REFERENCES	230
	APPENDICES	259

LIST OF FIGURES

Figu	res Title of Figures	Page
4.1:	Disease incidence (%) for pathology of fruit, leaf and stem samples of C. papaya	117
4. 2:	Disease severity (%) for pathology of fruit, leaf and stem samples of C. papaya	119
4.3:	Frequency of occurrence of fungal isolates from fruit, leaf and stem of papaya from	
	Covenant University pawpaw research demonstration farm	126
4.4:	Phylogenetic relatedness of the genus Aspergillus spp isolated from fruit, leaf	
	and stem with other species of the genus	133
4.5:	Phylogenetic relatedness of of the genus Rhizopus spp isolated from fruit, leaf	
	and stem with other species of the genus	134
4.6:	Phylogenetic relatedness of of the genus Trichoderma spp isolated from fruit, leaf	
	and stem with other species of the genus	135
4.7:	Mean changes in weights of pawpaw fruit samples obtained on days of inoculation	145
4.8:	Mean changes in weights of pawpaw fruit samples for the controls on days	
	of inoculation	146
4.9:	Mean changes in lesion diameter of pawpaw fruit samples obtained on days	
	of inoculation	147
4.10:	Mean zone of inhibition for antifungal activity of Moringa oleifera	164
4.11:	Mean zone of inhibition for antifungal activity of Chrysophyllum albidum	165
4.12:	Mean zone of inhibition for antifungal activity of Celosia argentea	166
4.13:	Mean zone of inhibition for antifungal activity of Telfaira occidentalis	167
4.14:	Mean zone of inhibition for antifungal activity of Bauhinia monandra	168
4.15:	Disease incidence (%) for in vivo assay of C. papaya fruit using	
	150mg/ml aqueous extracts	204
4.16:	Disease incidence (%) for in vivo assay of C. papaya fruit using	
	75mg/ml aqueous extracts	205
4.17:	Disease severity (%) for in vivo assay of C. papaya fruit using 150mg/ml	
	and 75mg/ml concentration of aqueous extracts	206
4.18:	Mean changes in weights of inoculated C. papaya fruits on days before and after	
	post inoculation for in vitro antifungal activity using 150mg/ml aqueous	
	extract concentration	207
4.19:	Mean changes in weights of inoculated C. papaya fruits on days before and	

after post inoculation for *in vitro* antifungal activity using 75mg/ml aqueous extract concentration

208

LIST OF TABLES

Tabl	es Title of Tables	Page
2.1:	Papaya cultivars/varieties and fruit characteristics in producing countries	20
2.2:	Documentary of pathogenicity of fungal isolates from previous studies	55
2.3:	Documentary of disease incidence and severity from previous studies	63
2.4:	Documentary of isolation of fungal isolates from different studies	68
2.5:	Documentary of in vitro antifungal activity of medicinal plants from different studies	72
2.6:	Documentary of in vivo antifungal activity of medicinal plants from different studies	76
2.7:	Documentary of genotypic characterisation of fungal isolates from different studies	78
2.8:	Documentary of the identified research gaps from previous studies	82
3.1:	Number of diseased plant samples obtained from C. papaya	89
3.2:	Identification and authentication of selected medicinal plants	97
4.1:	Diseases associated with papaya on the Pawpaw Research Demonstration Farm	108
4.2:	Fungal species isolated from C. papaya with accession numbers of ITS genes	131
4.3:	Statistical table on zone of hydrolysis for pectinase production by the fungal isolates	
	from C. papaya samples	137
4.4:	Statistical table on zone of hydrolysis for cellulase production by the fungal isolates	
	from C. papaya samples	138
4.5:	Analysis of variance for weight of papaya during pathogenicity test for the	
	fungal isolates from C. papaya	142
4.6:	Analysis of variance for diameter of lesions of papaya during pathogenicity test for th	e
	fungal isolates from C. papaya	143
4.7:	Phytochemical screening of Moringa oleifera leaf extract	158
4.8:	Phytochemical screening of Chrysophyllum albidum leaf extract	159
4.9: 1	Phytochemical screening of Celosia argentea leaf extract	160
4.10:	Phytochemical screening of Telfaira occidentalis leaf extract	161
4.11:	Phytochemical screening of Bauhinia monandra leaf extract	162
4.12:	In vitro antifungal activity of Moringa oleifera, Chrysophyllum albidum,	
	Celosia argentea, Telfaira occidentalis and Bauhinia monandra against the	
	fungal isolates from C. papaya	171
4.13:	MIC and MFC of Moringa oleifera leaf extract against fungal isolates	174
4.14:	MIC and MFC of Chrysophyllum albidum leaf extract against fungal isolates	175
4.15:	MIC and MFC of Celosia argentea leaf extract against fungal isolates	176

MIC and MFC of Telfaira occidentalis leaf extract against fungal isolates	177
MIC and MFC of Bauhinia monandra leaf extract against fungal isolates	178
Analysis of variance for the Minimum inhibitory concentration (MIC)and	
minimum fungicidal concentration (MFC) of Chrysophyllum albidum against	
the fungal isolates from C. papaya	179
Analysis of variance for the Minimum inhibitory concentration (MIC)and	
minimum fungicidal concentration (MFC) of Celosia argentea against the fungal	
isolates from C. papaya	180
In vivo antifungal activity of Moringa oleifera aqueous extract on fruits of	
C. papaya	195
In vivo antifungal activity of Telfaira occidentalis aqueous extract on fruits of	
C. papaya	196
In vivo antifungal activity of Bauhinia monandra aqueous extract on fruits	
of C. papaya	197
In vivo antifungal activity of Moringa oleifera, Telfaira occidentalis and	
Bauhinia monandra aqueous extracts using 150 mg/ml concentration on fruits	
of C. papaya	202
In vivo antifungal activity of Moringa oleifera, Telfaira occidentalis and	
Bauhinia monandra aqueous extracts using 75 mg/ml concentration on	
fruits of <i>C. papaya</i>	203
	MIC and MFC of <i>Telfaira occidentalis</i> leaf extract against fungal isolates MIC and MFC of <i>Bauhinia monandra</i> leaf extract against fungal isolates Analysis of variance for the Minimum inhibitory concentration (MIC)and minimum fungicidal concentration (MFC) of <i>Chrysophyllum albidum</i> against the fungal isolates from <i>C. papaya</i> Analysis of variance for the Minimum inhibitory concentration (MIC)and minimum fungicidal concentration (MFC) of <i>Celosia argentea</i> against the fungal isolates from <i>C. papaya</i> <i>In vivo</i> antifungal activity of <i>Moringa oleifera</i> aqueous extract on fruits of <i>C. papaya</i> <i>In vivo</i> antifungal activity of <i>Telfaira occidentalis</i> aqueous extract on fruits of <i>C. papaya</i> <i>In vivo</i> antifungal activity of <i>Bauhinia monandra</i> aqueous extract on fruits of <i>C. papaya</i> <i>In vivo</i> antifungal activity of <i>Moringa oleifera</i> , <i>Telfaira occidentalis</i> and <i>Bauhinia monandra</i> aqueous extracts using 150 mg/ml concentration on fruits of <i>C. papaya</i> <i>In vivo</i> antifungal activity of <i>Moringa oleifera</i> , <i>Telfaira occidentalis</i> and <i>Bauhinia monandra</i> aqueous extracts using 75 mg/ml concentration on fruits of <i>C. papaya</i>

LIST OF PLATES

Plates	Title of Plates	Page		
2.1:	Photograph of Carica papaya plant on the farm showing the stem, fruits, flowers			
	and leaves	13		
2.2a:	Papaya solo types	16		
2.2b:	Papaya Mexican type	16		
3.1	The pawpaw research demonstration farm study site	86		
4.1:	Infestation of powdery mildew on papaya plant	110		
4.2:	C. papaya showing brown leaf spots	111		
4.3:	Leaves of pawpaw with necrotic brown leaf spot and discolouration	112		
4.4:	Pawpaw plant with stem canker and powdery mildew	113		
4.5:	Heavy growth of black sooty rot on pawpaw fruits	114		
4.6:	Necrosis on the leaf of papaya	115		
4.7a-c:	Aspergillus niger isolated from pawpaw samples cultured on PDA media and			
	on MEA media and Rhizopus spp isolated from pawpaw samples cultured			
	on PDA media.	121		
4.8:	Amplification of ITS region of fungal isolates from samples of C. papaya	128		
4.9a and b: Zone of hydrolysis for cellulolytic screening by <i>Aspergillus</i>				
	fumigatus and Aspergillus niger from pawpaw (Carica papaya)	139		
4.10a and b: Zone of hydrolysis for pectinolytic screening by <i>Penicillium spp</i> and				
	Rhizopus spp from pawpaw (Carica papaya)	140		
4.11:	Fresh ¼ ripe healthy pawpaw fruit	149		
4.12:	Progression of deterioration of pawpaw fruits by Aspergillus niger	150		
4.13:	Progression of deterioration of pawpaw fruits by Aspergillus flavus	151		
4.14:	Progression of deterioration of pawpaw fruits by Rhizopus spp	152		
4.15:	Progression of deterioration of pawpaw fruits by Penicillium spp	153		
4.16:	Progression of deterioration of pawpaw fruits by Trichoderma spp	154		
4.17:	Progression of deterioration of pawpaw fruits by Aspergillus fumigatus	155		
4.18:	Pawpaw fruits for control set up during incubation for pathogenicity	156		
4.19-21: In vitro antifungal activity of Bauhinia monandra, B. monandra and				
	T. occidentalis against Trichoderma spp, Rhizopus spp and Aspergillus niger	170		

4.22:	2: Fresh ¹ / ₄ ripe healthy papaya fruit before inoculation for <i>in vivo</i> assay with 150n	
	aqueous extracts	183
4.23:	Days post inoculation 1 (Dpi 1) of fungal infectivity on the control	
	samples of pawpaw fruits	184
4.24:	Progression of treatment with aqueous extracts of M. oleifera, T. occidentalis	
	and B. monandra on fungal infectivity of pawpaw fruits in day 2 post inoculation	185
4.25:	Progression of treatment with aqueous extracts of M. oleifera, T. occidentalis and	
	B. monandra on fungal infectivity of pawpaw fruits in day 3 post inoculation	186
4.26:	Progression of treatment with aqueous extracts of M. oleifera, T. occidentalis	
	and B. monandra on fungal infectivity of pawpaw fruits in day 4 post inoculation	187
4.27:	Progression of treatment with aqueous extracts of M. oleifera, T. occidentalis	
	and B. monandra on fungal infectivity of pawpaw fruits in day 5 post inoculation	188
4.28:	Progression of treatment with aqueous extracts of M. oleifera, T. occidentalis	
	and B. monandra on fungal infectivity of pawpaw fruits in day 6 post inoculation	189
4.29:	Progression of treatment with aqueous extracts of M. oleifera, T. occidentalis	
	and B. monandra on fungal infectivity of pawpaw fruits in day 7 post inoculation	190
4.30:	Progression of fungal infectivity on control pawpaw fruits	191
4.31:	Progression of fungal infectivity on control pawpaw fruits	192

LIST OF SLIDES

Slides	Title of Slide	Page
4.1 a, b and c:	Photomicrographs of Aspergillus niger, Aspergillus fumigatus	
	and Aspergillus flavus isolated from diseased Carica papaya samples	122
4.2 a, b and c:	Photomicrographs of Rhizopus spp, Fusarium spp and	
	Penicillium spp isolated from diseased Carica papaya samples	123
4.3 a, b and c:	Photomicrographs of Geotrichum spp, Trichoderma spp and	
	Alternaria spp isolated from diseased Carica papaya samples	124

ABBREVIATIONS

ABI- Applied Biosystems

BLAST- Basic Local Alignment Search Tool

bp- base pair

- CMC- Carboxyl methyl cellulose
- DNA- Deoxyribonucleic acid
- DI- Disease Incidence
- DMRT- Duncan's Multiple Range Test
- DMSO- Dimethyl sulphoxide
- DPI- Days Post Inoculation
- DS- Disease Severity
- FAO- Food and Agriculture Organization
- GPS- Global Positioning System
- ITS- Internal Transcribed Spacer
- kg- Kilogram
- LSU- Large subunit
- LSD- Least Significant Difference
- MEGA- Molecular Evolution Genetic Analysis
- MIC- Minimum Inhibitory Concentration
- MFC- Minimum Fungicidal Concentration
- Mg- Milligrammes
- ml- Millilitres
- mm- Millimeters
- m/s- meters/second
- Mt- Metric Tonnes
- NCBI- National Center for Biotechnology Information
- NJ- Neighbour Joining
- PCR- Polymerase Chain Reaction
- PBS- Phosphate Buffered Saline
- RNA- Ribonucleic acid
- SSU- Small subunit
- TBE- Tris boric ethylene diamine tetracetic acid
- µl- Microliter

- VHT- Vapour Heat Treatment
- V- Volts

ABSTRACT

Fungi are the most important group of microorganisms that attack *Carica papaya* leading to economic losses. Previous research on papaya disease management tend to focus on post-harvest diseases compared to field diseases which may be directly linked to the postharvest diseases. Chemical fungicides are the major management mechanism employed to control preharvest fungal diseases with consequent toxicological risks to biota. This study was conducted to evaluate fungal diseases of C. papaya obtained from the pawpaw research demonstration farm in Covenant University. The study also evaluated the antifungal activity of some plant extracts as potential biocontrol agents. The fungal disease symptoms observed during the study, were evaluated and analyzed using disease incidence and severity as measurement tools. Fruit, leaf and stem samples were collected from infected papaya to isolate fungal pathogens during the early and late preharvest seasons. The isolates were first phenotypically characterised and then genotypically identified based on the Internal Transcribed Spacer genes. To assess the pathogenicity of the isolated fungi, the isolates were screened *in vitro* for cellulolytic and pectinolytic enzyme production using plate screening assay. Then n-Hexane, ethyl acetate, ethanol, methanol and aqueous leaf extracts of Moringa oleifera Lam, Chrysophyllum albidum G. Don, Celosia argentea L, Telfaira occidentalis Hook F. and Bauhinia monandra BmoLLwere evaluated for antifungal activity in vitro. Three aqueous extracts with best activity were further evaluated in vivo on papaya fruits. Results of the study showed that disease severity was significantly higher in the late than the early preharvest season. Phenotypically characterised fungal isolates were confirmed genotypically as Aspergillus niger Van. Tiegham, Aspergillus aculeatus Lizuka, Aspergillus flavus Link, Aspergillus fumigatus Fresineus, Trichoderma reesei QM6a, Trichoderma longibrachiatum Rifai, Rhizopus oryzae Went and Geerlings and Rhizopus delemar Boidin. Aspergillus niger was the most frequently isolated fungus from fruit (29.41%) and stem (27.94%) samples while *Geotrichum* spp Link was the most frequently isolated from leaves (20.90%). Phylogenetic analysis of the amino acid sequence data showed the evolutionary relatedness of the characterised fungal species with their nearest neighbours. Secretion of cell wall degrading enzymes varied significantly among the fungal isolates indicating significant variation in pathogenicity (p<0.05). In vitro antifungal, minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) assessments showed that the aqueous extracts had significant effects (p=0.000) against all assessed fungal isolates than other extract types except for the ethanolic and methanolic extracts of C. argentea and C. albidum respectively. The highest zones of inhibition of the various aqueous extracts ranged from 23.33-39.00 mm and compared positively against Ketoconazole (11-15 mm; control antifungal agent). The aqueous extract of B. monandra had the highest in vivo activity with 150 mg/ml and 75 mg/ml inhibiting fungal growth for up to 5 and 3 days respectively. This study has generated fresh fungal sequence data which have been deposited into the genebank database. The study also identified that members of Aspergillus and Rhizopus genera are the major fungi responsible for papaya diseases. It also further validated the potentials of some medicinal plants as antifungal agents for the sustainable management of papaya diseases.

Keywords: Carica papaya, Fungi, Antifungal plants, Papaya disease management, Pawpaw farm