POWER-VOLTAGE AND REACTIVE-VOLTAGE CURVES FOR VOLTAGE STABILITY ANALYSIS ON THE 58 BUS, 330kV NIGERIAN NETWORK.

EKONG, KENNEDY KENNEDY (12CK013764)

SEPTEMBER, 2022

POWER-VOLTAGE AND REACTIVE-VOLTAGE CURVES FOR VOLTAGE STABILITY ANALYSIS ON THE 58 BUS, 330kV NIGERIAN NETWORK.

BY

EKONG, KENNEDY KENNEDY (12CK013764) B.Eng Electrical and Electronics Engineering, Covenant University, Ota

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE FOR THE **AWARD** REQUIREMENTS OF MASTER OF **ENGINEERING** DEGREE (M.Eng.) IN **ELECTRICAL** AND ELECTRONICS ENGINEERING IN THE DEPARTMENT OF **ELECTRICAL AND INFORMATION ENGINEERING, COLLEGE OF** ENGINEERING, COVENANT UNIVERSITY, OTA, OGUN STATE, **NIGERIA**

SEPTEMBER, 2022

ii

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Master of Engineering in Electrical and Electronics Engineering, Department of Electrical and Information Engineering, College of Engineering, Covenant University Ota Nigeria.

Mr. Taiwo B. Erewunmi (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, **EKONG, KENNEDY KENNEDY (12CK013764)**, declares that this research was carried out by me under the supervision of Dr. Isaac A. Samuel of the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Nigeria. I attest that the dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation are duly acknowledged.

EKONG, KENNEDY KENNEDY

Signature and Date

CERTIFICATION

We certify that this dissertation titled "**POWER-VOLTAGE AND REACTIVE-VOLTAGE CURVES FOR VOLTAGE STABILITY ANALYSIS ON THE 58 BUS, 330kV NIGERIAN NETWORK.**" is an original research work carried out by **EKONG, KENNEDY KENNEDY (12CK013764)** in the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria under the supervision of Dr. Isaac A. Samuel. We have examined and found this work acceptable as part of the requirements for the award of Master of Electrical and Electronics Engineering.

Dr. Isaac A. Samuel (Supervisor)

Prof. Emmanuel Adetiba (Head of Department)

Prof. Ogbonnaya, Inya Okoro (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This dissertation is dedicated, first and foremost, to the Almighty God for His mercies, grace, wisdom, and favour throughout the Masters' program. It is especially dedicated to my parents (Hon.) Barr. And Mrs. Kennedy Ekong, and my lovely siblings Florence, Favour, and Joyce.

ACKNOWLEDGMENTS

First and foremost, I thank God for his gracious hand on me throughout the years I spent at Covenant University, which have been a thrilling experience.

My extreme appreciation goes to my parents (Hon.) Barr. And Mrs. Kennedy Ekong for their prayers, support, words of encouragement and provision for me throughout my program. I appreciate my siblings Florence, Favour and Joyce for their love and care.

I want to thank the Vice Chancellor and managements of Covenant University for creating an enabling environment for qualitative research. Special appreciation goes to the Dean, School of Postgraduate studies, and the entire faculty and staff in the school of Postgraduate studies. Likewise, I am grateful for the support of the HOD, Prof. Emmanuel Adetiba and post graduate coordinator, Dr Ayokunle Awelewa who made adapting more helpful and intriguing and for their support and encouragement.

I would also love to appreciate my colleagues in the department who help with information and moral support throughout the entire program. I am grateful for the friends I made on my journey to attaining this degree. The likes of Kingsley, Ogaga, Prince and all the members of the Village Gathering group. A big thank you to my closest friends, Emediong Perry and Kenneth Ekpo for giving the motivation to embark on this academic journey. Also to my basketball team "ULTRAFIT BASKETBALL" we are Bro.

I am most thankful to my Supervisor, Dr. Isaac A Samuel who was truly instrumental with the time, support, direction, patience, encouragement, inquiries throughout my entire program. I am highly privileged to have worked under his supervision. I am most grateful for the help of Engr B. A. Isola and Engr. Abdusamaad at Transmission Company of Nigeria (TCN) Control Centre Oshogbo, Osun State for providing the data used in carrying out the analysis done in this research work as well as their guidance. I am also very thankful to all the lecturers who helped in bestowing me with the obliged knowledge needed throughout the program.

I am generally grateful. Finally, To God be all the glory.

TABLE OF CONTENTS

PAGES

	iii
DECLARATION	iv
CERTIFICATION DEDICATION	v vi
ACKNOWLEDGMENTS	vi
LIST OF TABLES	xii
LIST OF ABBREVIATIONS	xiii
ABSTRACT	XV
CHAPTER ONE INTRODUCTION	1
1.1 Background of Study	1
1.2 Statement of the Problem	2
1.3 Aim and Objectives of the Study	2
1.4 Scope of the Study	3
1.5 Justification of the Study	3
1.6 Limitation of Research	3
1.7 Dissertation Organization	4
CHAPTER TWO	5
LITERATURE REVIEW	5
2.1 Preamble	5
2.2 Power System Stability	5
2.2.1 Rotor Angle Stability	6
2.2.2 Frequency Stability	6
2.2.3 Voltage Stability	7
2.3 Voltage Instability	9
2.4 Static and Dynamic Analysis	12
2.5 Voltage Stability Indices	13
2.5.1 Fast Voltage Stability Index (FVSI)	14

2.5.2 Line Stability Index (Lmn)	15
2.5.3 Line Stability Indices (LQP)	16
2.5.4 Line Voltage Stability Index (LVSI)	17
2.5.5 Voltage Collapse Point Indicator (VCPI)	17
2.5.6 Line Collapse Proximity Indicator (LCPI)	18
2.5.7 New Line Stability Index-1 (NLSI_1)	18
2.5.8 Loss Sensitivity Index (S _{ij})	19
2.7 P-V and Q-V Curves for Calculating Margins	20
2.7.1 Similar Works	22
2.8 Gaps in Existing Literature	31
2.9 Chapter Summary	32
CHAPTER THREE	33
MATERIALS AND METHODOLOGY	33
3.1 Preamble	33
_3.2 Power Flow Analysis	33
3.3 Development of P-V and Q-V Curve Method	38
3.4 Description of Test Systems.	40
3.5 Data Collection	40
3.5.1 IEEE 14-Bus Network	40
3.5.2 The 330-kv, 58 Bus Nigerian Network	43
3.6 Chapter Summary	49
CHAPTER FOUR	50
RESULTS AND DISCUSSION	50
4.1 Preamble	50
4.2 Simulations	50
4.2.1 Simulation Results- Load Flow Study	50
4.2.2 Load Flow Results for IEEE 14-Bus Network	51
4.2.2.1 Identification of the IEEE 14-Bus System's Weak Buses	53

4.2.2.2 Results from Simulation of Contingency Analysis	56
4.2.2.3 Loss Sensitivity index of IEEE 14-Bus Network	61
4.3 The NNG 330kV, 58-Bus Network Simulation Results	62
4.3.1 Load Flow Results for NNG 330kV 58-Bus System	63
4.3.1.1 Determination of the Weak Buses in the NNG 330kV 58-Bus System	65
4.3.1.2 Simulation Results for Contingency Analysis	66
4.3.2 Loss Sensitivity index of NNG 58-Bus Network	70
4.4 Discussion of the Results	73
4.4.1 Discussion of the IEEE 14-Bus test system's simulation findings	73
4.4.2 Discussion of the NNG 58-Bus test system's simulation findings	74
4.5 Chapter Summary	74
CHAPTER FIVE	75
CONCLUSION AND RECOMMENDATIONS	75
5.1 Summary	75
5.2 Conclusion	75
5.3 Contributions to Knowledge	75
5.4 Recommendations	76
REFERENCES	77

LIST OF FIGURES

FIGURES	TITLE OF FIGURES	PAGES
Figure 2.1:	Classifications of power system stability (Kundur, 1994).	5
Figure 2.2:	circuit for a single supply and single load (Reddy & Manohar, 2012)	8
Figure 2.3:	Potential causes of blackout (Niranjan, Natasha, Manisha, 2016).	10
Figure 2.4:	Bar chart showing the PHCN system Disturbance from 2010 to 2021.	11
Figure 2.5:	Typical one-line diagram of transmission line.	16
Figure 2.6:	A plot illustrating the stability margins in a P-V Curve (Malbasa, et al., 2	2017). 20
Figure 2.7:	a typical graph showing the stability limits of a Q-V curve (Liu, 2018)	21
Figure 3.1:	Flowchart for Newton-Raphson load flow Algorithm	36
Figure 3.2:	One-line diagram for IEEE 14-Bus system (Nasr et al., 2011).	41
Figure 3.3:	One- Line diagram of 58-Bus, 330kV Nigerian Power Grid.	44
Figure 4.1:	the IEEE 14-Bus system in NEPLAN.	51
Figure 4.2:	the IEEE 14-Bus voltage profile bar chart	53
Figure 4.3:	A bar chart showing the maximum loadability limit of all the load buses	in the
IEEE 14-B	us system.	58
Figure 4.4:	A plot showing the P-V curve at Bus 2.	58
Figure 4.5:	A graph showing the P-V curve at Bus 14.	59
Figure 4.6:	A bar chart showing the maximum reactive power limit of IEEE 14-Bus	system.
		60
Figure 4.7:	A plot of Q-V curve at Bus 14 of the IEEE 14-Bus system.	60
Figure 4.8:	A Bar chart showing the voltage profile of the Nigerian 58 Bus grid Network	work. 62
Figure 4.9:	the 58-Bus Nigerian National Grid system simulated in NEPLAN.	63
Figure 4.10	A Bar chart showing the maximum real power loading on the weak bus	es in the
NNG 58-B	us.	66
Figure 4.11	: A plot showing the P-V Curve at Kano Bus.	67
Figure 4.12	: A plot showing the P-V Curve at Yola Bus.	68
Figure 4.13	: A plot showing the P-V Curve at Maiduguri Bus.	68
Figure 4.14	: A Bar chart showing the maximum reactive power loading on the weak	buses
in the NNG	58-Bus.	69
Figure 4.15	: A plot of the Q-V curve at Maiduguri Bus.	70

LIST OF TABLES

TABLES	TITLE OF TABLES	PAGES
Table 2.1: part	al and total voltage collapse in NPS from Jan. 2010 to Jan. 2022 (Ju	stin,
Salami, Oluka,	& Ejiofor, 2021).	11
Table 2.2: List	of similar works	23
Table 3.1: IEE	E 14-BUS Test System bus data	42
Table 3.2: IEE	E 14-Bus Test System Line Data	42
Table 3.3: the b	ous data for the Nigerian National Grid 58 bus system	45
Table 3.4: Line	e data of the Nigerian 58 Bus network.	47
Table 4.1: New	ton-Raphson power flow solution for the IEEE 14-Bus System.	52
Table 4.2: A ta	ble highlighting buses weak in the IEEE 14-Bus network with load 1	nargins.
		54
Table 4.3: Dete	ermination of weak buses in the IEEE 14-Bus network with safe reac	tive
margins.		55
Table 4.4: A Table	able showing the maximum loadability limit of IEEE 14-Bus networ	·k. 57
Table 4.5: A ta	ble showing the maximum loadability of reactive power on the IEEE	E 14-Bus
system.		59
Table 4.6: Loss	Sensitivity Index for various lines in the IEEE 14-Bus Network.	61
Table 4.7: New	ton-Raphson technique power flow solution for the 58-bus Nigerian	National
Grid System.		64
Table 4.8: A ta	ble showing that maximum real and reactive power loading of the w	eak
buses in the NN	NG 58-Bus system.	67
Table 4.9: loss	Sensitivity index for various lines in the NNG 58-Bus Network.	71

LIST OF ABBREVIATIONS

ANN	Artificial Neural Network
CCA	Critical Clearing Angle
ССТ	Crtitical Clearing Time
CPF	Continuation Power Flow
DC	Direct Current
DG	Distribution Generators
Es	Voltage Source
ELD	Eigenvalues of Linearized Dynamic Equations
FVSI	Fast Voltage Stability Index
GDP	Gross Domestic Product
GS	Generation Station
IEEE	Institute of Electrical and Electronics Engineers
IPP	Independent Power Producers
LFFI	Load Flow Feasibility Index
Lmn	Line Stability Index
LQP	Line Stability Indices
LVSI	Line Voltage Stability Index
LCPI	Line Collapse Proximity Indicator
MLP	Maximum Loading Point
NLSI_1	New Line Stability Index 1
NEPA	Nigerian Electric Power Authority
NIPP	National Integrated Power Projects
NNG	Nigerian National Grid

NR	Newton-Raphson
NPS	Nigerian Power System
PSN	Power System Network
PHCN	Power Holding Company of Nigeria
Ps	Sending end Real Power
Qr	Receiving end Reactive power
Qs	Sending end Reactive Power
\mathbf{S}_{ij}	Loss Sensitivity Index
SVJ	Jacobian Matrix Singular Value
SM	Synchronous Machines
TCN	Transmission Company of Nigeria
VS	Voltage Stability
VSL	Voltage Stability Limit
VC	Voltage Collapse
VSI	Voltage Stability Indices
Vs	Sending end Voltage
VCPI	Voltage Collapse Point Indicator
ZLD	Supplied Load
ZLN	Series Impedance
Z	Line Impedance

ABSTRACT

Voltage instability is an undesirable phenomenon in power system networks, resulting from a system being severely loaded causing a gradual voltage drop which eventually leads to a blackout in the system. It frequently has to do with the power system's reactive power supply. Therefore, it is essential to comprehend the critical loading point in order to make sure the power system operates securely. The study helps identify weak buses and lines that are in the connected buses to determine the best location for mounting compensating devices on the power system's transmission line network. First, a load flow analysis is performed for all of the buses in the test system, they are simulated using NEPLAN software, and the suspected weak buses in the system are found, along with safe loading margins for real and reactive power for both networks. The Newton-Raphson load flow method is used to assess the condition of the network's buses, and the real power against voltage magnitude (P-V) and reactive power against voltage (Q-V) curves which reveals the maximum loadability at each candidate buses. The IEEE 14-Bus and Nigerian National Grid 330kV 58-Bus systems, which served as the study's case studies, were used to assess the recommended approach. Base case and contingency analysis were the two situations that were examined for the two systems listed above. The IEEE 14-Bus system's buses and lines were all stable in the basic scenario. With a reactive loading margin of 74.6MVAr, the 14th bus was discovered to be the most vulnerable bus in the network during the contingency analysis simulation. The loss sensitivity index was calculated for all lines in the IEEE 14-bus network, and it was discovered that lines linking bus 14 had the lowest valuation. During base case simulation for the 330kV 58-Bus Nigerian network, Birnin-Kebbi, Gombe, Makurdi, Yola, Maiduguri, and Jos buses were found to be very close to the lower limit of 0.95 p.u. During contingency simulation, it was discovered that the Maiduguri Bus was the weakest in the network, with a reactive loading margin of 385MVAr. Finally, the loss sensitivity index of the 58-Bus network was evaluated, and Line 15 to 53 was discovered to have the lowest sensitivity index in the network and the ideal position for suitable compensating device installation. According to the research presented in this dissertation, the P-V and Q-V curves are particularly helpful for determining how consistently voltage levels are maintained across a power system network.

KEYWORDS: Voltage Stability, Voltage Instability, NEPLAN, Loss Sensitivity Index, Nigerian Network, P-V Curve, Q-V Curve.