
Contents lists available at ScienceDirect

Materials Today Communications

journal homepage: www.elsevier.com/locate/mtcomm

Corrosion inhibition of mild steel using binary mixture of sesame and castor
oil in brine solution

Daniel T. Oyekunlea,⁎, Tomiwa I. Oguntadeb, Christiana S. Itab, Temiloluwa Ojob,
Oyinkepreye D. Orodub

a Department of Chemical Engineering, College of Engineering, Covenant University, Nigeria
bDepartment of Petroleum Engineering, College of Engineering, Covenant University, Nigeria

A R T I C L E I N F O

Keywords:
Sesame oil
Castor oil
Mild steel
Weight loss
Polarization

A B S T R A C T

Binary mixture of sesame and castor oil has been investigated as a corrosion inhibitor for mild steel in brine
solutions by weight loss, polarization techniques and scanning electron microscopy (SEM) analysis. Gas
Chromatography–Mass Spectroscopy (GC–MS) analysis showed the presence of unsaturated compounds like
oleic, steric and palmitic acid which are responsible for the corrosion inhibitory properties of the binary mixture.
Optimum inhibition efficiency of 86.2% was predicted by Minitab 17 statistical software using the weight loss
method at 0.79M brine concentration, 22.1 mg/ L concentration of binary inhibitor and at a time period of 14
days. Tafel polarization plots affirm that binary mixture of sesame and castor oil acts as an effective mixed-type
inhibitor in moderately low concentrations while it also acts as anodic and cathodic inhibitors in high con-
centration of brine. The results of the SEM analysis also indicate the inhibition efficiency of the binary mixture of
mild steel.

1. Introduction

Corrosion is an irreversible and rapid degradation of metal and alloy
with the environment through an electrochemical or chemical reaction.
Corrosion is a destructive phenomenon that affects the beauty of an
object, and often times causing structural failure. Corrosion of metals
affects its impact on the environment and its economic value [1]. It
causes a huge waste of metallic materials which results in high eco-
nomic losses globally. As a consequence of this, corrosion has led to
significant industrial and academic awareness. Corrosion is a world-
wide problem, negatively affecting the advancement of developed and
developing countries. According to a study by the National Association
of Corrosion Engineers (NACE), in 2011, more than US $2.2 trillion was
spent on corrosion. The cost of corrosion in India was estimated to be
above US $100 billion, also about US $9.6 billion was expended on
corrosion in South Africa. It was reported that the amount spent on
corrosion can be reduced by 35% using the prevailing methods of
preventing corrosion [2].

Typically, erosion is the degradation of metallic materials by phy-
sical factors but corrosion is restricted to harmful attacks on metals only
[3]. Most non-metallic materials are susceptible to deterioration by
chemical reaction with the immediate environment. Often times, non-

metallic materials deteriorate as a result of the chemical reaction with
the surroundings, for instance, cracks and bulges are observed in
plastics, eroding of the outer layer is observed on granite surfaces, split
observed on wood and leaching of Portland. Corrosion is restricted to
destructive attack on metals by electrochemical and /or chemical attack
[2]. However, a frequent and effective means of protecting metallic
substrates from corrosion occurs when organic coatings are applied.
Organic coatings confer metal protection by the creation of a protective
layer against oxygen so as to reduce the corrosion rate by lowering the
presence of corrosion-causing factors like water hydrogen and oxygen
ion on metal surfaces. Although, as a result of the permissiveness of
organic coatings to water and oxygen, some active ingredients such as
inorganic additives are added to these inhibitors to further hinder the
corrosion rate especially once the protective covering has been brea-
ched [4,5].

Different types of organic compounds have been applied as an in-
hibitor to form organic coatings. Often times, organic compounds
possess a significant influence on the rate at which adsorption occurs on
a metal surface, hence they can effectively inhibit corrosion. The effi-
ciency of organic inhibitors is due to the existence of polar functions
with S, O or N atoms in the molecules, π electrons, and heterocyclic
compounds. Also, the polar function is referred to as the center for the
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inception of the adsorption process [6]. Most synthetic organic in-
hibitors have several hazardous effects and controlled environmental
regulations, which had made researchers focus on developing cheap,
non-toxic and environmentally favorable natural products as corrosion
inhibitors. These natural organic compounds can be synthesized or
extracted from a medicinal plant, aromatic herbs, and spices. Plants
extracts are seen as a remarkable source of chemical compounds that
can be extracted easily at a low cost and are biodegradable in nature
[7]. The use of natural products extracted from leaves, seeds, and roots
of plants as a corrosion inhibitor has been documented in the literature
[8–11].

Numerous extracts from plants have been used as corrosion in-
hibitors this includes Hibiscus sabdariffa, Azadirachta indica, Telferia
occidentalis, Occimum viridis and Garcinia kola extract [12]. Other plant
extracts that have been used are succinic acid [13], ascorbic acid [14],
aminoacids [15], Pennyroyal oil [16], Justicia gendarussa [7] and caffeic
acid [17]. In previous studies, castor oil has been used as a corrosion
inhibitor on mild steel [18–20] as well as Sesame oil [21,22]. Castor oil
has proved to be an efficient inhibitor as a result of the presence of a
functional group with 12C. The existence of OH groups in fatty acid
chains makes the oil unusually polar [19]. As a result of this inhibitive
nature, this study was performed to combine the corrosion inhibitive
property of both oils (sesame and castor oil) in a binary mixture on mild
steel. The morphology and compositions of the precipitated film on the
mild steel surface in brine solutions containing different concentrations
of the binary inhibitor (sesame and castor oil) were studied by SEM and
FT-IR analysis. Polarization tests were also carried out to examine
corrosion inhibition effects at different immersion times.

Statistical models such as Artificial Neural Network (ANN) and
Response Surface Methodology (RSM) have been applied to optimize
various processes in numerous fields. [23–25]. Response surface
methodology is a mathematical and statistical tool used to study in-
dividual and interactional effects of variables on responses and is
mostly fitted by polynomial equations such as quadratic, cubic or
higher-order functions. Box Behnken design (BBD) was selected from
other RSM designs as a result of its efficiency, feasibility, simplicity and
also to reduce the number of test runs required compared to other RSM
designs. On the other hand, a computational technique such as ANN
imitates biological neural systems like the human brain. RSM and ANN
are computer software programs designed to model the correlation
between the independent and dependent variables and are proficient in
the modeling of non-linear and complex relationships directly from raw
data. The benefit of using ANNs is its capacity to control complex,
noisy, incomplete and less constructive data and its ability of parallel
processing [25].

In this study, response surface methodology (RSM) Box-Behnken
design was used to design experimental sets and to investigate the ef-
fects of main and interaction of process variables such as concentration
of inhibitor, concentration of the corrosive medium (brine), and time
using binary mixture of sesame and castor oil, and the same sets of
experimental data was applied for training artificial neural network.
The results acquired from both models (RSM and ANN) were compared
to ensure better predictability of inhibition efficiency of the binary in-
hibitor (sesame and castor oil) on mild steel in brine solutions.

2. Experimental procedures

2.1. Materials

2.1.1. Preparation of plant extract and coupon preparation
Sesame and castor oil were obtained from Lagos State, Nigeria. Both

oils (sesame and castor oil) were viscous, the sesame oil was a dark
brown liquid while the castor oil was a light yellow liquid. Equal vo-
lumes of both oils were used throughout this experiment. Mild steel
coupons (Mn=0.03; Cr= 0.012; C= 0.253; S= 0.024; P=0.013;
Si= 0.12; and remainder Fe) of dimensions 20×20 x 3mm size were

used for weight loss measurements and polarization studies. Prior to the
experiments, the coupons were polished with 600 grade of emery pa-
pers. They were immersed in acetone for 20min to remove grease,
washed with distilled water and dried in air before immersing in the
corrosion medium.

2.1.2. Gas chromatography- mass spectrometry (GCMS)
8 μl of the binary inhibitor with equal volumes of sesame and castor

oil were sonicated using n-hexane and analyzed by GCMS-QP2010 Plus
Shimadzu, Japan equipped with electron impact ionization mass spec-
trometer. The oven temperature was programmed at 70–280°C at a
linear velocity of 49.2 cm/sec and held for a hold-up time of 5min.
Other operating conditions are: split ratio 20.0, detector temperature
280 0C, injector temperature 250 0C and Helium (99.99%) was used as
the carrier gas.

2.1.3. Fourier transform infrared spectroscopy (FTIR)
FTIR instrument, Shimadzu FTIR-8400S was used to perform

structural characterization of the binary inhibitor. The functional
groups were analyzed in the range of 750 – 4000 cm−1 (wavenumbers),
and established by correlation with the standard peak placement of the
groups.

2.2. Methods

2.2.1. BBD and ANN optimization and design of experiments using weight
loss method

Box-Behnken Design (BBD) and Artificial Neural Network (ANN)
were applied to give a precise prediction of the correlation between the
process input variables (Concentration of brine, Concentration of binary
inhibitor and time) and the output (inhibition efficiency). Mild steel
coupons of 20×20×3mm size were immersed in 0.5 - 0.9 M of brine,
19–26mg/ L of binary inhibitor and 8–21 days as designed by RSM to
determine the corrosion rate generated by Box Behnken Design Minitab
17 (Tables 1 and 2). Each experimental rum was in triplicate with and
without the addition of the binary inhibitor at 27 0C. At the end of the
exposure period, the coupons were cleansed and their weight was
noted. The following equation by Satapathy [7] was used to determine
the percentage inhibition efficiency (IE%).

= − ×Inhibition Efficiency IE M M
M

( %) ( ) 100
1 2

1 (1)

Where M1 – weight loss of mild steel in uninhibited brine solutions (g);
M2 – weight loss of mild steel in inhibited brine solutions (g).

2.2.1.1. Box-Behnken design. The input process variables were varied
into separate levels to note their effect on the corrosion inhibition
process. The results obtained from the BBD experimental design matrix
was used to derive a mathematical model by applying the RSM
quadratic model. The experimental data derived from BBD were used
for ANN training using a multilayer normal feed-forward neural
network. The design of experiments was built on three variables and
four levels as displayed in Table 1, which discussed the actual and
coded factors, the total amount of experiments generated by Box-
Behnken design was 20. The correlation and interaction between the

Table 1
Experimental range and factors used in Box-Behnken design.

Variables Coded
symbol

Levels and range

−2 −1 0 1 2

Concentration Of Brine (M) Za 0.3 0.5 0.7 0.9 1.1
Concentration of the Binary Inhibitor

(mg /L)
Zb 15 19 23 26 30

Time (Days) Zc 3 8 13 17 21
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variables were determined by fitting the equation of the second-order
polynomial to the resulting data obtained. The model quality was
evaluated by applying the analysis of variance (ANOVA) and the test of
significance. The fitted quadratic response model is given as Eq. (2)

= + + + + + + +

+ + +

Y d d Y d Y d Y d Y d Y d Y d Y Y

d Y Y d Y Y e
0 1 1 2 2 3 3 11 1

2
22 2

2
33 3

2
12 1 2

13 1 3 23 2 3 (2)

Where Y is value predicted for the response (inhibition efficiency), d0 is
the offset term, d1, d2, and d3, are the linear coefficients, d11, d22, and
d33 are the quadratic coefficients, d12, d23, and d23 are cross products
and e represents the error term. All the experiments were carried out in
triplicates and the mean values were used. The design matric of the BBD
experimental sets and the responses observed were tabulated in Table 2.
Minitab 17 was used for experimental design and data analysis was
performed by BBD response surface design.

2.2.1.2. Artificial neural networks. In the training technique,
information was performed in the forward direction from the input
layer to the hidden layer, then from the hidden layer to the output layer
derived as the assigned network (Fig. 1). The computational application
of the ANN program is to conduct simulation as well as prediction. The
internal variables and structure can be configured and determined as
desired in the designed simulation. In this study, multilayer normal
feed-forward neural network training with QuickProp (QP) learning

algorithm was developed using Neural Power version 2.5 (CPC-X
software, USA). The connection strength between the inputs, hidden
and output layers was determined by ANN parameters such as weights
and biases.

2.2.2. Linear polarization resistance tests
Linear polarization resistance (LPR) measurements were potentio-

dynamically executed in± 10mV potential range with reference to
open circuit potential applied at a scan rate of 0.5 mV/s. The system
response (inhibited and uninhibited mild steel in brine solution) was
analyzed through Autolab software. Polarization resistance (P) values
were obtained from the current corrosion density and equilibrium
corrosion potential. From the measured polarization resistance values,
the inhibition efficiency (IE%) was determined from the equation:

= − ×IE P P
P

% 1001 0

0 (3)

Where P0 and P1 are the polarization resistance values with the pre-
sence and absence of inhibitors.

2.3. Surface analysis

The morphologies of the mild steel surfaces in inhibited and unin-
hibited brine solution were analyzed by scanning electron microscope.

Table 2
Experimental design of the weight loss experiment on mild steel in binary solution.

Sample No. Conc. Of Brine
(M)

Concentration of the Binary
Inhibitor (mg/ L)

Time
(Days)

Experimental Inhibition
Efficiency (%)

Predicted Inhibition
Efficiency (%)

Residual Inhibition Efficiency
(%)

RSM ANN RSM ANN

1 0.7 23 13 84.00 83.95 84.01 0.05 0.01
2 0.5 26 8 53.00 53.41 52.99 −0.41 0.01
3 0.7 23 13 84.00 83.95 84.01 0.05 0.01
4 0.7 23 3 42.00 41.67 42.00 0.33 0.00
5 0.9 26 8 68.00 68.11 68.03 −0.11 0.03
6 0.9 19 17 79.00 78.83 79.03 0.17 0.03
7 0.7 23 13 84.00 83.95 84.01 0.05 0.01
8 0.9 26 17 77.00 77.38 76.91 −0.38 0.09
9 0.7 30 13 70.00 69.86 70.01 0.14 0.01
10 0.5 19 21 64.00 64.13 64.00 −0.13 0.00
11 0.7 23 13 84.00 83.95 84.01 0.05 0.01
12 0.7 23 13 84.00 83.95 84.01 0.05 0.01
13 1.1 23 17 65.00 64.72 65.04 0.28 0.03
14 0.5 26 17 63.00 62.68 63.01 0.32 0.01
15 0.5 23 8 52.00 52.25 52.01 −0.25 0.01
16 0.7 23 13 84.00 83.95 84.01 0.05 0.01
17 0.9 19 8 68.00 68.51 67.94 −0.51 0.06
18 0.7 15 13 72.00 71.96 72.00 0.04 0.00
19 0.5 19 3 54.00 53.81 54.00 0.19 0.00
20 0.3 23 13 38.00 38.00 38.00 0.00 0.00

Fig. 1. Structure of ANN architecture for Inhibition efficiency (%) of mild steel.
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3. Results and discussion

3.1. Results

3.1.1. Characterization of the binary inhibitor
3.1.1.1. FTIR spectrum and results. Fig. 2 illustrates the FT-IR spectrum
of the binary mixture of sesame and castor oil. Absorption band
observed at 3556.85, 3510.56, 3379.40 and 3286.81 cm−1 bands are
associated with the broad hydroxyl group. The 3194.23 cm-1 bands
indicate the presence of ammonium ion in the organic mixture. The
peaks at 2931.90 cm-1 and 2854.74 cm-1 can be assigned to the aliphatic
and aromatic stretching mode of C–H groups respectively [7]. The
2553.84 cm-1 band is associated with SeH stretching band. The
2191.21 cm-1 band can be identified with the CC^ band. The peak at
1743.71 cm−1corrresponds to the stretching modes of carbonyl groups
in organic acids (RCOOH) or ketones (RCOR) and aldehyde (RCOH) or
ester (Reeee−CO-O-R). The peak at 1450.52 cm−1is attributed to the
methyl C–H asymmetric bend. The peak for phenol or tertiary alcohol
bend and aromatic phosphate stretch are noticed at 1365.65 cm−1and
1234.48 cm-1 respectively. The peak at 1157.33 cm-1 implies the
stretching mode of C–N. The peaks at 864.14 cm-1 and 717.54 cm−1

implies the presence of aromatic C–H bend. The occurrence of various
bands implies that the binary inhibitor contains a mixture of various
compounds like oils, flavonoids, and alkaloids [7,26].

3.1.1.2. GC–MS results. Gas chromatography-mass spectroscopy
(GC–MS) spectra of the binary inhibitor used in this study is shown in

Fig. 3. It comprise of 7 major peaks as well as many other small peaks
indicating the presence of more than 7 major compounds. The small
peaks may be associated with compounds present in minute quantities
in addition to possible disintegrated major compounds. The 7 major
peaks identified are oleic, stearic, methyl ricinoleate, behenic, palmitic,
undecylenic, and nonadecyclic acid. The most predominant was oleic
acid. Other peaks with low retention time are largely plant compounds
with low polarity such as lupenol, friedelin, and b-sitosterol, etc.
Unsaturated compounds such as oleic, steric and palmitic acid have
been reported for its corrosion inhibitory properties [27], hence, the
binary mixture was used to perform corrosion inhibition studies.

3.2. Weight loss measurements

Corrosion inhibition occurs as a result of surface film stabilization
on the steel. The effect of chemically stable surface-active inhibitors
increases the activation energy of iron dissolution reaction, thus redu-
cing the surface available for corrosion [7]. The increase weight loss
with time resulted in a corresponding increase in the inhibition effi-
ciency [28] in the presence and absence of binary inhibitor. This in-
dicates that insoluble surface film was not created on the electrode
surface during mild steel corrosion in brine solutions [13]. It implies
that the binary inhibitor was first adsorbed on the surface of the elec-
trode impeding corrosion either by blocking the reaction sites or by
altering the mechanism of anodic and cathodic corrosion process [28].
Therefore, the inhibitive nature of binary mixture in brine solutions
results from electrostatic adsorption of a negatively charged

Fig. 2. FT-IR spectra of sesame and castor oil binary inhibitor.

Fig. 3. GC–MS of sesame and castor oil binary inhibitor.
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deprotonated mixture of the binary inhibitor to the positively charged
electrode surface, thus forming a barrier on the steel surface. The sur-
face film protects the mild steel against corrosive ions, such as Cl− of
OH− [13].

The design matrix obtained from the Box Behnken response surface
optimization tool is used to derive a quadratic model that emphasizes
the effect of interactional and individual effect of process variables and
their level of significance in the process. The design matrix obtained
from the Box Behnken design was utilized for the ANN training.

3.2.1. Molding using Box Behnken design – response surface methodology
From the experimental results, an empirical relationship between

the response (Inhibition Efficiency) and independent variable
(Concentration of brine, Concentration of binary inhibitor and time) in
coded terms is expressed in the equation below.

= − + + +

− − −
−

Inhibition Efficiency Za Zb Zc

Za Zb Zc
Zb Zc

(%) 226.27 310.17 10.610 10.205

195.30 0.23409 0.34971
0.01664

2 2 2

(4)

Where Za represents the concentration of brine, Zb represents the
concentration of Binary inhibitor and Zc represents immersion time.

The predicted response values (Inhibition efficiency %) have been
determined by using the quadratic model in Eq. (4) and are given in
Table 2. From the results presented in Table 2, it can be affirmed that
there is a good agreement between the experimental values and Box-
Behnken RSM predicted values, therefore validating the accuracy of the
proposed model. The analysis of variance (ANOVA) results were sum-
marized by the quadratic model demonstrate the adequacy and sig-
nificance of the model, presented in Table 3.

According to Table 3, the F-value of the model (6609.52) indicates
that the model is statistically significant [29–31]. The co-efficient of
determination (R2) was determined to be 99.97%, which implies that
more than 99% of the experimental data were compatible and only
about 0.03% of the total variation cannot be described by the model.
High R2 value implies that the test variations of 99.97% could be fitted
by the model Eq. (4). Adjusted R2 is used to calculate the model ade-
quacy, the fitness of the model as well as to rectify the R2 value for
sample size and for the set of terms in the model. A high value of ad-
justed R2 (99.96%) implies a high model significance.

The optimum condition of independent variables selected for the
best inhibition efficiency (%) of the model as predicted statistically by
Minitab 17 software was corrosion inhibition of 86.2% at variable
conditions of 0.79M concentration of brine, 22.1mg/ L concentration
of binary inhibitor and at a time period of 14 days.

3.2.2. ANN modelling
Several neural network architectures, topologies, and transfer

functions have been identified and analyzed for prediction of inhibition

efficiency of a binary mixture of sesame and castor oil in brine solution
(%). The selection of suitable network architecture, its transfer func-
tion, and its topology is essential for the successful application of ANN
as a type of transfer function used to control the learning rate of a
neural network and its performance. The number of neurons was in-
cited by a heuristic approach involving testing different amounts of
neurons and topology until the mean square error (MSE) of the output
data was reduced by varying the topology (4:n:3) and the number of
neurons (n) used from 7 to 21.

ANN architecture was trained using 1000 as a stopping criterion.
The mean square error (MSE) and the coefficient of determination were
evaluated to determine the neural network predictive ability. The mean
square error (MSE) and the coefficient of determination were calculated
using the equations below.

∑ ⎜ ⎟= − ⎛
⎝

−
−

⎞
⎠=

R
z z

z z
1

( )
( )j

n
j cal j exp

avg exp j exp

2

1

, ,
2

, ,
2

(5)

∑= −
=

MSE
n

N Z1 ( )
j

n

j j
1

2

(6)

Where, zj,cal is the calculated values, zj,exp is the experimental values,
zavg,exp is the average experimental values, Nj is the predicted values, Zj
is the experimental value, n is the number of runs performed in the
experiment. MSE value was established as 0.072984 and the coefficient
of determination (R2) was 0.99999. The predicted values by ANN was
in good accordance with the experimental values. The coefficient of
determination (R2) for inhibition efficiency is 0.99998. The weights and
bias for the output and hidden layer are illustrated in Table 4.

3.2.3. Experimental analysis of results
3D response surface and contour plots (Figs. 4–6) are the graphical

illustration of the quadratic equations to demonstrate the effect of
variables on the responses. From Fig. 4, it can be observed that at low
concentration of binary inhibitor and low concentration of brine the
inhibition efficiency achieved was highest. Increasing the concentration
of brine at low concentration of binary inhibitor decreases the inhibi-
tion efficiency, these could be attributed to high concentration brine
providing a more corrosive environment for the mild steel and less
concentration of inhibitor is available to slow down the rate of the
corrosion process. A high concentration of inhibitor of 23mg/ L in a
brine concentration of 1.1M provides inhibition efficiency of 65%
compared to the same concentration of inhibitor of 23mg/ L in a lower
brine concentration of 0.7 M with 84% inhibition efficiency. This can be
attributed to the fact that a higher concentration of brine has a more
corroding effect than a lower brine concentration. Fig. 5 adduced that
at a low reaction time and low concentration of brine the inhibition
efficiency was at maximum. Increasing the concentration of brine at

Table 3
ANOVA table for inhibition efficiency of the binary inhibitor.

Source Sum of squares DF Contribution (%) Adj SS Adj MS F-Value P-Value

Model 4055.90 7 99.97 4055.90 579.41 6609.52 0.000
Za 973.42 1 23.99 913.76 913.76 10423.45 0.000
Zb 1.68 1 0.04 3.03 3.03 34.55 0.000
Zc 280.96 1 6.93 666.68 666.68 7604.98 0.000
Za2 1465.69 1 36.13 1461.85 1461.85 16675.73 0.000
Zb2 80.84 1 1.99 261.66 261.66 2984.80 0.000
Zc2 1252.75 1 30.88 1253.27 1253.27 14296.37 0.000
Zb×Zc 0.56 1 0.01 0.56 0.56 6.37 0.027
Error 1.05 12 0.03 1.05 0.09
Lack-of-Fit 1.05 7 0.03 1.05 0.15
Pure Error 0.00 5 0.00 0.00 0.00
Total 4056.95 19 100.00

R2=99.97%, Adjusted R2= 99.96%, Predicted R2=99.88%.
Where DF=Degree of freedom, Adj SS=Adjusted sum of squares, Adj MS=Adjusted Mean squares.
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low reaction time reduces the inhibition efficiency, this can be as a
result of a more corrosive environment provided by a higher con-
centration of brine. Although, as time increases and the concentration
of brine reduces the inhibition efficiency is at maximum. This can be
attributed to a reduction in the concentration of brine resulting in a less
corrosive environment for the mild steel. From Fig. 6, it can be observed
that at low reaction time and low concentration of binary inhibitor the
inhibition efficiency reduces, and as the time increases and the con-
centration of inhibitor increases the inhibition efficiency increases. For
instance, increasing the concentration of inhibitor from 23 to 30mg/ L
at a constant period of time 3 days, the inhibition efficiency increases
by 32%. This further proves the efficiency of the binary inhibitor in

inhibiting the corrosion rate of mild steel in brine solutions.
The relative significance of the three input variables was evaluated

using Neural Power version 2.5 (CPC-X software, USA) shown in Fig. 7.
As displayed in Fig. 7, all of the three variables (Concentration of brine,
Concentration of binary inhibitor, and Time with a relative importance
of 53.26%, 29.02%, and 17.72% respectively) have strong effects on the
inhibition efficiency. Therefore, all the variations studied in this work
could not be negated in this current analysis. The degree of potency of
variables was found in the following order of

Concentration of brine > Concentration of binary
inhibitor > Time

3.2.4. Comparison of ANN and RSM models
The predictive execution of the ANN and RSM models were com-

pared on the basis of coefficient of determination (R2), Relative Percent
Deviation (RPD) and Root Mean Square Error (RMSE) given by the
model. The general model capability can be validated in the prediction
accuracy for the authentication of a data set. The values of R2, RPD, and
RMSE for the ANN model were greater than those for the RSM model as
shown in Table 5. This result implies that the ANN model for prediction
has higher accuracy than the RSM model used for prediction. This also
indicates that the experimental data has a high level of accuracy fitted
using the ANN model.

Table 4
Weights for hidden and output layer.

Layer Weights of the hidden layer Output (% IE)

1 2 3

Neuron 1 9.7402 9.7457 2.0950 1.4829
Neuron 2 −5.2592 6.3340 0.1662 1.0844
Neuron 3 −3.8168 2.8469 −0.5160 −5.8163
Bias −2.4523 11.4532 0.1376 −3.3066

Fig. 4. Surface and contour plots illustrating the effects of brine concentration (M) and Concentration of binary inhibitor (mg/ L) on Inhibition efficiency (%).
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In the validation of the experimental data set, R2, RPD and RMSE
values for the RSM and ANN models are displayed in Table 5. Table 5
showed that both models gave a very high performance of the data set
validation, but ANN performed invariably better than RSM. The per-
formance prediction of the ANN model for data set validation affirms a
greater capacity for the generalization on the given case over RSM.
Also, Fig. 8 illustrates the predicted and experimental values for each
experimental run to obtain the inhibition efficiency. From Fig. 8, it is
obvious that the trained neural network has an effective approximated
experimental values. The higher predictive capability of the ANN can
be ascribed to its potential to generally approximate the system non-
linearity, in contrast to RSM which is limited to second-order degree
polynomial [29]. Nevertheless, when the ANN technique is used it must
be noted that its predictions are limited to the range of process factors
applied in the training process [29,32]

3.3. Effect of immersion time

The variation of inhibition efficiency with immersion time is illu-
strated in Figs. 5 and 6. Fig. 5 illustrates the changes observed in the

experimental inhibition efficiency against immersion time and con-
centration of brine. At low brine concentration, the inhibition efficiency
increases with time this was in agreement with previous studies
[33,34]. Also, at a high concentration of brine, the inhibition efficiency
increases as time increases. A similar occurrence was also experienced
in Fig. 6. The inhibition efficiency increases as the immersion time was
increased at a low concentration of binary inhibitor. Similarly, in-
creasing the concentration of binary inhibitor to maximum, the in-
hibition efficiency increased as the immersion time increased but after
10 days of immersion the inhibition efficiency decreases indicating that
the inhibition potential of inhibitors decreased as a function of their
exposure in acid [35]. Overall, for this study, the relative importance of
immersion time is 17.72% which was lower than the concentration of
brine and concentration of binary inhibitor of 53.26% and 29.02% re-
spectively (Fig. 7).

3.4. Potentiodynamic polarization

The effects of a binary mixture of sesame and castor oil on the be-
havior of anodic and cathodic polarization of mild steel in brine

Fig. 5. Surface and contour plots illustrating the effects of brine concentration (M) and Time (days) on Inhibition efficiency (%).
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Fig. 6. Surface and contour plots illustrating the effects of Concentration of Binary inhibitor (mg/ L) on Time (Days).

Fig. 7. Relative importance of the variables on the response.
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solution have been investigated by polarization measurements and re-
corded as displayed on the Tafel plots in Fig. 9a and b for 0.3 M and
1.1M concentration of brine respectively. It is illustrated from the data
presented in Table 6 that both cathodic hydrogen evolution and anodic
metal dissolution of mild steel reaction were inhibited with the addition
of the binary mixture of sesame and castor oil to 0.3 M and 1.1M of
brine solution. The inhibitory nature of this reaction was more visible
with the further addition of the binary inhibitor.

Fig. 9a and b illustrate the effect of the binary inhibitor (equal vo-
lumes of sesame and castor oils) on the kinetics of mild steel corrosion
inhibition process in 0.3 and 1.3M of brine solutions. Inhibitor added in
brine solutions influence the corrosion reactions and could be observed
by the changes in the corrosion potentials as well as alterations in both
cathodic and anodic polarization curves. The equilibrium corrosion
potentials (Epcorr) is altered towards more negative values in the pre-
sence of inhibitor. Also, decreasing the cathodic polarization curves was
above the anodic polarization curves. Both observations imply that the
inhibitor reduces the cathodic corrosion reactions successfully than
anodic corrosion reaction [36]. Further analysis showed that the po-
larization curves were slightly altered when different amounts of in-
hibitor were added in 0.3 M brine solution (Fig. 9a). This reveals that
the amount of inhibitor added has little effect on the inhibition me-
chanism.

The technical terms associated with the kinetics of corrosion pro-
cess, such as, equilibrium corrosion potential (Epcorr), corrosion current
density (Iρcorr), anodic Tafel slope (bc) and cathodic Tafel curve slope
(ba) was calculated from the polarization curves at different inhibitor
concentrations and an over-view was stated in Table 2. Observing the
values of Epcorr showed that the addition of more of the binary inhibitor
caused the corrosion potential of the mild steel to shift towards a
greater negative potential with reference to Epcorr in 0.3 and 1.1M of

brine solutions. According to Riggs and others [37], a compound is
classified as anodic or cathodic inhibitor based on the displacement of
Epcorr, if the displacement is> 85mV in reference to Epcorr the inhibitor
can be reported as a cathodic or anodic inhibitor, otherwise, it will be
classified as a mixed type inhibitor. In this study, the maximum change
observed in the corrosion potentials was 60.42mV and 117.81mV in
0.3 M and 1.1M brine solution respectively. The binary inhibitor used
in this study can be classified as a mixed corrosion inhibitor in mod-
erately low concentration range for brine solutions this was corrobo-
rated by Popoola [22] for sesame oils. Thus, this type of binary in-
hibitor simultaneously acts as anodic and cathodic inhibitors in a higher
concentration of brine solutions. The values of anodic and cathodic (ba
and bc) slopes presented in Table 6 were changed significantly as the
concentration of inhibitor, this suggests that inhibitor adsorption on the
metal surface probably affects the mechanism at which mild steel dis-
solves in brine solutions.

Table 6 illustrate that further addition of inhibitor reduces the
corrosion current in concordance with the concentration of inhibitor
used. The values of corrosion current density were obtained by extra-
polation of cathodic Tafel (bc) lines to the respective free corrosion
potential (Ecorr) [22]. The lowest Iρcorr value was deduced for both
concentrations (0.3 and 1.1M brine) at 300mg /L concentration of
binary inhibitor. However, using 0.3 M of brine the corrosion current
value was lower than in 1.1 M of brine, showing the binary mixture was
more effective corrosion inhibitor in 0.3M of brine solution than 1.1M
brine solution. The basis for mild steel corrosion inhibition of mild steel
in brine solutions can be as a result of the resistance values of linear
polarization (Rp). The resistance of the mild steel polarization in brine
solutions was significantly increased in the presence of the inhibitor
(Table 6). Consequently, corrosion inhibition was realized. On the other
hand, it can be declared that the adsorption of inhibitor molecules on
the mild steel surface at the active cathodic and anodic sites made the

Table 5
Validation data for RSM and ANN model developed using R2, RPD and RMSE.

Factors Models

RSM ANN

Coefficient of determination (R2) 0.99970 0.999990
Relative percent deviation (RPD) 5.03568 5.383000
Root mean square error (RMSE) 0.29608 0.072984

Fig. 8. Comparing experimental and predicted values for RSM (left) and ANN
(right).

Fig. 9. a. The log of current against potential for 0.3M Brine. b. The log of
current against potential for 1.1M Brine.
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metal (mild steel) more protected from corrosion (polarization) re-
sulting into corrosion inhibition.

It can be summarized that the binary inhibitor (sesame and castor
oil) preferentially adsorbed on the active sites of the mild steel surface
resisting corrosion reaction by improving the electrode insulation po-
tential (low corrosion current). Inhibitor concentration improves the
inhibition efficiency accompanied by a low change in corrosive solu-
tions. Larger surface coverage and low rate of adsorption of inhibitor
molecules can be adjured by the stated fact.

3.5. Electrochemical impedance spectroscopy (EIS)

Electrochemical impedance spectroscopy was used to obtain more
information about the kinetics of mild steel corrosion in the presence of
the binary inhibitor mixture (sesame and castor oil). The electro-
chemical process takes place at the open-circuit potential and was ex-
amined by the electrochemical impedance spectroscopy. EIS measure-
ments of the mild steel electrode at its open circuit potential were
observed after immersing in brine solution alone for 15min and in the
presence of different concentrations of the binary mixture. These ex-
periments were performed over a 10 kHz to 10mHz frequency range.
Fig. 10 illustrates the Nyquist plots for mild steel dissolution in unin-
hibited and inhibited brine solution with different concentrations of the
binary inhibitor. It was observed that the width of the Nyquist plots
increased as the concentration of the binary inhibitor increased, in-
dicating the strengthening of the inhibitive film. Furthermore, the Ny-
quist plots present imperfect semicircle which occurs due to the rough
electrode surface and surface homogeneity [38]. The EIS spectrum re-
corded for mild steel in 1M brine solution at 27 0C (Fig. 10) showed one
depressed capacitive loop. This same trend was also observed in mild
steel immersed in 1M brine containing binary inhibitor (15–30mg/L).
The depressed semicircle with the center under the real axis is a char-
acteristic behavior of a solid electrode attributed to the roughness of the
surface and inhomogeneity of the metal electrodes [7].

EIS experiment was performed for mild steel immersed in 1M Brine
solution uninhibited and inhibited with binary inhibitor at 27 0C as
shown in Fig. 10. The respective kinetic parameters are displayed in

Table 7. The EIS plots of mild steel in brine solution uninhibited and
inhibited with the binary inhibitor at 27 0C showed an inductive loop in
low frequency (LF) region while it displays a depressing capacitive loop
at high-frequency region (HF). Thus indicates the occurrence of a Far-
adaic process on free electrode sites. From EIS illustrated in Table 7, the
charge transfer resistance (Rct) values increases as the concentration of
binary inhibitor increase, thus indicating the formation intermediates
responsible for the anodic controlling process from the metal dissolu-
tion and subsequently inhibiting corrosion. It was also observed that the
Rct values increase whereas the double-layer capacitance (Cdl) values
decrease in the presence of the binary inhibitor at different con-
centrations. The increase in the Rct and decrease in Cdl values in in-
hibited solutions are due to a reduction in local dielectric constant and/
or to an increase in the thickness of the double layer [39]. These results
imply that the binary inhibitor in this study inhibits mild steel corrosion
by adsorbing on the metal/electrode interface [38]. The adsorption of
the binary inhibitor on the electrode reduces the electrical capacity
because it displaces water molecules and other ions initially adsorbed
on the surface. The depletion of this capacity with increasing binary
inhibitor concentration may be due to the formation of a protective
layer at the surface [7]. The maximum value of Rct attained was 207.62
Ω cm2 for binary inhibitor at 27 0C. The results obtained in this study
showed that the binary mixture of sesame and castor oil acts as a good
corrosion inhibitor at 27 0C in brine solutions.

3.6. Surface characterization

To ascertain whether corrosion inhibition occurs as a result of the
formation of a protective film by the binary inhibitor on the metal
surface, SEM images were taken. Fig. 11 illustrates the surface mor-
phology of the SEM analysis of the examined samples. The figure shows
the micrograph of mild steel examined after exposure to 0.5 and 1.1M
of brine solution. The figures reveal the SEM images after immersion,
severe damage on the surface occurs as a result of material dissolution
starting on grain boundaries located between perlite and ferrite. Grain
boundaries are well known to be active sites where lattice and dis-
location defects accumulate, therefore the deposition of iron oxide/
oxyhydroxide is often initiated on the grain boundaries to be slowly
spread evenly on the whole metal surface. The rate at which mild steel
degrades depends on the presence of a good protective film on its
surface.

Table 6
Kinetic parameters obtained from Tafel plots of mild steel immersed in 0.3M and 1.1M Brine containing the binary inhibitor.

Brine Solution Conc of Binary inhibitor (mg/ L) Epcorr (mV vs Ag/AgCl) Iρcorr (μA/cm2) ba (mV/ dec) bc (mV/ dec) Rp (Ω cm2) IE %

0.3M NaCl Blank 495.22 1610 390.6 28.40 44.49 –
150 480.08 708 15.96 34.25 668.04 99.56
300 434.8 293 31.64 12.27 1311.3 98.18

1.1M NaCl Blank 628.83 4100 49.03 16.87 13.28 –
150 512.97 411 31.96 15.89 112.15 89.99
300 511.07 348 50.47 9.08 959.26 91.52

Fig. 10. Nyquist plot for mild steel in 1M brine uninhibited and inhibited with
different concentration of the binary inhibitor.

Table 7
EIS parameters obtained for mild steel in 1M Brine uninhibited and inhibited
with binary inhibitor.

Inhibitor Conc (mg/L) Rs (Ω cm2) Rct (Ω cm2) Cdl (μF cm−2) IE

Blank – 0.92 11.34 103.63 0.78
Binary inhibitor 15 0.906 34.72 78.91 0.79

19 0.926 63.54 64.79 0.81
23 0.917 72.78 65.77 0.82
26 0.907 94.67 63.98 0.84
30 1.053 207.62 59.47 0.86

Where Rs is the solution resistance, Rct is the charge transfer resistance and Cdl

is the double layer capacitance.
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4. Conclusion

The results presented in this study (weight loss tests, polarization
tests, and SEM micrography) demonstrates the use of a binary mixture
of sesame and castor oil as a good corrosion inhibitor. Using Minitab
statistical software to determine the weight loss measurements, op-
timum condition of the independent variable selected by the software
for best inhibition efficiency was corrosion inhibition of 86.2% at
0.79M brine concentration, 22.1 mg/ L concentration of binary in-
hibitor and at a time period of 14 days. The polarization studies de-
monstrate that binary mixture of sesame and castor oil act as a mixed
type inhibitor in moderately low concentration of brine solutions while
at high brine concentration it simultaneously acts as anodic and
cathodic inhibitors. The study suggests that adsorption of inhibitors on
the metal surface probably affects the mechanism at which mild steel
dissolves in brine solutions.
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