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a b s t r a c t 

2-Mercaptobenzothiazole was evaluated for its corrosion inhibition effect on 316 stainless 

steel, low carbon steel and 1060 aluminium alloy in 3 M HCl, 1 M HCl and 2 M H 2 SO 4 solu- 

tion by coupon measurement. Results showed the organic compound performed effectively 

at all concentrations studied on 316 steel and 1060 aluminium with highest inhibition val- 

ues of 94.07% and 79.7%. Generally, the inhibition performance of 2-mercaptobenzothiazole 

was above 90% at all concentrations for 316 steel and 70% for 1060 aluminium. The inhibi- 

tion performance was observed to be independent of inhibitor concentration, though per- 

formance was significantly time dependant on 1060 aluminium. 2-mercaptobenzothiazole 

performed very poorly on low carbon steel at inhibitor concentrations above 1.25% and 

inhibition efficiency values below 0%. At concentrations below 1.25%, the inhibition perfor- 

mance was marginal at average value of 57%. 2-mercaptobenzothiazole inhibition perfor- 

mance on low carbon steel was observed to be time and concentration dependant. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. 
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1. Rationale 

Corrosion cost worldwide is estimated to be between €1.3 and €1.4 trillion which is equivalent to 3.5% of developed

nations GDP annually [1] . Corrosion is the deterioration of metallic alloys by chemical interaction with their environments

[2] . The metals are extracted from their ores at the expense of huge energy resources, thus they are thermodynamically

unstable in the refined state and tend to gradually lose their energy by reverting to their original energy states [3] . Metallic

alloys are used in the fabrication of machinery and devices, buildings and structures due to their excellent physical and

mechanical properties [4] . Stainless steels are extensively used metallic alloys due to its exceptional properties compared

to other alloys, durability and corrosion resistance. 316 austenitic stainless steel is extensively applied in heat exchangers,

food production, pharmaceuticals, marine structures and vessels, petrochemicals and chemical processing industries [5] . The

steel is second to 304 in importance within the austenitic grade of stainless steels. Mb enhances the corrosion resistance of

316 steel especially against pitting and crevice corrosion in Cl − and SO 4 
2 − anion containing environments [6–8] . However,

the steel is prone to localized corrosion within the environment earlier mentioned at certain conditions. Even in seawater

the steel is not fully resistant to corrosion. Carbon steel is the most widely used ferrous alloy worldwide due to its low

cost, recyclability and ease of fabrication in petrochemical operations, chemical processing units, energy generating plants,

pipelines, automobiles etc. [9–11] . The steel has weak resistance to corrosion due to its inability to passivate in the presence

of corrosive anions. Aluminium is an important structural engineering alloy whose application is only behind ferrous alloys

as a result of their light weight, relatively high strength and excellent corrosion resistance properties. Aluminium alloys are

highly reactive metals and vulnerable to corrosion due to its amphoteric nature wherewith it can sometimes undergo ac-

celerated degradation in the presence of threshold concentrations of salts, acids or bases. Conventional corrosion prevention

and control methods such as electroplating, galvanizing, use of sacrificial anodes, proper material selections etc. have their

disadvantages in terms of cost, versatility and application. The most appropriate method of corrosion control of metallic al-

loys in Cl- anion containing environments is through the use of chemical compounds known as corrosion inhibitors [12–15] .

Corrosion inhibitors play an important role in oil extraction and processing industries, heavy industrial manufacturing, wa-

ter treatment facility, cooling systems, refinery units, pipelines, oil and gas production units, boilers and water processing,

paints, pigments, lubricants etc. to minimize localized corrosion and unexpected failures [16–18] . Inhibitors reduce the rate

of metal wastage and can function as anodic, cathodic, passivating or mixed type inhibitors depending on performance. This

article discusses the effect of 2-mercaptobenzothiazole on the corrosion inhibition of 316-stainless steel, low carbon steel

and 1060 aluminium alloy in dilute HCl and H 2 SO 4 media simulating industrial operating conditions. Mixed type inhibitors

are more preferable for inhibition performance on stainless steels due to the vulnerability to and prevailing occurrence of

localized corrosion deterioration. 

2. Experimental design, materials and methods 

316 austenitic stainless steel (316ST), low carbon steel (LCS) and 1060 aluminium (AL1060) rods were cut and prepared

into 7 experimental samples. The surface ends of the samples were grinded with emery papers of 80, 120, 220, 800 and

10 0 0 grits for weight loss measurement. 2-mercaptobenzothiazole (MBT) was prepared in volumetric concentrations of 0%,

0.19%, 0.25%, 0.31%, 0.38%, 0.44% and 0.50% per 200 ml of 3 M of HCl acid solution for 316ST. The compound was prepared

in volumetric concentrations of 0%, 0.75%, 1%, 1.25%, 1.5%, 1.75% and 2% per 1 M HCl for LCS while for AL1060; the com-

pound was prepared in volumetric concentrations of 0%, 0.19%, 0.25%, 0.31%, 0.38%, 0.44% and 0.50% per 2 M H 2 SO 4 . Weight

measured 316ST, LCS and AL1060 samples were separately immersed in 200 ml of the acid electrolytes for 384 h. The sam-

ples were weighed every 48 h with Ohaus analytical weighing balance. The weighing balance instrument was checked for

possible causes of systematic errors. The uncertainty of single measurement is limited by the precision and accuracy of the

measuring instrument. As a result calibration of the instrument and hardware test was performed. Pre-experimental test

confirmed the reproducibility of results and the experiment was performed once. Tabulated results of metal sample cor-

rosion rates and inhibition efficiencies of MBT on them in the electrolyte at specific MBT concentrations are shown from

Tables 1–6 . The weight loss is the difference between the initial weight of the metal sample (kept constant for 384 h) and
Table 1 

Data on the corrosion rate of 316ST in 3 M HCl solution at 0% −1%MBT concentration ( n = 1). 

MBT Conc. (%) 

0 0.38 0.5 0.63 0.75 0.88 1 Exp. Time (h) 

48 2.36E-03 5.00E-04 4.10E-04 3.30E-04 4.30E-04 3.10E-04 2.30E-04 

96 2.19E-03 3.90E-04 3.20E-04 2.80E-04 3.80E-04 3.00E-04 2.30E-04 

144 5.87E-04 1.70E-05 1.50E-05 1.10E-05 1.50E-05 1.00E-05 7.90E-06 

192 4.28E-04 1.30E-05 1.00E-05 8.40E-06 1.00E-05 8.90E-06 6.50E-06 

240 3.57E-04 1.20E-04 9.50E-05 7.80E-05 1.00E-04 7.80E-05 5.50E-05 

288 1.17E-04 6.70E-05 5.40E-05 4.50E-05 5.80E-05 4.40E-05 3.10E-05 

336 8.93E-05 6.40E-06 5.20E-06 4.30E-06 5.70E-06 4.70E-06 3.30E-06 

384 6.92E-05 4.70E-06 3.80E-06 3.10E-06 3.90E-06 3.00E-06 2.10E-06 
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Table 2 

Data on the corrosion rate of LCS in 1 M HCl solution at 0% −2% MBT concentrations ( n = 1). 

MBT Conc. (%) 

0 0.75 1 1.25 1.5 1.75 1.75 Exp. Time (h) 

48 24.303 29.243 23.179 26.423 58.777 59.862 66.390 

96 24.343 24.812 23.179 26.994 59.054 59.862 66.390 

144 30.864 26.373 26.463 27.934 58.009 60.784 68.264 

192 33.439 26.816 27.531 27.607 56.515 59.984 63.452 

240 59.189 26.344 26.644 26.556 61.211 69.223 73.193 

288 49.846 22.165 22.263 22.265 51.232 61.374 61.562 

336 43.236 19.147 19.212 19.217 43.970 52.606 52.948 

384 39.834 16.833 16.896 16.830 38.610 46.030 46.506 

Table 3 

Data on the corrosion rate of AL1060 in 2 M H 2 SO 4 solution at 0% - 0.5% MBT con- 

centration ( n = 1). 

MBT Conc. (%) 

0 0.19 0.25 0.31 0.38 0.44 0.50 Exp. Time (h) 

48 2.163 1.276 1.742 1.748 1.820 2.184 1.703 

96 1.506 0.869 2.015 1.406 1.240 1.235 1.156 

144 1.229 1.079 1.844 1.149 0.990 1.069 0.946 

192 2.269 0.979 1.553 1.035 0.885 0.997 0.862 

240 2.911 0.955 1.415 0.954 0.932 0.972 0.899 

288 3.382 0.869 1.253 0.874 0.911 0.943 0.882 

336 3.929 0.893 1.166 0.825 0.937 0.966 0.883 

384 3.756 0.835 1.080 0.735 0.850 0.901 0.830 

Table 4 

Data on the inhibition efficiency of MBT compound on 316ST in 3 M HCl 

solution at 0% −1% MBT concentration ( n = 1). 

MBT Conc. (%) 

0.38 0.5 0.63 0.75 0.88 1 Exp. Time (h) 

48 75.9 78.37 80.8 83.28 86.24 87.86 

96 79.87 81.35 82.79 84.27 85.74 87.14 

144 96.77 96.89 97.55 97.69 98.24 98.35 

192 96.68 96.93 97.34 97.76 97.84 98.14 

240 62.8 66.5 70.24 73.93 77.57 81.26 

288 35.48 41.9 48.39 54.68 61.01 67.46 

336 91.82 92.73 93.5 94.18 94.55 95.45 

384 92.31 93.18 93.85 94.82 95.54 96.31 

Table 5 

Data on the inhibition efficiency of MBT compound on LCS in 1 M HCl solution at 0% - 

2% MBT concentration. 

MBT Conc. (%) 

0.75 1 1.25 1.5 1.75 2 Exp. Time (h) 

48 −20.32 4.63 −8.72 −141.85 −146.31 −173.17 

96 −1.93 4.78 −10.89 −142.59 −145.91 −172.73 

144 14.55 14.26 9.49 −87.95 −96.94 −121.18 

192 19.81 17.67 17.44 −69.01 −79.38 −89.76 

240 55.49 54.98 55.13 −3.42 −16.95 −23.66 

288 55.53 55.34 55.33 −2.78 −23.13 −23.50 

336 55.71 55.56 55.55 −1.70 −21.67 −22.46 

384 57.74 57.58 57.75 3.07 −15.56 −16.75 

 

 

the final weight taken every 48 h. Table 3 shows the data of inhibition efficiency ( IE ) calculated from the equation below; 

IE = 

[ 
M 1 − M 2 

M 1 

] 
∗ 100 (1)

M 1 and M 2 are the weight-loss of the control and inhibited metal sample in the acid media with respect to exposure

time. 
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Table 6 

Data on the inhibition efficiency of MBT compound on AL1060 in 2 M H 2 SO 4 
solution at 0% - 0.5% MBT concentration. 

MBT Conc. (%) 

0.19 0.25 0.31 0.38 0.44 0.50 Exp. Time (h) 

48 41.35 19.74 18.80 15.79 −0.56 21.05 

96 42.57 −33.11 6.22 17.57 18.24 22.97 

144 12.71 −49.17 6.08 19.34 13.26 22.76 

192 56.85 31.54 53.91 60.69 55.94 61.64 

240 67.02 51.13 66.68 67.58 66.34 68.66 

288 73.99 62.52 73.56 72.56 71.72 73.38 

336 76.83 69.75 78.36 75.54 74.90 76.88 

384 77.29 70.60 79.77 76.72 75.44 77.22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Data, value and validation 

Tables 1–3 show the corrosion rate values of ST316, LCS and AL1060 in 3 M HCl, 1 M HCl and 2 M H 2 SO 4 solution at

specific MBT concentrations. The corrosion rate value of the control (0% MBT) 316ST and AL1060 samples significantly differs

from the inhibited samples as shown in Tables 1 and 3 due to the inhibiting action of MBT. The control 316ST corroded at

significantly higher corrosion rate values at the onset of the exposure hours after which it progressively decreased due to

weakening of the acid solution while the control AL1060 corrosion rate values varies with exposure time alternating be-

tween high and low values before attaining stability at 288 h. The corrosion rate of inhibited 316ST and AL1060 varies with

respect to MBT concentration. It is observed that the inhibiting action of MBT on 316ST depends to a slight degree on its

concentration. The higher the concentration of MBT in the acid solution, the lower the corrosion rate of 316ST while MBT

performance on AL1060 is completely independent of its concentration and time of exposure. The corrosion rate of control

LCS ( Table 2 ) was generally higher than the values obtained for the inhibited alloy at 0.75% and 1% MBT concentration.

Beyond 0.75% MBT till 1.75% MBT, the corrosion rate values of LCS increased significantly beyond the value obtained at 0%

MBT. Table 4 –6 shows the data on MBT inhibition performance on ST316, LCS and AL1060. Observation has shown that MBT

inhibition performance on ST316 ( Table 4 ) is concentration dependence. The performance is also observed to be time de-

pendant. The inhibition performance of MBT on ST316 improves with respect to exposure time. This is due to the slow rate

of adsorption of MBT cations on 316ST surface stifling the electrochemical processes responsible for surface degradation.

The inhibition performance of MBT on AL1060 as shown in Table 6 is strongly dependant on time progressively increasing

with respect to exposure time and attaining inhibition performance values above 70% at all concentrations. MBT performed

extremely poorly on LCS at higher concentrations above 0.75% MBT while at lower MBT concentrations the inhibition per-

formance was marginal at average value of 57%. MBT performed the best on ST316 with inhibition efficiency values above

90% at all concentrations. 
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