ANTIMICROBIAL AND TOXICITY EVALUATION OF SILVER-COBALT NANOPARTICLES USING Annona muricata LEAF EXTRACT

ODAUDU, RUTH OPIOTU (20PCC02187) B.Sc. Industrial Chemistry Bingham University, New Karu.

JULY, 2022

ANTIMICROBIAL AND TOXICITY EVALUATION OF SILVER-COBALT NANOPARTICLES USING Annona muricata LEAF EXTRACT

ODAUDU, RUTH OPIOTU (20PCC02187) B.Sc. Industrial Chemistry Bingham University, New Karu.

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES, IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.Sc.) DEGREE IN INDUSTRIAL CHEMISTRY IN THE DEPARTMENT OF CHEMISTRY, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY.

ACCEPTANCE

This is to attest that this dissertation has been accepted in partial fulfilment of the requirement for the award of the degree of Master of Science in Industrial Chemistry in the Department of Chemistry, College of Science and Technology, Covenant University, Ota, Ogun State.

Mr. Taiwo B. Erewunmi (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, **ODAUDU**, **RUTH OPIOTU** (**20PCC02187**), declare that this dissertation is a representation of my work, and is written and implemented by me under the supervision of Dr. Anuoluwa Abimbola Akinsiku of the Department of Chemistry, College of Science and Technology, Covenant University, Ota, Nigeria. I attest that this dissertation has in no way been submitted either wholly or partially to any other university or institution of higher learning for the award of a masters' degree. All information cited from published and unpublished literature has been duly referenced.

ODAUDU, OPIOTU RUTH

Signature and Date

Prof. Joseph A.O. Olugbuyiro (Head of Department)

Dr. Anuoluwa A. Akinsiku

(Supervisor)

Prof. Olayinka T. Asekun (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

CERTIFICATION

This certify that the dissertation titled **"ANTIMICROBIAL AND TOXICITY EVALUATION OF SILVER-COBALT NANOPARTICLES USING** *ANNONA MURICATA* **LEAF EXTRACT"** is the original research carried out by **ODAUDU, RUTH OPIOTU (20PCC02187)** in the Department of Chemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria, under the supervision of Dr. Anuoluwa Abimbola Akinsiku. We have examined and found the work acceptable as part of the requirement for the award of the degree of Master of Science (M.Sc.) in Industrial Chemistry.

Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This dissertation is dedicated to God Almighty, my lovely parents and my family. None of this would have been possible without you.

ACKNOWLEDGEMENTS

My most profound appreciation goes to God Almighty, who provided the courage, strength, wisdom, insight, and provision to carry out this research. A big thank you goes to the Chancellor of this great university, Dr David O. Oyedepo, the pioneer of this institution, and all members of the Board of Regent of Covenant University. I also acknowledge the Vice-Chancellor, Professor Abiodun H. Adebayo, and the management team member's drive towards achieving excellence. I am immensely grateful to the best supervisor, Dr A. A. Akinsiku, for dedicating her time and input by providing me with a platform to grow in research knowledge and the race to be expressive during the work. I'm deeply appreciative to the Head of the Department of Chemistry, Professor J.A.O. Olugbuyiro; thank you, Sir. Also, to my programme coordinator Dr J.A. Adekoya and Dr Cyril for their contributions. I'm also grateful to Dr Solomon whose input to this work was always timely, and to all my lecturers in the Department of Chemistry, at Covenant University for their great contributions to my academic growth.

I am also grateful to Dr De-Campos of the Biochemistry Department of Covenant University for her contribution to the toxicity aspect of this research. I deeply appreciate the laboratory technologists of Chemistry department. More so, I thank Mr Adeyemi, Mrs Afolabi and Miss Bose for their assistance and thorough kindness through the first phase of this research work. I also thank the staff of the *D. melanogaster* Research laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Oyo State, for providing the population needed for the toxicity study.

I use this medium to thank my siblings, Simon, Oche, Faith, Precious and David, for their love, and my colleagues I cannot imagine how this experience would feel like without you guys. Extensively I also like to thank my best friends Tobi Dorcas, Testimony, and Olisa whose kind words made me push through this programme.

TABLE OF CONTENTS

	R PAGE	
TITLE		
	PTANCE	iii
	ARATION FICATION	iv
DEDIC		V
	OWLEDGEMENTS	vi
	C OF CONTENTS	vii viii
	FIGURES	xii
	F FIGURES OF SCHEMES	xiii
	F TABLES	XIII XV
	F ACRONYMS AND ABBREVIATIONS	xv
ABSTR		xiv
CHAPT	TER ONE: INTRODUCTION	1
1.1	Background to the Study	1
1.2	Statement of the Research Problem	4
1.3	Research Questions	5
1.4	Aim and Objectives	5 5
1.4.1	Aim of the Study	
1.4.2	Objectives of the Study	5
1.5	Justification for the Study	6
1.6	Scope of Study	6
CHAPT	TER TWO: LITERATURE REVIEW	7
2.1	Nanotoxicity	7
2.2	Nano Cytotoxicity	8
2.3	Nanoparticle Synthesis and Nanotoxicity	12
2.3.1	Physical Techniques and Nanotoxicity	12
2.3.2	1 2	12
2.3.3	Green Techniques and Toxicity/Cytotoxicity Assessments	13
2.3.4	Plant-Mediated Synthesis of Silver Nanoparticles	16
2.4	Therapeutic Applications of Green Synthesised Nanoparticles	18
2.4.1	Antibacterial Activity	18
2.4.2	Anticancer Activity of Green Synthesised Ag NPs	18
2.4.3	Antioxidant Effect	19
2.4.4	Anti-Diabetic Effect	20
2.5	Phytochemicals Responsible for Phytoreduction	22
2.5.1	Phenol	22
2.5.2	Tannins	23
2.5.3	Alkaloids	24
2.5.4	Flavonoids	24
2.5.5	Terpenoids	25
2.5.6	Saponins	26
2.6	Plant Description and Ethnobotanical Use	26

2.7	Nanoparticle Morphological and Structural Investigation Techniques	27
2.7.1	Ultraviolet-Visible Spectrophotometry (UV-VIS)	27
2.7.2	Fourier transform infrared (FTIR)	27
2.7.3	Scanning Electron Microscopy (SEM)	27
2.7.4	X-ray diffraction (XRD)	28
2.7.5	Energy dispersive X-ray (EDX)	28
2.7.6	Zeta potential (Electrokinetic Potential)	28
СНАРТ	TERTHREE: MATERIALS AND METHODS	29
3.1	Materials	29
3.1.1	Apparatus	29
3.1.2	**	29
3.1.3	Plant Material	29
3.2	Methods	29
3.2.1	Preparation of Leaf Extract	29
3.2.2	Qualitative Phytochemical Analysis	30
3.2.3	Biogenic synthesis of Silver-Cobalt Nanoparticles at 70 ⁰ C	32
3.2.4	Characterisation of Biogenic synthesised Silver-Cobalt Nanoparticles	32
3.2.5	Antimicrobial Assay	33
3.2.6	Antimicrobial Activity assessment	33
3.2.7	Minimum Inhibitory Concentration (MIC) by Tube Dilution Method	34
3.2.8	Minimum Bactericidal/Fungicidal Concentration Assay	34
3.2.9	Toxicity Assay	35
3.2.10	Pupation Assessment	35
3.2.11	Survival Assessment	36
3.2.12	2 Negative Geotaxis Assay	37
3.4	Methods of Statistical Analysis	38
СНАРТ	TER FOUR: RESULTS	39
4.1	Phytochemical Analysis	39
4.2	Characterisation of the biogenic Ag-Co NPs	39
4.2.1	Visual Evidence of Nanoparticle Synthesis and UV-Visible Analysis	39
4.2.2	Fourier Transform Infra-Red Analysis	42
4.2.3	TEM Analysis Result	43
4.3	Antimicrobial Assay Result	44
СНАРТ	TER FIVE: DISSCUSSION	51
5.1	Discussion	51
СНАРТ	TER SIX: CONCLUSION AND RECOMMENDATION	55
6.1	Summary	55
6.2	Conclusion	56
6.3	Contributions to Knowledge	56
6.4	Recommendation	56
REFER	ENCES	57

ix

LIST OF FIGURES

FIGURES	PAGE	S
Figure 1.0:	Drosophila melanogaster (FRUIT FLY)	4
Figure 2.1:	Biogenic Approach to Nanoparticles Synthesis	13
Figure 3.1:	Image of Annona muricata leaves	29
Figure 3.2:	Antimicrobial activity and inhibitory zone of <i>A. muricata</i> -based Ag-Co NP against <i>P. aeruginosa, Klebsiella sp, Salmonella sp, Stap. aureus, E. coli, Streptococcus pneumoniae and Candida albicans</i>	35
Figure 3.3:	Pupation Assessment Experimental Setup Showing Groups of the Test Population	37
Figure 3.4:	Survival assessment setup	38
Figure 3.3:	Negative geotaxis assessment setup	39
Figure 4.1:	(a) Colour formation before and (b) final dispersion after reduction	40
Figure 4.2:	Combined UV-Visible spectra of Ag-Co NPs at different time intervals at 70°C	41
Figure 4.3:	FTIR spectra of (a) Annona muricata leaf extract and (b) Ag-Co NPs	42
Figure 4.4:	Comparison of the zone of inhibition between Ag-Co NPs synthesised by <i>A. muricata</i> leaf extract, <i>A. muricata</i> leaf extract and the control (Ofloxacin	44
Figure 4.5:	Comparison of M.I.C of test organism among Ag/Co NPs, A. <i>muricata</i> leaf extract and the control (Ofloxacin)	
Figure 4.6:	Comparison of M.B.C of test organism among Ag-Co NPs, A. <i>muricata</i> leaf extract and the control (ofloxacin)	45
Figure 4.7	Comparison of M.F.C of the test organism among Ag-Co NPs, <i>A. muricata</i> leaf extract and the control (fluconazole)	46
Figure 4.8	Comparison of percentage pupation in control at varying concentration of green synthesised Ag-Co NPs within 5 days of treatment	47 48
Figure 4.9	Comparison of mean pupation after 5 days of treating 2 nd instar larvae with	49
Figure 4.10	varying concentration of green synthesized Ag-Co NPs and the control Comparison of the percentage survival of flies within 7 days of treatment with	
Figure 4.11	control and different concentrations of Ag-Co NPs Comparison of mean survival of flies exposed to different concentrations of Ag-Co NPs and control after 7 days	50 50
Figure 4.12:	Comparison of percentage locomotion performance after 7-day survival test	50 51

LIST OF SCHEMES

SCHEMES		PAGES
Scheme 4.1:	Phytoreduction of Ag^+/Co^{2+} to Ag^0/Co^0 by alkaloids	42

LIST OF TABLES

TABLES	PAGE	ES
Table 2.1:	Cytotoxicity Effect of Some Nanoparticles	10
Table 2.2:	Selected Plant-mediated Synthesised Nanoparticles	16
Table 2.3:	Plant-Mediated Bimetallic Nanoparticle, Morphology, and Application	20
Table 4.1:	Preliminary Phytochemical Screening of Aqueous Annona muricata Leaf	39
	Extract	
Table 4.2:	FTIR Absorption Bands, Wavenumber and Assigned Functional Groups	43
Table 4.3:	Anti-Bacterial Activity - Agar Well Diffusion Test - Raw Data (Results in	44
	duplicate)	1
Table 4.4:	Minimum Inhibitory Concentration (MIC) (Results in duplicate	45
Table 4.5:	Anti-Bacterial Activity – Minimum Bactericidal Concentration (MBC) – Raw	46
	Data (Results in duplicate)	

LIST OF ACRONYMS AND ABBREVIATIONS

Ag NPs	Silver nanoparticle
Ag-Co NPs	Silver-cobalt nanoparticles
Au-NPs	Gold Nanoparticles
BSA	Bovine Serum Albumin
FTIR	Fourier Transform Infra-Red
MBC	Minimum Bactericidal Concentration
MIC	Minimum Inhibitory Concentration
MFC	Minimum Fungicidal Concentration
nm	Nano Metre
NPs	Nanoparticles
PBS	Phosphate Buffered Saline
ROS	Reactive Oxygen Species
SEM	Scanning Electron Microscopy
SPR	Surface Plasmon Resonance
TEM	Transmission Electron Microscopy
UV-Vis	Ultraviolet-Visible
XRD	X-ray diffraction

ABSTRACT

Globally, the health sector needs to take advantage of nanotechnology as nanotoxicology is gaining interest. More so, there is a need to check the drug resistance of the disease-causing microbes and find alternative cancer drug treatments in humans. However, the safety of human health and the environment is a major concern as some nanoparticles were reported to be toxic due to their fabrication methods. Thus, these challenges lead to the quest for a safer choice of synthetic routes. While the search for contextualization of the harmful effects of nanoparticles is ongoing, a green approach method that makes use of biodiversity plants instead of toxic chemicals is considered primarily for biomedical applications. This research evaluated the antimicrobial, toxicity, and cytotoxicity of the green synthesized silver-cobalt nanoparticles (Ag-Co NPs). Aqueous extract of Annona muricata leaf prepared via hot maceration was utilised as a reducing agent. Progress of the reaction was monitored by a UV-Visible spectrophotometer. The biomolecules responsible for reducing and capping the particles were analysed qualitatively. SEM and TEM were used to investigate the morphological characteristics of the particles and further characterization by X-Ray Diffraction (XRD) and zeta sizer. Furthermore, antimicrobial activity of the Ag-Co NPs was carried out using 6 test organisms, two gram-positive: Staphylococcus aureus, Streptococcus pneumoniae and three gram-negative, Escherichia coli, Klebsiella sp, and Salmonella sp and one fungus, Candida albicans. The cytotoxic effect of the Ag-Co NPs was tested on a cancer cell line. In vivo toxicity assessment was done using Drosophila melanogaster as the assessment model. The characteristic absorption wavelength of the as-prepared nanoparticles was observed with a broad peak around 400-450 nm, indicating that the nanocluster formed was silver enriched. The FTIR showed the functional groups present in the plant extract and the Ag-Co NPs. In the plant extract, the following absorption bands occurred at 3322, 1585, and 1277 cm⁻¹, stretches assigned to O-H, N-H, and C-N, respectively, while peaks occurred at 1649 cm⁻¹ and (N-H) 1163 cm⁻¹ in the corresponding Ag-Co NPs. Both the extract and Ag-Co NPs possessed antimicrobial activities against the test organisms moderately, compared to the control (antibiotics). Moreover, there were no significant toxicity observations on the two developmental stages and locomotive assessment of Drosophila melanogaster. The finding in this study indicates that the Annona muricata-based Ag-Co NPs synthetic route is an excellent alternative technique to the conventional method. Also, the nanoparticles demonstrated little or no toxicity that indicated them as potential candidates for drug development as they exhibited promising antimicrobial activity with no significant toxic effect, as shown in the Drosophilla melanogasta in vivo model.

Keywords: Ag-Co nanoparticle, toxicity, cytotoxicity, green chemistry, Sustainability Developmental Goals (SDG), antimicrobial.