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Abstract

Gas compressibility factor is a critical thermodynamic property that is a required input in the estimation of many reservoir fluid properties
and reservoir engineering calculations. Experimentally derived values are considered the best, but these are very expensive and time-consuming.
In this work, we have developed a new simplified explicit compressibility factor correlation based on a large dataset using a hybrid nonlinear
optimization technique. The new model has a correlation coefficient of 0.9997 and very low average relative error and root-mean-square errors.
Statistical analysis shows that this new correlation outperforms all of the existing correlations within the range of 0.2 < Ppr <15 and 1.05 < Tpr
< 2).
© 2019 Sichuan Petroleum Administration. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The demand for natural gas has risen continually in recent
years due to its notable capacity of burning without any
environmentally damaging footprint. This growing signifi-
cance has prompted the need for more efficient and accurate
characterization of natural gas properties and reserves. The
accurate and reliable estimations of most gas properties, such
as formation volume factor, gas viscosity, gas density, and gas
compressibility are heavily dependent on the accuracy of the
compressibility factor [1]. Gas compressibility factor is an
important parameter in natural gas reserves assessment and
many reservoir fluid properties estimations. In the petroleum
industry, some calculations such as gas reservoir performance
forecasting, initial gas in place, future production of gas pre-
diction, as well as gas reserve estimation are done with these
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gas properties. Many oil and gas companies, as well as the
government, require these accurate gas field assessments for
better decision making when diverse investment portfolios
exist.

Well-conducted laboratory procedures give the best esti-
mates of fluid properties and are considered as the standard
approach. These experimental procedures are, however, too
costly and time-consuming. Empirical correlations and equa-
tion of state approaches have been employed over time for
relatively faster and cheaper determination of compressibility
factor [2—7]. However, correlations are commonly used
because they are faster than the equation of state approach.
Most of the empirical correlations are based on the law of
corresponding states. This law posits that the same z-factor is
assigned to substances that have the same conditions obtained
by using their critical temperature and critical pressure to
normalize the reservoir's temperature and pressure. The for-
mula for the reduced pressure (Pr) and temperature (Tr) are
obtained using Eqns (1) and (2) below:
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The pseudocritical pressure (P,.) and temperature (T,.) are
required for natural gas streams, hence, knowledge of either
the gas gravity or gas compositions are needed to estimate
these critical properties of natural gas. In addition, several
mixing rules have been proposed from which the equivalent
critical properties of natural gases can be estimated. Kay's
mixing rule [8], Stewart-Burkhart-Voo [9], Sutton- Stewart-
Burkhart-Voo [10] and Corredor et al., [11] mixing rules are
amongst the most popular ones.

Non-hydrocarbon components are sometimes present in the
gas streams; this thereby warrants that the pseudo-critical
properties are adjusted by a simple procedure developed by
Carr, Kobayashi, and Burrows [12]. The correlations presented
by Wichert and Aziz [13] are used to correct for the non-
hydrocarbon impurities in natural gases such as CO, and H,S.

In this work, a novel, simple, robust and accurate explicit
correlation from a large published database is proposed. This
correlation is considered as simple because it has just 13 pa-
rameters which are way lower than what we have in other
explicit correlations. It is considered as robust and accurate
because it works excellently well at estimating the z-factors at
a wide range of application (0.2 < Ppr <15 and
1.05 < Tpr < 2). Besides, statistical analysis shows that this
new correlation outperforms most of the existing correlations.

2. Generalized empirical correlations

Five alternative explicit correlations have been presented in
this study for the purpose of comparison. The first correlation
presented is a classic explicit correlation that has an acceptable
degree of accuracy within a certain range of application. The
second correlation presented was developed by a famous oil
and gas company and the main purpose of including this
correlation is to show how important this thermodynamic
property is to the energy industry. Also presented are three
recent correlations that have attempted to increase the accu-
racy of the explicit correlations. More details of the correla-
tions are given below.

2.1. Beggs and Brill [5]

Beggs and Brill [5] proposed a best—fit equation for the
Standing and Katz [22] z-factor Chart.
The correlation is as follows:

1-A
:A—i—%—l—CPf, (3)

where,

A=1.39(T,, —0.92)** —0.36T,, — 0.101

0.066

B=(0.62—0.23)P,, + (T —056)
pr .

2
~0.037| P,

032
1020 1) "

C= (0.132—0.32l0gT},)

D — 10(0:3016-0497,,+.182477, )

2.2. Shell Oil company fitting equation [21]

Shell Oil company also provided a best—fit equation as
shown below [21].

4
Z=7A+7Bx PP,+(1—ZA)xEXP(—ZG)x(’%) (4)
where
ZA= —0.101-0.36 x T, + 1.3868 x / (T,,, — 0.919)
ZB=0.021 + 2021

(T, — 0.65)

Z2C=0.6222 —0.224 x T,

p= 207 __ 037
(T, —0.86)

ZE=0.32x EXP (—19.53x (T, — 1))

ZF=0.122x EXP (—11.3x (T, — 1))

ZG= Py x (ZC+ZDx Py + ZEx P}, )

2.3. Kareem et al. [4]

Kareem et al. [4] based on Hall and Yarborough's implicit
correlation, developed an explicit Correlation from 5346
experimental data points. The details are presented below:

7= DPPr(1+y+y2_y%) (5)
(DP,, + Ey* — Fy%)(1 —y)’

DP,,
y=——" (6)
(HAZ _ AB>
C c3
where
1
t= —
T,
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A :a|tea2(17')2Pp,
B=ast + a,* + ast®P°

pr

C=ay + agtP, + a7t2P§r + aGISP;

2.4. Kamari et al. [23]

Kamari et al. [23] used the gene expression programming
mathematical approach to develop a new correlation for the
determination of the gas compressibility of around 900 data
points.

Z=0.2625136+ 3'12;3651 + *3'8?21 0368 , 1'05;31763 +0.5638878[In(P,,)] —0.3372525[In(P,,)]*
pr pr pr
2 (7)
10.061688[1n(P,)]* + —1.3976452 [In(Py)] 0.52175212[111 (P,)]  0.447935[In(P,,)]
Ty T, T,
2 2.5. Azizi et al. [3]
D= alote““ (1-1)

E:dlzt + a13t2 + a14t3

F= ast + a16t2 +dl7t3

G= a;g+at

Coefficients Estimated Values
al 0.317842

a2 0.382216

a3 —7.76835
a4 14.2905

a5 2.18363E-06
a6 —0.00469257
a7 0.0962541
a8 0.16672

a9 0.96691

al0 0.063069
all —1.966847
al2 21.0581

al3 —27.0246
al4 16.23

al5 207.783

al6 —488.161
al7 176.29

al8 1.88453

al9 3.05921

Azizi et al. [3] proposed a new correlation that is developed
from 4158 experimental z-values that are extracted from the
Standing and Katz chart (0.2 < Pr < 15 and 1.1 < Tr < 2). This
correlation was an improvement over the lead author's previ-
ous correlation [2] that covered a reduced range of
02<Pr<lland 1.1 <Tr<2.

A+B
Z=14+P, | ——= 8
(i) ®

where:

A=1+aT; " +bP> +cT, ' P2*

C=1+mP!*" 4 nT"®po"

D =oln(T,) +p[In(T,)]"* + qIn(P,) + r{in(P,))*
+ s[In(T,)In(P,)

Coefficients Tuned Values

a 3.54875035417288

b —4.21664513837899

c —4.10613526239254E-03

(continued on next page)

B=dIn(T,)+ e[In(T,))"*" +fIn(T,)]>* + gIn(P,) + h[In(P,)]’ +i[In(P,)] +jIn(T,)In(P,) + k[In(T,)]*In(P,)

+In(T,)] P [n(P,))
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(continued)

Tuned Values

0.28144444316384
—1.58050421246329
2.39137824393016
2.10533680903090
0.57558851625008
0.10884774149922
—0.28097160193372
0.13571880130394
1.76679767712678E-03
—0.20648400338479
—0.24728491152373
—0.69181729576201
—5.33433422937078
0.59152637120218
0.22394631804226
—0.56024088109368

Coefficients

» Ho"D OB g —RS TR S0 A

3. Methodology
3.1. Database

The newly proposed correlation was developed from a large
database containing 4455 data points. The data was published
by Poettmann and Carpenter [14] as a digitized version of the
Standing and Katz [22] (S—K) chart, displayed in Fig.1. Table
1 shows the statistical properties of the S—K data, which may
be otherwise referred to as experimental data.

3.2. Model development

A new explicit compressibility factor correlation based on
the above-mentioned standard data is presented. The func-
tional form of this equation is quite different from those of the
existing correlations. The initial parameters were first gener-
ated using the Levenberg-Marquart Algorithm (LMA) tech-
nique [15—17]. The LMA is an iterative optimization
technique that interpolates between the Gauss-Newton algo-
rithm (GNA) and the method of gradient descent [15]. The
LMA is a very strong algorithm that has been used for
parameter optimization in several artificial intelligence algo-
rithms such as artificial neural networks and adaptive neuro-
fuzzy inference systems (ANFIS) [3,18].

Given a set of n empirical data points (Ppr;, Tpri, z) of
independent and dependent variables, the algorithm attempts
to find the vector of parameter a4 of the model curve
f(Ppr;, Tpr;, B) so that the sum of the squares of the de-
viations is minimized.

a0 +a1*pp)_ + az*yl.l +a3*y2.75 + ad* y3 + aS*yO.IS

Table 1
Statistical details of the 4455 data points used in this study as published by
Poetmann and Carpenter [14].

Ppr Tpr Z

Mean 7.6 1.45 1.03116
Minimum 0.2 1.05 0.251
Median 7.6 1.4 0.987
Maximum 15 2 1.753
Standard Deviation 4.28728 0.28581 0.28363
Skewness —1.08361E-15 0.45006 0.07414
urtosis —1.20003 —0.93294 —0.43937
Geometric SD 2.39595 1.21407 1.35203
Mode 0.2 1.05 0.937
Harmonic Mean 3.33758 1.39664 0.9406

n
> . 2
B: argnung Z[Zi_f(Ppria TP"h 5)] (9)

i=1

The LMA is an iterative process in which at each iteration
step, the vector of parameter B is replaced by a new estimate
B+ 6. The ¢ is approximated by linearizing the function as
follows:

f(Ppri, Tpr;, +0) = f(Ppr;, Tpri, B) + Ji0; (10)

where J; is the differential of model function with respect to
the vector of parameter P. It may be otherwise called the Ja-
cobian of the function f.

The results of the parameters given by the LMA, however,
gave a poor prediction. This could be attributed to the fact that
the LMA typically finds a local minimum, which may not
necessarily be the global minimum. To further optimize the
parameterization, we used the orthogonal distance non-linear
regression (ODR) technique to obtain an updated § [19,20].
The ODR technique adds another noise term ¢ to the model
equation.

zi= f(Ppri, Tpri, B) + & (11)
The updated parameter vector is then obtained by mini-
mizing both § and ¢ in the following equation:

n
~

8= argming. > [z~ f(Ppri, Tpri, :,8) ' +6; (12)
=1

The main objective of the orthogonal distance regression
(ODR), is to minimize the sum of squares of orthogonal
Euclidean distances from data points to the fitting curve as
shown in equation (12), hence getting a better prediction
[19].

The hybrid optimization technique has resulted in a simple
correlation with just 13 parameters and no additional derived
parameters. It takes the functional form as shown in equation
(13) below with only the pseudocritical pressures and tem-
peratures as input:

Z:
14 ab6*P,, + a7*P12);_2 + a8* P;':S + a9*y08 4+ a10* y205 4 al1*y?2 4 alZ"‘Pg'r2
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where y = P,, /T,
Table 2 shows the optimized coefficients obtained from the
hybrid optimization technique used in this study.

3.3. Performance evaluators
Statistical metrics are used to validate the accuracy and
reliability of the newly developed correlation.

The statistical measures used are described below:

3.3.1. Correlation coefficient
The formula is defined below:

R: 1 - Z [xS—K - xest]?/ Z [xS—K —X g (14)
[ =1
n
where, x = % [xs—x]
i=1
3.3.2. Average absolute percentage error (AAPE)
100 - Xs—K — Xest
E,=— _— 15
w2l .
Table 2

Optimized coefficients for the new correlation.

Coefficients Mean estimate
a0 2.409560927
al 1.488390466
a2 —1.585509276
a3 0.216944783
a4 —0.103474667
a5 —2.275620224
a6 1.45660194

a7 —0.026764378
a8 0.000112856
a9 —2.632236075
al0 1.491950114
all —0.939533875
al2 —8.62E-10

Table 3
Statistical comparison between experimental and predicted data.

Predicted Data

Actual Data

Mean 1.02078 1.02081
Standard Deviation 0.27765 0.27744
Skewness 0.13383 0.13379
Kurtosis —0.27731 —0.26918
Mean absolute Deviation 0.22359 0.22326
Geometric Mean 0.98001 0.98009
Minimum 0.251 0.26277
Median 0.977 0.97739
Maximum 1.753 1.76713
Interquartile Range (Q3 - Q1) 0.379 0.37894
Median Absolute Deviation 0.185 0.18448

3.3.3. Maximum absolute percentage relative error

Apart from the absolute percent relative error for each data,
the maximum values are also useful in that they are used to
know the range of error for each correlation:

Epy =max_, [SSK " estl4100 (16)
Xs—k
3.3.4. Root mean square error
Mathematically described below;
(17)

Root mean square error always give a non-negative output,
with the value of zero indicating a perfect match with the data.

3.3.5. Sum of squared error of prediction (SSE)

n

2
SSE - g (xest —XS,K) (18)
i=1
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Fig. 1. Original standing and katz [22] chart.
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Fig. 2. Histogram of experimental and predicted z-factors.

4. Results and discussion

Table 3 gives the statistical parameters common to both the
experimental and predicted data. The arithmetic means, geo-
metric mean, median, the coefficient of variation, mean ab-
solute deviation of both the predicted and actual data set are
very similar. A closer look at the distribution (Fig. 2) of both
the actual and predicted compressibility factor values shows
that the prediction results mimics quite well the experimental
data.

Table 4 shows the summary of the statistical performance
metrics of the most accurate of all the explicit correlations
that are devoid of any discontinuity along the isothermal
lines. The table shows that the proposed correlation gives the
highest and best correlation coefficient when compared to
others.

Fig. 3a shows that the proposed correlation gives the
smallest average absolute relative error values. While Azizi

et al. [3] correlation gave the worst result using this metric.
Fig. 3b shows the root mean square error values obtained by
the six predictor models. The new correlation again shows its
superiority by having an RMSE value of less than 1%.

Fig. 4a shows the maximum absolute percentage error. The
new correlation is the best performer based on this indicator of
performance as it has a maximum relative error below 30%
while the other correlations have relatively higher error met-
rics. As shown in Fig. 4b, the proposed model has very low
SSE values and hence performed better than the other
correlations.

Figs. 5—8 shows the plots of predicted and experimental
compressibility factor values at pseudo-reduced temperatures
of 1.05, 1.2, 1.5, and 2.0. Closer to the unity pseudo-critical
temperature (Tpr = 1.05), the proposed model shows that it
can predict better than the other correlations. Away from the
unity pseudo-critical temperature, the new equation still
maintained its position as the best performer consistently.

Table 4
Statistical performance metrics of the explicit correlations.

AAPE, (%) MARPE, ( %) R2 RMSE SSE
Shell Oil Co. (2004) 0.8126 38.4857 0.9987 0.0155 1.0698
Kareem (2016) 0.7869 67.1433 0.9993 0.0107 0.5109
Kamari et al (2016) 4.3991 105.2300 0.9893 0.0491 10.7600
Beggs & Brill (1973) 1.9869 70.5789 0.9964 0.0248 2.7409
Azizi (2017) 8.4368 284.0660 0.9581 0.1017 46.1231
This study 0.6794 27.7484 0.9997 0.0077 0.2659
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Fig. 5. Plot of z-factor for different correlations and experimental values at Tpr = 1.05.

4.1. Testing/validation

In order to test the robustness of the proposed correlation,
more than ten percent of the original dataset that was
excluded from the training dataset originally used for
developing the algorithm was used for testing the proposed

correlation. The testing dataset was also within the range of
validity of the training dataset. Fig. 9 proves the robustness of
the developed correlation. The proposed correlation not only
gave a perfect match with the 45-degree line but also gave the
highest correlation coefficient and the lowest root mean
square errors.
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Fig. 9. Comparison of experimental and different correlation predictions using the test dataset.

5. Conclusion
The following deductions can be made from this study.

e A novel, simple yet robust and accurate explicit correlation
has been developed.

e This model was developed based on a hybrid optimization
technique using LMA-ODR model approach from a huge
data set.

e Rigorous statistical analysis and comparison with other
explicit models have been conducted.

e This new model has proven to be quite accurate and out-
performed the other correlations considered within this
wide range of pressure and temperature applications.
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Nomenclature

Ppr pseudo-reduced pressure, and
Tpr pseudo-reduced temperature
z deviation factor

RMSE root mean squared error
SSE sum of squared errors of prediction

R2 Correlation Coefficient

MAPE Maximum absolute percentage relative error
P Pressure in (psi)

T Temperature (R)

S—K  Standing and Katz

LMA  Levenberg-Marquart Algorithm

P, Critical pressure

T, Critical temperature
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