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This study used six fields data alongside correlation heat map to evaluate the field parameters that affect
the accuracy of bottom hole pressure (BHP) estimation. The six oil field data were acquired using
measurement while drilling device to collect surface measurements of the downhole pressure data while
drilling. For the two case studies, measured field data of the wellbore filled with gasified mud systemwas
utilized, and the wellbores were drilled using rotary jointed drill strings. Extremely Randomized Tree and
feed forward neural network algorithms were used to develop models that can predict with high ac-
curacy, BHP from measured field data. For modeling purpose, an extensive data from six fields was used,
and the proposed model was further validated with two data from two new fields. The gathered data
encompasses a variety of well data, general information/data, depths, hole size, and depths. The
developed model was compared with data obtained from two new fields based on its capability, stability
and accuracy. The result and model’s performance from the error analysis revealed that the two proposed
Extra Tree and Feed Forward models replicate the bottom hole pressure data with R2 greater than 0.9.
The high values of R2 for the two models suggest the relative reliability of the modelling techniques. The
magnitudes of mean squared error and mean absolute percentage error for the predicted BHPs from both
models range from 0.33 to 0.34 and 2.02%e2.14%, for the Extra tree model and 0.40e0.41 and 3.90%
e3.99% for Feed Forward model respectively; the least errors were recorded for the Extra Tree model.
Also, the mean absolute error of the Extra Tree model for both fields (9.13e10.39 psi) are lower than that
of the Feed Forward model (10.98e11 psi), thus showing the higher precision of the Extra Tree model
relative to the Feed Forward model. Literature has shown that underbalanced operation does not
guarantee the improvement of horizontal well’s extension ability, because it mainly depends on the
relationship between the bottomhole pressure and its corresponding critical point. Thus, the application
of this study proposed models for predicting bottomhole pressure trends.
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1. Introduction

Under-balanced drilling (UBD) is the practice of drilling a well
with the wellbore fluid gradient less than the natural formation
gradient. It differs from conventional drilling in that the bottom
hole circulating pressure is lower than the formation pressure,
thereby permitting flow of fluid within the well while drilling
proceeds [1]. Besides minimizing lost circulation at increased bit
penetration rate, this technique has a widely recognized benefit of
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minimizing the damage caused by invasion of drilling fluid into the
formation [2]. In many UBD applications, additional benefits
include reduction in drilling time, increase in bit life, and early
detection and dynamic testing of productive intervals while drilling
[3]. Because the majority of hydrocarbons today are found in
existing fields with depleting pressures, or in complex and low
quality reservoirs, then UBD presents itself as an economically
laudable option. UBD has proven to be an economical method for
drilling in depleted/low pressure reservoirs. Since it is possible to
document production data during drilling, operators can easily and
accurately identify inflowmechanisms and pay intervals, and cease
drilling operation as soon as the target zones are identified [4].
Bottom hole pressure (BHP) cannot be directly controlled in actual
operation, but can be changed by regulating the wellhead pressure
[5,6]. BHP is controlled by opening or closing the choke to lower or
raise the standpipe pressure. This technique essentially creates an
increasing fluid density gradient between the surface and the
bottom hole.

Experience has shown that proper design of a UBD program can
provide significant technical and economic benefits, such as
reduced formation damage, increased drilling penetration rate, and
improved recovery under the right conditions [7]. It is true that
maintenance of bottom hole pressure (BHP) underscores the suc-
cess of UBD [8]. Flow through annulus is an ambiguous area of
research for evaluating flow parameters, especially BHP. In this way,
intelligently smart technologies can solve this ambiguous problem
in the design of UBD hydraulic components, which are largely
dependent on BHP [9,10]. An effective design strategy of a well
using UBD technique depends on the accurate prediction of its BHP
which may be calculated or determined through several methods.
According to Amar et al. [11], “it is not often practical or economical
to use well test or deploy a permanent pressure gauge downhole as
a simple strategy for predicting BHP”. Also, most of the mechanistic
models and correlations proposed in literature are limited to some
conditions and intervals of application [12e14]. Ahmadi et al. [15]
also highlighted the inability of the developed mechanistic and
conventional models or correlations to estimate BHP within low
uncertainties and high accuracies. Underbalanced drilling has been
used in drilling as it has conspicuous technical superiorities
compared to overbalanced drilling, and the influx behavior of
reservoir fluids depends on the pressure difference between the
reservoir pore pressure and the bottom hole pressure [4]. Thus, in
order to establish a timely and accurate model that ensures a large
coverage of real time subsurface conditions with reduced cost as a
means of predicting BHP, it is vital to incorporate some basic
components in a sufficiently robust and well-thought out smart
UBD program.

Yaghini et al. [16] highlighted that the inaccuracies caused by
default training algorithms often trapped in local minima are the
key challenges encountered when using artificial neural network
(ANN) models, but with sufficient field data sets, the neural
network can be trained to predict pressure values much closer to
themeasured values than those of most existingmodels. Sensitivity
analysis (SA) is a key step that involves the assessment and prop-
agation of uncertainties.

Complex environmental models typically require global sensi-
tivity analysis (GSA) to account for non-linearity and parametric
interactions [17]. Decision tree-based methods have been investi-
gated with relatively small sample size for non-linear regression or
classification problems, and they are also able to handle both nu-
merical and categorical inputs [18,19]. These methods rely on en-
sembles of decision trees which match partitions of the input space
with a predicted output, and are commonly implemented using the
random forests and Extra-Tree algorithms [20]. The variable
important metrics provided by the tree-based methods can be
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assessed in relation to the criteria summarized by Pianosi and
Wagener [21] for an “ideal” sensitivity metric. Because, themultiple
document interface (MDI) and multiple discriminant analysis
(MDA) metrics largely meet the criteria of being suitable for global
sampling designs, independent of model structure, relatively easy
to implement numerically, and stable across sample sizes. Feed
forward neural network was also considered because, the optimi-
zation of weights in multilayer perceptron models amounts to an
iterative search for an acceptable minimum. The optimization of
the network weights is performed using iterative, nonlinear
mathematical optimization methods from literature [22,23].
Multilayer perceptron networks are general classifiers, inwhich the
form of the class probability distribution functions is not assumed.

With the right design and use, UBD method may eliminate
formation damage and minimize overall drilling cost by: increasing
rate of penetration, extending bit life, drilling formation with small
drilling windows, avoiding fluid loss, reducing drilling time and
most importantly, increasing well productivity and safety during
drilling operations. In the oil and gas industry, deep wells are
drilled to reach hydrocarbon deposits (reservoir). The depth of the
wells can reach several thousand meters or more. At this depth, the
well formation and pressure can reach several hundred bars (or
psi). Some wells use downhole sensors to record data. Because
installing sensors is a costly process, and these data are not avail-
able in real time for a large number of wells. During underbalanced
drilling the bottomhole pressure is kept below the formation pore
pressure. However, knowledge of these parameters is essential for
effective and safe control of the well start after completion and
production. Determining downhole parameters is a difficult and
important task. This article suggests using a machine learning
approach and develop a neural network model that can be trained
with available field data, and the model is then used to predict the
bottomhole pressure trends [24].

Maintaining subsurface conditions from beginning to the end of
the drilling process is necessary to guarantee a successful UBD
operation. However, maintaining the UBD operations requires an
accurate prediction of BHP. This study used bottom hole pressure
data measured while drilling from six fields to first evaluate the
field parameters that affect BHP prediction accuracy using corre-
lation heat-map, and this will help avoid the undesired errors from
the predictive model. Thus, Extremely Randomized Tree (extra
tree) algorithm which is a decision tree based method and feed
forward multilayer perceptron networks were adopted for this
study. Decision trees are a simple and well-established general
approach for statistical learning; such trees aim to identify the
splitting criteria which describes the relationship between a set of
input combinations, and regions of the output space. The strength
of the multilayer perceptron networks lies in the fact that are
theoretically capable of fitting a wide range of smooth, nonlinear
functions with very high levels of accuracy. The two machine
learning approaches can systematically assess the range of field
measured parameters and make an accurate prediction with the
sufficient field data sets available in this study. The study on esti-
mation of BHP still needs attention because to ensure safe and
stable drilling operation, BHP should be maintained.

2. Methodology

Predictive modeling is the process of creating, testing and vali-
dating a model to best predict the probability of an outcome. Each
model has its own strengths and weaknesses and is often best
suited for specific problems. These models were created by devel-
oping an algorithm usingmeasured field data and saving themodel
for reuse, in order to analyze results without the measured data, by
using trained data alongside the developed algorithm. This study
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developed two predictive models using extra tree and feed forward
neural network, and the choice of these two was to avoid some
predominant challenges that suffice in the application of artificial
neural network, which includes difficulty of convergence attributed
to poor initial guess, convergence at the local minimum vis-a-viz
poor estimations or predictions.

2.1. Wellbore bottom hole pressure estimation

This is the pressure usually measured in pounds per square inch
at the bottom of the hole in a drilled well. This pressure may be
calculated in a static, fluid-filled wellbore using equation (1).

BHP ¼ MW * Depth * 0.052 (1)

Where, BHP is the bottom hole pressure in pounds per square
inch, MW is the mud weight in pounds per gallon, Depth is the true
vertical depth in feet, and 0.052 is a conversion factor if these units
of measurements apply. For circulating wellbores, the BHP in-
creases by the amount of fluid friction in the annulus [25].

This estimation is different from well testing, because in well
testing operations, pressure is measured in a well at or near the
depth of the production zone. The well bottom hole pressure de-
pends on several factors. The composition of the drilling fluid in
circulation and how it influences the hydrostatic pressure in the
well, while considering the relationship between the friction
pressure loss in the well and the fluid velocity and fluid
composition.

Several researchers have proposed methods for predicting and
estimating bottom hole pressure using neural networks and cor-
relations with emphasis on complex two phase flow through an
annulus [26]. Li et al. [4] in their study improved on the existing
study on BHP estimation by considering the density behavior of the
drilling fluid system and wellbore heat transfer. But, most of these
studies did not utilize real time data which often show fluctuations
in the bottom hole pressure in their estimations. If these BHP
fluctuations are not properly captured during prediction, the
pressure will no longer be maintained below the formation pres-
sure and the formation will then be in an overbalanced state. The
duration of these overbalance can destroy or reduce the benefits
that come from the effort and expense to drill the underbalanced
well [27].

The use of different drilling systems, such as snubbing and
coiled tubing units, have been attempted as potential solutions to
achieve 100% underbalanced conditions; however, their successes
have been limited to specific conditions [28e30]. A solution to
ensure that wells are maintained in underbalanced drilling is to
reduce the target bottom hole pressure low enough to accommo-
date any pressure fluctuation that may occur. Therefore, a prefer-
able approach is to fully understand the dynamics of flow behavior
during UBD operations and use this information to more effectively
control the bottom hole pressure.

The necessity of maintaining 100% underbalanced conditions
and controlling BHP fluctuation within a desirable UBD pressure
window serves as motivation for this study. Therefore, its main
focus is to improve bottom hole pressure control for UBD opera-
tions so as to maintain apt underbalanced conditions and avoid
formation damage.

2.2. Extremely Randomized Tree background

Extra tree is a tree-based ensemble method for supervised
classification and regression problems [31,32]. The objective of
adopting randomized tree in the context of the numerical input
features, is that the optimal cut-point is responsible for a large
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proportion of the variance of the induced tree. This idea is rather
productive in the context of many problems characterized by a
large number of numerical features varying more or less continu-
ously: it often leads to increased accuracy due to its smoothing and
significant reduction in computational burdens linked to determi-
nation of optimal cut-points in standard trees. In the extreme case,
it builds totally randomized trees whose structures are indepen-
dent of the output values of the learning sample. The strength of
the randomization can be tuned to problem specifics by the
appropriate choice of a parameter [33].

The Extra Tree-algorithm follows the classic top-down proced-
ure to create a series of raw gradient or regression trees. The two
main differences between extra tree and other tree-based clus-
tering methods are that it separates nodes by selecting cut-points
at random and grows the tree using the entire learning sample.
Tree forecasts are combined to produce the final prediction, by
majority vote in classification problems and arithmetic average in
regression problems. According to John et al. [34], “extra tree em-
ploys random subset features to train each base estimator”.

In terms of bias-variance, the logic behind the Extra Tree
method is that the explicit randomization of the cut-points and
attribute combined with ensemble averaging can reduce contrasts/
similarities more than the weaker randomization schemes used by
other methods. From a computational point of view, the complexity
of the tree growing procedure, assuming balanced tree, lies in the N
log N scheme with respect to learning sample size. The Extra tree
approach consists of two factors, K andM. K represents the number
of variables unsystematically selected at each node nmin, which
represents the smallest sample size that separates a particular
node. Constraints K, nmin, and M (M is the number of trees in the
ensemble model) create different impacts; K determines the power
of the unique selection procedure, nmin determines the power of
the aggregating yield sound, and M determines the power of
alteration decrease of the collaborative archetypal accumulation
[33]. Seyyedattar et al. [35] highlighted the details on the Tree-
based structure where they explained the importance of the root,
internal and leaf nodes.

The extra tree adopted in this study works by recursive parti-
tioning of the input data set using randomly generated splits of
smaller subsets based on a defined cut-point (threshold), to create
the BHP prediction model that is capable of forecasting the fluc-
tuations from the set of measured field data used as input
parameters.

2.3. Feed forward neural network

Singh and Saraswat [36] noted that, “Feed forward neural
network architecture is widely used for generalized pattern clas-
sification and patternmapping task”. In recent years, the use of feed
forward neural networks has grown significantly in solving
modeling problems. The advantage of using feed forward neural
networks directly for classifying andmodeling data is the flexibility
of a distributedmodel defined by networkweights. Linear and non-
linear resolutions can be determined by properly configuring the
neural network. Adding a hidden layer with the appropriate
transfer function converts a simple two-layer linear neural network
(input and output) into a three-layer network capable of general
modeling [37].

Feed forward neural networks can be considered as widely used
mathematical tools to study the relationship between independent
variables acting as input to the network and dependent variables
specified as output to the network [38]. Learning occurs when a
series of “trained” data with well-known identities and linear
spectra are added to the network and the weight of the network is
changed to reduce the difference between the network output

https://www.glossary.oilfield.slb.com/en/Terms/p/pressure.aspx


Fig. 1. Feed forward model architecture.
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(predicted or estimated data) and actual data or output. Therefore,
the network is trained so that the relationships between the input
and output variables are encoded in the network model [39]. After
the weights are adjusted using the samples in the training data, the
network can be used to predict the same class of data.

2.4. Development of the BHP predictive model

The purpose of this study is to develop a smart model to forecast
the bottom hole pressure for proper underbalance drilling man-
agement, based on real time field data. The interdependence of
design criteria makes the process of modeling with artificial neural
networks more complex compared to traditionally supervised
pattern recognition techniques. The modelling techniques used in
this work are Extra Tree and feed forward neural network. The
performance and accuracies of the models have been assessed us-
ing error analyses.

In this study, depth, temperature and pressure gradient were
used as the independent input variables (X), while the BHP to be
estimated is the dependent variable (Y). This was used in the
development of the BHP models using Extremely Randomized Trees
(Extra Trees) and feed forward neural network algorithm. In the data
sheet, the data was inputted as X0, X1, X2, Y which represent depth,
T, PG and BHP respectively. The splitting of the data for training and
testing was done using the random train, test and split with the
random number indices generator also known as random states, set
to a value of 5, and a training to testing ratio of 8:2 was adopted.

2.4.1. Extra Tree Modeling
Hyper parameters are tunable parameters that allow any algo-

rithm to give an optimum performance in terms of accuracy, speed,
and efficiency. To achieve these, two hyper sensitive parameters
were tuned in the course of this study and the others were left to
perform at their default states. The random state was set to 65
while the optimum number of trees was set to 6. With the random
state set to 6, a sub-optimal greedy algorithm is called to repeat 6
times with features and samples selected randomly, the aggregate
of these random sampling helps to control uniformity of result,
provided the values remain unchanged. The number of decision
trees is used to control the stability of performance, although
ensemble algorithms like Extra Trees are known to be somewhat
immune to overfitting of the training data set, therefore increment
in number of decision trees will most unlikely lead to overfitting
and however, accuracy and efficiency of the algorithm is controlled
at their best. The codes are attached as Appendix A.

2.4.2. Feed forward neural network modeling
In this study, depth (ft), temperature (�F) and pressure gradient

(psi/ft) were used as the independent input variables for the pre-
diction of the bottom hole pressure (BHP) by a Feed Forward Neural
Network. The data sample was fed into the model in the form of
[depth, temperature and pressure gradient] representing a single
array containing the three independent variables and [BHP] rep-
resenting the dependent output variable.

The data sample was split into a training dataset and a testing
dataset in order to perform the model validation. The training
dataset was further divided into batches to prevent over fitting of
the model to the data. The batched dataset was then fed into the
model which contains four hidden layers with fully connected
nodes given as “self.fc ¼ torch.nn. Linear (input nodes, output
nodes)” and activated with the rectified linear activation unit
(ReLU) function. The model was then compiled using the Adam
optimizer and theMean Square Error loss function at a learning rate
of 0.0001 and a weight decay of 0.001. The codes are attached as
Appendix B.
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The feed forward neural network used in this model is a
multilayer perceptron where, as data input occurs in the single
node, the decision flow is unidirectional, advancing from the input
to the output in successive layers, without cycles or loops.

2.4.2.1. The perceptron. To understand the function of neural net-
works, you need to understand the performance and characteristics
of the perceptron. The operation of the perceptron is performed by
evaluating the function using aweighted input sum.Weights which
influence the individual input variables are determined by math-
ematically changing the input weights to obtain output that closely
matches the desired output result. This process is called weight
training and is performed using real input and output data from the
training group. A non-linear function called the “transfer function”
is used to estimate theweighted sum of the input data and generate
an output response for the perceptron or set/target value. The idea
of perceptron was developed as a tool for classifying samples ac-
cording to the values of predefined input variables [37].

The obvious limitation of the use of perceptron is that it can only
solve classification problems that can be linearly divided. This
limitation is overcome by a multi-layer perceptron network. The
input layer only works for storing values of input variables. In the
“hidden” layer, the perceptron blocks are arranged in parallel,
which allows numerous hyper-plane tests to be performed for a set
of linear variables in the input vector. In the output layer, the results
of the hyper-plane tests from the hidden layer are combined. As a
result, the parallel perceptions in the “hidden” layer are used to
make parallel decisions about class membership, and the results of
these tests of the hidden level are evaluated at the “output” layer
[37]. This is due to the fact that the non-linear resolution surface,
developed by using the multilayer network configuration, uses a
combination of hyper-plane tests to construct class boundaries.

The multilayer perceptron network was adopted for this study
in developing the BHP predictive model from field data.

2.4.2.2. Feed Forward Model architecture. The deep learning neural
network model is built on python using the PyTorch library which
provides high level features such as tensor computing and deep
neural networks built on a tape-based automatic differentiation
system. The model is a feed forward neural network with three (3)
hidden layers consisting of 100, 50 and 50 fully connected nodal
points respectively (Fig. 1). The fully connected neural network
structure was designed to accept the input parameters (depth,
temperature & pressure gradient) and return the Bottom Hole
Pressure as output.

The training algorithm used in this method is the gradient
descent algorithm which is a first-order iterative optimization al-
gorithm for finding a local minimum of a differentiable function.
The transfer function adopted is the Rectified Linear activation Unit
(ReLU) function which is defined as the positive part of its argu-
ment: f ðxÞ ¼ xþ ¼maxð0; xÞ, where x is the input to a neuron. The
ReLU function is thus represented graphically as shown in Fig. 2.



Fig. 3. Variation of Field measured BHP with Depth.

Fig. 4. Variation of Field measured BHP with Pressure Gradient.

Fig. 5. Data correlation Heat-Map for the Measured Field Data.
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2.5. Data used for this study

For any regression model, including machine learning methods,
the reliability, robustness, and universality of the model predict-
ability is largely dependent on the quality of the input data set on
which the model was developed. Yarveicy and Ghiasi [40] noted in
their study that, “the precision and credibility of any predictive tool
is believed to be related to the universality and superiority of the
employed databank for their basis”. A total of eight (8) oil fields data
from Niger Delta fields was acquired for this study, and six (6) was
used for training and two for validation of the developed model. In
dealing with measurement data, it is crucial to understand that all
measurements of physical quantities are subjected to uncertainties.
The aim in any measurement is to make the error as small as
possible, and some of these errors result in inaccuracy in deter-
mining the exact depth, wellbore coordinates, inclination and azi-
muth at survey site. These errors can be classified as gross, random
and systematic errors.

For data acquisition, downhole measurement-while-drilling
(MWD) hardware consists of sensors built into a drill collar posi-
tioned near the bit. In a typical turbine-poweredMWD system, data
are sent directly to the surface bymud telemetry, which utilizes the
column of fluid inside the drill pipe as a transmission line for digital
acoustic signals. Downhole measurements recorded by the sensors
are transmitted through the mud as positive or negative pressure
pulse or as a continuous, fixed frequency pressure wave. The mud
telemetry signals are detected with pressure transducers in the
standpipe. The digital signals are then recorded by a computer. Data
are converted to engineering units and processed to generate
depth-based output. These telemetry connections can be compro-
mised, hence leading to measurement errors imposed by factors
such as high flow rates in the drill string and the nature of the mud,
especially electrically conductive muds.

The data set collected for this study includes the general infor-
mation of the field, general data, well data, depth control data,
gauge information, gradient QA/QC plot, BHP program, gradient
data and plots, and the detailed distributions of the geo-lithofacies
(sandy soil, shale clay, sandy clay, sandstone, clay, and sand silt) can
be found in the study by Okoro et al. [41]. Figs. 3 and 4 show the
field measured BHP variation with depth and pressure gradient.
After an initial analysis with the correlation heat-map (Fig. 5), some
of the parameters were discarded due to their inconsistency or
existence as outliers and some were not relevant in developing the
desired model for BHP prediction. The six oil field data were ac-
quired using measurement while drilling device to collect surface
measurements of the downhole pressure data while drilling. For
the two case studies, measured field data of thewellbore filled with
gasified mud system was utilized, and the wellbores were drilled
using rotary jointed drill strings. During circulation (that is, drilling
operation), the bottom hole pressure equals to the sum of hydro-
static pressure and frictions generated through the drilling fluid
Fig. 2. ReLU plot.
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circulating system. Thus, the drilling fluid density at each hole
section will not be used in developing the models, since it has been
captured.

In certain kinds of experimental or field situations, the
researcher has the capability of obtaining repeated observations on
the response for each value. Repetitions enable the experimenter to
obtain quantitative information concerning the appropriateness of
the model. In fact, if repeated observations are generated, the
experimenter can make a significance test to aid in determining
whether or not the model is appropriate [42]. The dataset consisted
of 550 data points and split into 80% training dataset and 20%
testing dataset. Literature has shown the influence of the size of the
training data set on the quality of AI model generalization capacity
[43]. Other studies have also shown that the prediction perfor-
mance of some models will improve apparently when dataset en-
larges, inwhichmore data are needed for robust nonlinear or linear



Fig. 6. Actual measured BHP vs Extra Tree Model predicted BHP for Field A.
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models with construction of new inputs [44,45]. Kandel and Cas-
telli [46] concluded that a higher batch size does not usually ach-
ieve high accuracy, and the learning rate and the optimizer settings
used will have a significant impact as well. Lowering the learning
rate and decreasing the batch size will allow the neural network to
train better. Training of deep learning networks is usually provided
by stochastic gradient descent. The iterative optimization approach
minimizes the given objective function using batch samples taken
from data sets. Batch size has an important role in this optimization
technique. The training dataset in this study was further divided
into batches of 10 for effective training.

The statistical information of the field measured dataset used in
the study is given in Table 1.

According to Table 1, the formation depths are in the range of
0e13,851 ft, the pressure gradients were within 0e0.7438 psi/ft
and the measured bottom hole pressures are in the range of
534.63e5144.75 psi. An optimized UBD operation requires the use
of appropriate equipment to drill, complete the well within the
shortest period possible in the most efficient manner. Determining
the optimum operational drilling conditions to achieve minimum
pressure drop in the drill string, across the drill bit in order to
generate BHP capable of providing efficient hole-cleaning and
however, transport drill cuttings to the surface effectively plays
very significant role in drilling operation.

3. Evaluation of the proposed model

As a result of the modelling work done in this study to predict
bottom hole pressure, onemodel was developed. In this section, the
criteria used to assess the performance of the model developed in
this study are the coefficient of determination (R2) and error
analysis. The robustness of the model developed in this study was
evaluated using two fields as case study.

3.1. Case study 1: field A

Field A is an onshore oil field and from the well schematic, the
maximum deviation angle and depth was 11�F at 14857 ft. After
developing a predictive model and algorithm, it is important to
quantify the performance and how accurately the model fits to
future observations. One of the simplest approaches in calculating
the performance of a model is estimating the error between the
predicted value and the actual value. There are many methodolo-
gies that take this difference and further exploit meaning from it,
because quantifying the accuracy of a model is an important step to
justify its usage.

Figs. 6 and 7 show comparison of the actual measured bottom
hole pressure of the field and the predicted BHP from the Extra tree
and Feed forward models for Field A. It should be noted that the
number of digits of these parameters are determined using
Table 1
Statistical details of the field measured data used in this study.

Parameters Depth (ft) Pr

Mean 6327.98 0.3
Std 3461.064 0.1
Min 0 0
25% 3483 0.2
50% 6998 0.3
75% 9018 0.3
Max 13851 0.7
90% CI 5920e6830 0.3
95% CI 5830e6910 0.3
99% CI 5660e7080 0.2

*CI e Confidence Interval.
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statistical analysis. This refers to a vast set of tools for under-
standing data. This analysis was carried out for the overall errors of
the process of optimization. The coefficient of determination (R2),
mean absolute percentage error (MAPE), which measures the ac-
curacy of the predicting model, mean absolute error (MAE) that
takes the absolute difference between the actual and predicted
value and finds the average, and mean squared error (MSE) used to
determine the errors by which the proposed predictive model
differs from actual values of BHP, are the statistical parameters
utilized to assess the accuracy and the reliability of the developed
Extra tree model for the prediction of the bottom hole pressure in
the field during underbalanced drilling. No one method dominates
all others over all possible data set.

In order to evaluate the performance of the proposed model on
the measured field data set, there is need to measure how well its
predictions actually match the field data; thus, the error analysis
results for the presented Extra Tree model prediction (Fig. 6) and
Feed forward model prediction (Fig. 7) are tabulated in Table 2.
According toTable 2, the average of the squared difference between
the predicted BHP values and the field measured BHP values (MSE)
was small (0.3) showing that the predicted BHP responses are very
close to the measured field BHP. This shows that the predicted and
the measured BHP did not differ substantially. The extent of model
fitness to field data was actualized using the R2 obtained from
statistical analysis, and it takes the form of a proportion (proportion
of variance under investigation). The R2 Statistic for the predict field
A BHP was close to 1 (0.9945). This indicates that a large proportion
of the variability in the BHP has been explained by the regression. It
also shows that there is a good relationship between the proposed
Extra Tree model for BHP prediction and the selected dependent
variable. The mean absolute percent error (MAPE) 2.03 for Field A
shows that on average, the proposed Extra Tree model for BHP is
2.03% off from the measured field values. The accuracy measured
for the MAPE is based on one-period-ahead residuals. At each point
in time, the model is used to predict the value for the next period in
essure gradient (psi/ft) Bottomhole pressure (psi)

07454 2829.821
16363 1139.534

534.629
66725 1827.587
37 2991.484
65525 3627.524
438 5144.75
06e0.331 2680e2980
04e0.334 2650e3010
99e0.338 2590e3070



Fig. 7. Predicted BHP from feed forward model and actual field measured BHP for field
A

Fig. 8. Comparison of actual measured BHP with Extra Tree Model predicted BHP for
Field B.

Fig. 9. Comparison of actual measured BHP with Feed Forward Model predicted BHP
for Field B.
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time. The difference between the predicted values (fits) and the
actual are the one-period-ahead residuals. Because of this, the ac-
curacy measured, provides an indication of the accuracy one might
expect when one forecasts out 1 period from the end of the data.
The mean absolute error of the measured Field A BHP and Extra
Tree model predicted value is 9.1345. Finding the mean absolute
prediction error (MAE) value is important because it does not allow
for any form of cancellation of error values; it shows that the
average difference between the field-measured and model pre-
dicted BHP is 9.1345 psi. MAE is based on the loss function, and can
be viewed as a robust measure of predictive accuracy.

Table 2 also shows the error analysis results for the presented
Feed forward model prediction (Fig. 7). The mean squared error
(MSE) for predicted and measured BHP was 0.4132 for Feed For-
wardmodel, and this is higher than theMSE of the Extra treemodel
(0.3432). This shows that there is a variance or deviation between
the two BHP predictive models. The R2 value of 0.9895 shows a
good fit for the proposed Feed Forward model, but, the Extra Tree
model fit shows a better trend than the Feed Forward Model. The
MAE of the measured BHP and Feed Forwardmodel predicted value
gave 11.0013, this means that the average difference between BHP
values under consideration is 11.0013 psi. The MAPE shows that the
actual and predicted BHP values for Field A is 3.99% off from the
measured field values if Feed Forward model is used for prediction.
The general observation from the trends of statistical result shows
that, the Extra Tree model predicted the field’s bottom hole pres-
sure spikes and pattern better than the Feed Forward model.

3.2. Case study 2: field B

Field B is a swap oil field of survey depth, 9408 ft (measured
depth) and the well-elevation 38.0’. Figs. 8 and 9 show a compar-
ison of the actual measured bottom hole pressure of the field and
the predicted BHP from the Extra Tree and Feed Forwardmodels for
Field B.

Table 2 shows the error analysis results for the presented Extra
Tree and Feed Forward model predictions (Figs. 8 and 9) since the
relationship among the variables are not deterministic. The mean
square error (MSE) for the predicted and measured BHPs for Extra
Table 2
Extra Tree Model Error analysis for Fields A and B.

Parameter Test Extra Tree Model

Case study A

R square 0.9889 0.9945
MAPE (%) 3.42782 2.144697
MSE 1.4233 0.3432
MAE 29.9618 9.1345
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Tree and Feed Forward models are 0.3245 and 0.4002 respectively.
These values are higher than the MSE values obtained from Field A.
The R2 value of the two models was close to unity, showing that a
good measure of the proportion of variability was explained by the
proposedmodels. TheMAE for Extra Tree and Feed Forwardmodels
for Field B are 10.3939 and 10.9788 respectively. Thus, the average
difference between the field measured and model predicted BHP is
10.3939 and 10.9788 psi respectively. This provides a protection
against outliers. Also, the average of the percentage errors using
MAPE for Field B are 2.028 and 3.90 for the Extra Tree and Feed
Forward models respectively. This shows that the proposed Extra
Tree model for BHP is 2.03% off from the measured field values,
while the Feed Forward model is 3.90% off the actual value.

The high values of R2 for the two models (Table 2) suggest the
relative capabilities of these modelling techniques in terms of
goodness of fit and statistical analysis. The magnitudes of MSE and
MAPE predicted for BHP predictions of all the two models are low,
with the lowest prediction error values for the two fields used for
validation belonging to the Extra Tree model. The MAE of the Extra
Tree model for both fields are lower than that of the Feed Forward
model, further showing the higher robustness and precision of
Extra Tree model relative to the Feed Forward model. It goes to
show that, there is a good prediction performance for the evaluated
case studies given a good model fit.
Feed Forward Model

Case study B Case study A Case study B

0.9975 0.9895 0.9911
2.02829 3.9871 3.8999
0.3245 0.4132 0.4002
10.3937 11.0013 10.9788
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Spesivtsev et al. [47] developed a neural network containing 100
and 50 hidden units for the prediction of downhole pressure. The
predicted results were consistent with the present study; the
model is capable of predicting the BHP behavior for the dataset that
were not used for training. Although this study’s neural network
models performed better in terms of predicted data accuracy,
because Spesivtsev et al. [47] proposed model struggled to predict
some particular dataset, and they were able to identify the partic-
ular dataset that were challenging for the algorithm to predict.
Jahanandish et al. [48] also developed an artificial neural network
model for predicting bottomhole pressure, and the result showed
9.5% mean absolute error and 0.92 correlation coefficient, but the
proposed models in this study have mean absolute error ranging
from 10.39% to 10.97%, and 0.98 to 0.99 correlation coefficient. Also,
prediction performances of Ansari et al. [49] and Mukherjee and
Bill [50] that have been used by the industry gave a correlation
coefficient of 0.89 and 0.87 respectively for the dataset. Ping et al.
[51] recorded mean absolute errors of 10% and 10.5% with the
Hasan-Kabir model and the modified version of the Ansari model
respectively, in predicting wellbore pressure.

Thus, based on the data gathered from comparing the absolute
errors and correlation coefficients of the aforementioned models
with those of the newly developed models, the newly developed
models performed optimally with the listed correlations and
mechanistic models.

3.3. Pressure profile for underbalanced drilling (UBD)

When drilling, determining the pressure profile down the hole
is of utmost importance. By circulating the fluid with a mud pump
during drilling, energy is transferred to the fluid used in the drill bit
for drilling to remove formation cuttings from the surface of the bit
and move the cuttings from the wellbore annulus to the surface. To
perform these functions, it is very important to maintain the
pressure of the circulating fluid during drilling. In addition to
maintaining high downhole pressure, maintaining hydraulic pres-
sure is essential for effective well control while drilling [52]. The
pressure of the circulating fluid is determined by the hydrodynamic
properties of the fluid. The reliability assessment of the managed
pressure drilling system has been studied by Sule et al. [53].

In the case of unbalanced drilling, the well pressure generated
must be within the pressure window. The pressure at the bottom of
the well should not be too low to affect the stability of the well, nor
too high to avoid the loss circulation and increase the risk of for-
mation damage, as is typical of overbalanced drilling. Figs. 6-9
shows the pressure trends that must be maintained to avoid se-
vere economic and operational consequences. The Extra Tree and
Feed Forward models showed a good match and it is possible to
achieve good underbalanced drilling operation with small de-
viations from the selected operational criteria. Pedersen et al. [54]
highlight the need for such good predictive models for accurate
control of pressure, and also stated multiple reasons why good
pressure control is needed during underbalanced drilling.

Data acquisition is an important aspect of the drilling program,
and Figs. 6-9 shows the trends of the bottomhole pressure for the
two case studies. To a large extent on the successful production and
depletion of a reservoir depends upon the successful drilling and
completion operations applied to a well. Underbalanced drilling
was initially adopted for resolving drilling instabilities due to long
hole section with narrow pore pressure and fracture gradients of
the target formation of interest. The pressure window is said to be
narrow and this was evidence in the ratio of pore pressure to ver-
tical stress moving close to lithostatic condition. The predicted BHP
shows the range of pressure that must be maintained to success-
fully land the wellbore to the true depth. The downhole pressure
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will be maintained below the effective reservoir pressure at all
points along the open hole section. Thus, minimize bottomhole
pressure transit even during connection time. The predicted BHP
will also help in developing UBD operational envelope that will
help maximize the chance of success.

Both models proposed in this study assumed that the under-
balanced drilling process begins after the downhole pressure drops
to the specified pressure, the model ignores the unloading process.
Instead, considered that the initial conditions are those that will be
achieved after the gasified drilling fluid system has already reached
the desired downhole steady state conditions. The UBD operation
must be designed such that it is possible to achieve underbalanced
condition throughout the operation within the operational re-
strictions. According to Fattah et al. [55], if planned and applied
correctly, underbalanced drilling can address problems of formation
damage, poor penetration rates, and loss circulation. Li et al. [56]
concluded that underbalanced operation does not guarantee the
improvement of horizontal well’s extension ability, because itmainly
depends on the relationship between the bottomhole pressure and
its corresponding critical point. The key to underbalanced operation
is to control the bottomhole pressure, and the key to controlling
bottomhole pressure is to accurately calculate or predict the down-
hole pressure behaviour. Thus, the application of this study proposed
models for predicting bottomhole pressure trends.
4. Conclusions

Determination and prediction of bottom hole pressure (BHP) in
underbalance drilling (UBD) operation is vital for the management
of the integrity of well lines and mitigation of formation failures.
This study used data obtained from six fields to train and develop
two models based on machine learning. These dataedriven ma-
chine learning approach depends on the implementation of the
concept of gathering relevant bits of information within the deci-
sion tree and feed forward multi-layer perceptron to predict the
BHP of a well scheduled to undergo underbalanced drilling. The
two approaches were selected to capture the fluctuations in actual
BHP and deal with the relative predictable uncertainties. The al-
gorithms were used to perform data mining and statistical analyses
in order to determine trends and patterns in the observed and
trained data. These models were further validated using data from
two fields. The statistical results obtained using MSE, MAPE and
MAE show that both models predicted the BHP trends in Field B
more than Field A. The overall result shows that the proposed
models can serve as a predictive tool for managing and handling of
bottom hole pressure while conducting underbalanced drilling.
These models gave a significant prediction of the possible spikes in
actual bottom hole pressure which are often ignored in other
models proposed in literature. The results obtained demonstrate
the potentials of these techniques for integrity management and
ability to predict spikes in BHP. The developed models can be used
to develop intelligent controllers or smart techniques that allow for
the efficient management, prediction and control of BHPs during
underbalanced drilling of oil/gas wells. Extra trees are data mining
techniques, which use tree like structures to classify a set of data
into various predefined target values that are in turn responsible for
its higher robustness and precision.
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