
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=oaen20

Cogent Engineering

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/oaen20

DeepCOVID-19: A model for identification of
COVID-19 virus sequences with genomic signal
processing and deep learning

Emmanuel Adetiba, Joshua A. Abolarinwa, Anthony A. Adegoke, Tunmike B.
Taiwo, Oluwaseun T. Ajayi, Abdultaofeek Abayomi, Joy N. Adetiba & Joke A.
Badejo |

To cite this article: Emmanuel Adetiba, Joshua A. Abolarinwa, Anthony A. Adegoke,
Tunmike B. Taiwo, Oluwaseun T. Ajayi, Abdultaofeek Abayomi, Joy N. Adetiba & Joke A.
Badejo | (2022) DeepCOVID-19: A model for identification of COVID-19 virus sequences
with genomic signal processing and deep learning, Cogent Engineering, 9:1, 2017580, DOI:
10.1080/23311916.2021.2017580

To link to this article:  https://doi.org/10.1080/23311916.2021.2017580

© 2022 The Author(s). This open access
article is distributed under a Creative
Commons Attribution (CC-BY) 4.0 license.

Published online: 10 Jan 2022.

Submit your article to this journal Article views: 2120

View related articles View Crossmark data

Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=oaen20
https://www.tandfonline.com/loi/oaen20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23311916.2021.2017580
https://doi.org/10.1080/23311916.2021.2017580
https://www.tandfonline.com/action/authorSubmission?journalCode=oaen20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=oaen20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/23311916.2021.2017580
https://www.tandfonline.com/doi/mlt/10.1080/23311916.2021.2017580
http://crossmark.crossref.org/dialog/?doi=10.1080/23311916.2021.2017580&domain=pdf&date_stamp=2022-01-10
http://crossmark.crossref.org/dialog/?doi=10.1080/23311916.2021.2017580&domain=pdf&date_stamp=2022-01-10
https://www.tandfonline.com/doi/citedby/10.1080/23311916.2021.2017580#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/23311916.2021.2017580#tabModule


BIOMEDICAL ENGINEERING | RESEARCH ARTICLE

DeepCOVID-19: A model for identification of 
COVID-19 virus sequences with genomic signal 
processing and deep learning
Emmanuel Adetiba1,2,3*, Joshua A. Abolarinwa4, Anthony A. Adegoke5, Tunmike B. Taiwo6, 
Oluwaseun T. Ajayi2, Abdultaofeek Abayomi7, Joy N. Adetiba8 and Joke A. Badejo2,4

Abstract:  The spread of Coronavirus Disease-2019 worldwide necessitates the 
development of accurate identification methods and the determination of genetic 
relatedness. The result of genomic methods involving nucleotide alignment 
informed the considerations of several alignment-free techniques for virus detec-
tion. This paper presents a genomic sequence identification model, developed based 
on Genomic Signal Processing (GSP), deep learning, and genomic datasets of 
Coronavirus 2 (SARS-CoV-2), Severe Acute Respiratory Syndrome CoV (SARS-CoV), 
and Middle East Respiratory Syndrome CoV (MERS-CoV). Our results showed that the 
Z-Curve images for the three viral strains depicted high visual similarities in texture 
and color, thus making it difficult to differentiate the strains by visual inspection. 
However, the homogeneity distance showed that SARS-CoV-2 is closer to SAR-CoV 
than MERS-CoV. Following a validation accuracy of 98.33%, it became clear that 
Z-Curve images for MERS-CoV, SARS-CoV and SARS-CoV-2 have distinct features 
after transformation by the Convolutional Neural Network (CNN) classifier. The 
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divergence in texture and color reflects genetic variation among the strains, which 
is too insignificant for differentiation via visual inspection. Our results showed that 
higher layers of CNN amplify aspects of input images that are critical for discrimi-
nation, thereby confirming the importance of deep learning and GSP in accurate 
viral detection.

Subjects: Artificial Intelligence; Biomedical Engineering; Machine Learning; Digital Signal 
Processing ;  

Keywords: Covid-19; deep learning; GSP; MERS-CoV; SARS-CoV; SARS-CoV-2; Virus

1. Introduction
For many reasons, the year 2020 will not be easily forgotten in the annals of human history. Apart from 
being the beginning of a new decade, it is also the year that has ushered in the most recent pandemic, 
which is ravaging the whole world. A pandemic caused by Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2), code named COVID-19. It broke out in December 2019 in Wuhan, 
a province in China but have since spread to almost every country of the world, infecting millions of 
people at a very alarming rate. Within a space of 11 months that COVID-19 broke out, over 46 million 
(>46,000,000) confirmed positive cases of human infections have been recorded and over 1 million, 200 
thousand (>1,200,000) human deaths have been recorded worldwide (World Health Organization 
(WHO), 2020a). These statistics underscore the pandemic nature of this viral disease. According to 
the General Directorate of Health in Portugal, the transmission of COVID-19 can spread through 
respiratory droplets, direct contact with respiratory secretions, infected faeces or contaminated sur-
faces, and airborne transmission through aerosol generators (Chan et al., 2020; Perlman, 2020).

Paramount in the minds of every human, including researchers today is how to stem the tide of 
this pandemic. Research activities are ongoing in developing vaccines to prevent and cure the 
disease. However, forerunner research to the development of viable vaccines will be to understand 
how human genomes are impacted by Coronavirus activities. An identification model for the virus 
determined from the genomics characterization and quantification level needs to be developed. 
Coronavirus constitutes the subfamily Orthocoronavirinae, in the family Coronaviridae, order 
Nidovirales, and realm Riboviria. They are enveloped viruses with a positive-sense single- 
stranded RNA genome and a nucleocapsid of helical symmetry (Almeida et al., 1968).

To characterize, quantify, and analyze genomics data, an aspect of Artificial Intelligence (AI) is 
a viable state-of-the-art option. Deep learning technique is an aspect of AI that is adopted in this 
research to develop an identification model for COVID-19 genome sequences. Deep learning, 
a subset of machine learning contains multiple and hierarchical layers of artificial neurons to 
carry out the process of machine learning. The hierarchical functions in deep learning systems 
enable machines to process data in a nonlinear way (Yu & Deng, 2011).

In this study, genomic sequences of the MERS-CoV, SARS-CoV, and SARS-CoV-2 strains were 
extracted from the Virus Pathogen Database and Analysis Resource (ViPR) (Pickett et al., 2011). 
Encoding was done using GSP, which is the application of Digital Signal Processing (DSP) theories 
and algorithms to transform, analyze, and interpret the information that is inherent in the 
genome. The rest of this paper comprises a literature review in Section 2, the materials and 
methods in Section 3, Section 4 contains results and discussion, and the conclusion is presented 
in Section 5.

Adetiba et al., Cogent Engineering (2022), 9: 2017580                                                                                                                                                    
https://doi.org/10.1080/23311916.2021.2017580

Page 2 of 26



2. Literature review

2.1. Genomics of coronaviruses
Coronaviruses (CoV) are among the aetiological agents of human diseases (Chen et al., 2020). The 
critically important group called the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV 
-2) belongs to genus Betacoronavirus, subgenus Sarbecovirus (Boheemen et al., 2012). SARS-CoV-2 
is responsible for COronaVIrus Disease 2019 (COVID-19). Epidemics of Severe Acute Respiratory 
Syndrome CoV (SARS-CoV) in China in 2002–2003 led to about 10% mortality from 8,000 cases. In 
addition, there was the endemic Middle East Respiratory Syndrome CoV (MERS-CoV) in the Arabian 
Peninsula for around 8 years (Cheng et al., 2007; Chan et al., 2013). Severe Acute Respiratory 
Syndrome CoV-2 (SARS-CoV-2) is a single-stranded (positive-sense) RNA virus. The RNA genome is 
linked to a nucleoprotein inside a capsid containing matrix protein. Structurally, they are either 
spherical or pleomorphic with glycoprotein projection in its envelope. (Haan et al., 1998) remarked 
that some Coronaviruses bear Hemagglutinin-Esterase (HE) protein.

Four genera of Coronaviruses (CoV) are:

(i)Alpha (α)

(ii)Beta (β)

(iii)Gamma (γ)- and

(iv)Delta (δ).

The first two groups can infect mammals, while the third and fourth groups are usually avian 
pathogens.

When compared with other RNA viruses, Coronaviruses have the largest genomes (26.4 to 31.7 
kb) having 32–43% G + C contents. Coronaviruses bear varying numbers of minute Open Reading 
Frames (ORFs) within their conserved genes below the nucleocapsid gene in their progeny gen-
erations. Beginning from the 5ʹ end, their conserved gene is made up of replicase complex 
(ORFlab), spike, envelope, membrane, and nucleocapsid then the 3ʹend. These are also the main 
structural proteins designated by the first letters: S for spike, E for envelope, M for membrane, and 
N for nucleocapsid (Brian & Baric, 2005). The S, E, M proteins participate in the viral coating while 
the N protein is associated with RNA genome assemblage (Wu et al., 2020). The Open reading 
frame, ORF2-10 encodes not only the viral structural proteins such as S, M, N, and E proteins but 
also other auxiliary proteins (Wu et al., 2020). Most prominent here is the M with brief external NH2 

-terminus virus and an extended COOH terminus within the virion (Haan et al., 1998; Huang et al., 
2004). M is also actively involved in the intracellular synthesis of the virus in the absence of 
S. When homologous nucleoside antibiotics, Tunicamycin is present, Coronavirus brings about 
spikeless, nonpathogenic virions with M but without S (Woo et al., 2010).

The component polypeptides are metabolized by proteases, which may be normal or those like 
chymotrypsin and 1 or 2 papains forming 16 Non-Structural Proteins (NSPs), i.e. NSP 1–16 (Chen 
et al., 2020; Banerjee et al., 2004; Masters, 2006). All the proteins arise from the expression of 
CoVs’ sgRNAs. Furthermore, Coronaviruses (CoVs) code for these proteins: Hemagglutinin Esterase 
(HE), membrane-binding 3a/b, and 4a/b. The proteins play integral roles associated with genome 
maintenance and Virus replication (Boheemen et al., 2012; Chen et al., 2020).
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A typical CoV bears a minimum of six ORFs in its genome (Chen et al., 2020; Gennaro et al., 
2020). Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2) genome contains 10 open reading 
frames (Wu et al., 2020). Open reading frame, ORF1ab does for replicase polyprotein 1 ab. The 
replicase proteins might carry out multiple functions associated with transcription and replication 
of the viral RNAs when lysed by appropriate protein enzymes. The 2019 novel Coronavirus does not 
have the hemagglutinin-esterase gene expected in lineage A β-coronaviruses (CoVs).

The ORF1ab gene is made up of ORF1a and ORF1b. The position of the ORF1ab gene is located 
closely to the starting codon of SARS-CoV-2 at position 251–21541 unlike SARS-CoV and MERS-CoV 
at 265–21486 and 279–21514, respectively (Biswas et al., 2020).

The Genome sequence of SARS-CoV-2, which is 79.5% identical to SARS-CoV, has been reported 
to be 96.2% identical to CoV RaTG13 from bat (Guo et al., 2020). Sequence analysis and phylogeny 
predict bat as the original virus reservoir, though there are potential intermediate hosts predicted 
before infecting humans (Guo et al., 2020; Mousavizadeh & Ghasemi, 2020). Severe Acute 
Respiratory Syndrome CoV-2 (SARS-CoV-2) might be transmitted from bats via unknown inter-
mediate hosts to infect humans. The similarities of SARS-CoV to other Severe Acute Respiratory 
syndrome-related Coronaviruses (SARSr-CoV) including SARS-CoV-2 are both in terms of their 
genome sequences and their affinities for binding to the human ACE2 receptor (Mousavizadeh & 
Ghasemi, 2020; World Health Organization (WHO), 2020b).

Also, there is a very close similarity index among various strains of SARS-CoV-2 sequenced in 
various countries. A phylogenetic analysis of 18 whole-genome sequences from the National 
Centre for Biotechnology Information (NCBI) (see Figure 1) revealed that they were “highly related 
(with minor potential mutations) to a common ancestor”. Multiple alignments showed a 99–100% 
alignment. Across three continents, SARS-CoV-2 HKG/HKU 902b, SARS-CoV-2 VNM, SARS-CoV-2 
USA-CruiseA-1, SARS-CoV-2 USA-CruiseA-8, SARS-CoV-2 USA-CruiseA-10, SARS-CoV-2 USA-CruiseA 
-12 and SARS-CoV-2 USA-CruiseA-17 showed identical genome sequence (100% multiple align-
ment). With this, one may safely predict, as stated earlier that COVID-19 aetiologies are from the 
same ancestry. The same scenarios were observed in some strains from Wuhan compared to 
strains from the USA. The concept of multiple alignments that formed the basis of this is no doubt 
ladened with difficulties for comparing viruses along the genome (Wang et al., 2020). This 
informed the need for several alignment-free techniques for virus detection through genome 
sequences (Kantorovitz et al., 2007; Li et al., 2016). The central idea of this current study is hinged 

Figure 1. Phylogenetics trees of 
full-length sequences showing 
the likelihood of relatedness of 
some sequenced strains in 
China, Hong Kong, Vietnam and 
USA (Sequence source: NCBI 
genbank. Molecular 
Phylogenetic analysis was car-
ried out by the authors. Tree 
was constructed using 
Maximum Likelihood method).
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on exploring the combination of artificial intelligence and genomic signal processing to predict 
more effectively the genomic differences between SARS-CoV-2, SARS-CoV, and MERS-CoV.

2.2. Analysis of genomes with machine learning
Machine learning-based alignment-free methods have been used successfully for a variety of 
problems, e.g., virus classification to enhance efficient clinical management. They also encompass 
automated identification and classification of newly diagnosed infections by their genetic similarity 
to curated reference genotypes (Robertson, 2000).

There are many algorithms and studies for the classification of infections relating to the 
genotypes of disease-causing viruses. Solis-Reyes et al. (2018) proposed an open-source, super-
vised and alignment-free subtyping technique called KAMERIS using k-mer frequencies in HIV-1 
sequences as features. The researchers compared this technique with four other novel techniques. 
While testing with 2,784 samples of manually curated real-world HIV-1 sequences, the authors 
reported an overall accuracy of 97% and a processing rate of above 1,500 sequences by KAMERIS. 
The method was able to provide data security, privacy, transparency and reproducibility benefits 
above other techniques. This is an advantage especially for those requiring the transmission of 
HIV-1 sequence data over the network to remote servers. Also, this method was applied to 
genotype classification of other viruses such as Influenza A, and Hepatitis B and C.

Randhawa et al. (2020) identified an intrinsic COVID-19 virus genomic signature and applied 
a machine learning-based alignment-free approach for the classification of whole COVID-19 virus 
genomes. A combination of supervised machine learning and digital signal processing techniques 
were used for genome analysis and augmented by a decision tree approach. A Spearman’s rank 
correlation coefficient was used for the result validation. The over 5,000 unique viral genomic 
sequences, which are 61.8 million bp datasets consist of 29 COVID-19 virus sequences that include 
Wuhan-Hu-1 complete reference genome of 29,903bp. All the available 28 sequences of COVID-19 
Virus and the Bat Betacoronavirus RaTG13 from the GISAID platform with two additional sequences 
(bat-SL-CoVZC45 and bat-SL-CoVZXC21) were utilized for experiments. A two-dimensional k-mer 
(oligomers of length k) based numerical representation known as Chaos Game Representation 
(CGR) was used with a k-mer value of 7 for all the experiments conducted. The magnitude spectra 
were then calculated by applying Discrete Fourier Transform (DFT) to the genomic signals. 
Furthermore, a pairwise distance matrix was computed using the Pearson Correlation Coefficient 
(PCC) as a distance measure between magnitude spectra. The distance matrix was used to generate 
the 3D Molecular Distance Maps (MoDMap3D) by applying the classical Multi-Dimensional Scaling 
(MDS). The MoDMap3D represents an estimation of the relationship among sequences based on the 
genomic distances between the sequences. The feature vectors were constructed from the columns 
of the distance matrix and were used as an input to train the linear discriminant, linear SVM, 
quadratic SVM, fine KNN, subspace discriminant, and subspace KNN supervised-learning based 
classification models. A 10-fold cross-validation was used to train and test the classification models. 
The trained machine learning models were then used to test the COVID-19 virus sequences. The 
results obtained by the authors support a hypothesis of a bat origin and classify the COVID-19 virus as 
Sarbecovirus within Betacoronavirus.

An alignment-free method named Machine Learning and Digital Signal Processing GUI (MLDSP- 
GUI) was developed in (Randhawa, Hill, Kari et al., 2019) with high accuracy for flavivirus genus to 
species classification. This technique utilized the 2D Chaos Game Representation (CGR) as numer-
ical representation of DNA sequences. The authors posited that the identification of genomic 
signatures consisting of particular species that exist throughout the genome with species-level 
accuracy could be achieved with MLDSP-GUI.
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In order to unmask the pathogenetic, epidemiological, and clinical features of SARS-CoV-2, hun-
dreds of researchers globally are combining data and developing solutions. Amongst the solutions is 
the use of machine learning to help identify who is at risk, diagnose patients, predict the virus spread, 
and fast track drug development. To determine COVID-19 infection, (Xu et al., 2020) conducted 
a comparative study between the use of a Reverse Transcription-Real Time Polymerase Chain 
Reaction (RT-PCR) and an early screening model using deep learning techniques with pulmonary 
Computed Tomography (CT) images. The RT-PCR had a relatively low positive rate of early detection 
for COVID-19 infection, as it was primarily used for the detection of viral RNA from sputum or 
nasopharyngeal swab. A three-dimensional deep learning model was developed from pulmonary 
CT image sets, using a total of 618 CT samples. The model learned to separate images and categorize 
them into COVID-19, Influenza-A, viral pneumonia and non-infections, using a location-attention 
classification model (Xu et al., 2020). The deep learning models developed were effective for early 
diagnosis of COVID-19 patients, following an overall accuracy of 86.7% from the CT samples taken.

As opined by (Xu et al., 2020) and (Zheng et al., 2020), the use of RT-PCR as a standard for COVID-19 
detection, greatly delays the diagnosis of suspected patients, thereby posing a great deal of unpre-
cedented challenges to prevent the spread of the infection. A training set of 540 patient samples 
(COVID-positive and COVID-negative) were enrolled in the COVID-19 detection study (Zheng et al., 
2020). From the samples, 313 and 229 patients were positive and negative respectively. A 3D Deep 
Convolutional Neural Network (DeCoVNet) was proposed to detect COVID-19 from CT volumes. There 
are three stages, which consist of the DeCoVNet (the network stem), two 3D residual blocks and 
a Progressive Classifier (ProClf). The prediction results emanate from the ProClf. It extracts the 
information in the CT volumes and directly outputs the probabilities of being COVID-positive and 
COVID-negative. The study affirmed that the algorithm used was a weakly supervised deep learning 
algorithm. However, it obtained strong COVID-19 detection performance.

Deep learning architectures have been applied in diverse bioinformatics, computer vision, and 
computational biology studies including classification and prediction of DNA and RNA-binding 
specificity (Trabelsi et al., 2019). According to (Alipanahi et al., 2015), the DeepBind for instance, 
utilized a single layer of convolution in a Convolutional Neural Network (CNN) architecture to learn 
a signal detector that recapitulate known motifs while (Zeng et al., 2016) investigated other 
parameters in architectures including the number of layers and operations such as pooling. 
Other studies such as iDeepS (Pan et al., 2018) and DanQ (Quang & Xie, 2016) have used more 
complex architectures integrating both the CNN and Recurrent Neural Network (RNN) layer models. 
In a separate study, the KERGU method (Shen et al., 2018), which is a purely RNN-based archi-
tecture utilized a layer of bidirectional Gated Recurrent Units (bi-GRUs). This was combined with 
a k-mer, embedding representation of input sequence to create an internal state of the network 
that allows it to capture long-range dependencies.

Earlier in this paper, we have highlighted the strong relationship among MERS-CoV, SARS-CoV and 
SARS-CoV-2 strains. The study at hand thus explores the development of an alignment-free genome 
analysis pipeline using deep learning and GSP to uniquely identify MERS-CoV, SAR-CoV and SARS-CoV-2 
from their genomic sequences in order to facilitate accurate identification of the COVID-19 virus.

3. Materials and methods

3.1. Data acquisition
The genomic sequences used for this study were extracted from the Virus Pathogen Database and 
Analysis Resource (ViPR). The ViPR is an integrated repository of information about human patho-
genic viruses that integrate genome, gene, and protein sequence information. The database is fully 
funded by the U.S. National Institute of Allergy and Infectious Diseases, National Institutes of 
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Health, Department of Health and Human Services, USA. Apart from direct deposition of genomic 
sequences and protein data by researchers on ViPR, other data sources include National Centre for 
Biotechnology Information (NCBI) Genbank, NCBI RefSeq, Research Collaboratory for Structural 
Bioinformatics (RCSB) Protein Data Bank (PDB), etc (Pickett et al., 2011). The database particularly 
inspired us because it contains up-to-date complete genomic sequences (from real human sub-
jects) for human pathogenic viruses.

We downloaded all the available genome sequences for MERS, SARS-CoV, and SARS-CoV-2 from 
ViPR at the commencement of this study. Howbeit, we were left with 100 unique samples per 
category after removing all the duplicates, which culminated in a total of 300 unique samples of 
the dataset for this study. Notably, the samples for SARS-CoV-2 in the ViPR corpus were drawn 
from 25 countries due to it being a pandemic virus. The range of the genome sequence length for 
each sample of the three strains is shown in Table 1.

3.2. Encoding of genomic signals as Z-Curve RGB images
A genome is the complete genetic information of an organism. It is a large biomolecule that is 
wound by a series of nucleotides, which are arranged in a unique manner for every organism. 
Nucleotides are distinguished by four bases, which are Adenine (A), Cytosine (C), Guanine (G) and 
Thymine (T). These bases are engaged to completely specify any Deoxyribonucleic Acid (DNA) as 
a string of characters {A, T, G, C}. Thus, in GSP the nucleotide sequences of an organism are firstly 
mapped to the appropriate numerical values (i.e. the genomic signals), which represent the 
information contained in them (Adetiba & Olugbara, 2016; Adetiba et al., 2015; Mendizabal-Ruiz 
et al., 2017).

In the literature, the various DNA encoding methods can be grouped into two: (i) Fixed value- 
based mapping (ii) Biology-based mapping. Due to the ability to capture inherent biochemical and 
biophysical characteristics from DNA sequences, the latter has been applied for different bioinfor-
matics tasks such as classification of exon and intron sequences, alignment-free genomic dis-
tances, viral classification, identification of species, and categorization of sequences as pathogenic 
or healthy (Adegoke et al., 2019; Adetiba et al., 2017, 2018; Morales et al., 2020; Yu et al., 2018). In 
genomic signal processing, there exist many mapping methods such as single atomic number, 
Electron–Ion Interaction Potential (EIIP), DNA walk, Z-Curve, tetrahedron, Frequency Chaos Game 
Representation (FCGR), etc. (Borrayo et al., 2014; Kwan & Arniker, 2009; Randhawa, Hill, Kari et al., 
2019).

However, the Z-Curve and tetrahedron mapping methods capture the base composition and 
distribution of any given sequence quantitatively thereby possessing rich visualization advantage 
(Kwan & Arniker, 2009). Whereas the base composition provides the total content of each base in 
a sequence and can be determined easily; the base distribution is more difficult to determine, but 
provides a better discrimination amongst various genes, even if the base composition are the 
same. Earlier studies have established Z-Curve and tetrahedron as the “rgb” transformation of DNA 
sequences (Abo-Zahhad et al., 2012), with Z-Curve “RGB” images having a marginal discriminatory 

Table 1. The range of genome sequence length of the selected viruses
Virus Range of the length of Genomic Sequence
MERS-CoV 29,771–30,423

SARS-CoV 29,540–37,971

SARS-CoV2 29,881–29,903
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edge over tetrahedron “RGB” images (Adetiba et al., 2015). Thus, the study at hand leverages 
Z-Curve mapping to generate “RGB” images for alignment-free identification vis-à-vis classification 
of the sequences of MERS-CoV, SARS-CoV and SARS-CoV-2.

For a nucleotide sequence of N bases, the cumulative numbers, which represent the base 
composition of A, C, G and T nucleotides are symbolically denoted as An, Cn, Gn and Tn. In 
a 3-D coordinate system, Z-Curve is the line that connects the different nodes with coordinates 
(xi, yi, zi) for i = 0, 1, 2, . . ., N-1. The corresponding coordinate values of each node are accumulated 
to form the 3-dimensional Z-Curve “rgb” vectors, which are normalized to obtain (Zhang & Zhang, 
2002): 

xr n½ � ¼ An þ Gnð Þ � Cn þ Tnð Þ

xg n½ � ¼ An þ Cnð Þ � Gn þ Tnð Þ "n ¼ 0;1;2; . . . N � 1
xb n½ � ¼ An þ Tnð Þ � Cn þ Gnð Þ

(1) 

As shown in Equation (1), each channel captures a distinct relationship between the base compo-
sitions and the base distributions of any given nucleotide sequences of length N, with xr[n] 
corresponding to the distribution of the purine/pyrimidine bases, xg[n] corresponding to the dis-
tribution of the amino/keto bases, while xb [n] corresponds to the distribution of the strong/weak 
hydrogen bonds. The Z-Curve “rgb” vectors for each of the acquired sequences were transformed 
into a 3-dimensional matrix in the spatial domain using a window size of 200, an overlap of size 50 
and each element of the matrix normalized to values between 0 and 255. Furthermore, each of the 
normalized 3-D matrices was rendered in RGB color space to generate the Z-Curve “RGB” images 
from our datasets (Adetiba et al., 2015; Dimitrova et al., 2006; Santo & Dimitrova, 2007; Yu et al., 
2018). Samples of these images are presented in Section 4 of this paper.

3.3. Deep convolutional neural network for image classification
A Convolutional Neural Network (CNN) is a supervised deep learning architecture that uses con-
volution mathematics in at least one of the layers. It was developed primarily to adapt neural 
network for image processing tasks. Nothwithstanding, it can be used for other types of temporal, 
spatial, and spatiotemporal data (Goodfellow et al., 2016; Saha, 2020). As shown in Figure 2, a CNN 
architecture is made up of several layers, which include input layer, convolution layers, max 
pooling layers, a dense/fully connected layer, and a softmax layer (Saha, 2020). The descriptions 
of each of these layers are hereafter presented with their mathematical representations.

i) Input layer: CNNs are designed to work with grid-structured inputs, which have strong spatial 
dependencies in local regions of the grid. The most obvious example of grid-structured data is 
a 2-D image, which exhibits spatial and temporal dependencies. An additional dimension captures 
the different colors that create a 3-D input volume. Thus, a color image X is a third-order tensor 
with H rows (height), W columns (width) and D channels (depth) with Equation (2) showing the 
relationship: 

X 2 <H�W�D (2) 

where 0 ≤ i < H, 0 ≤ j < W, 0 ≤ d < D,

For a grayscale image, there is only one channel with D = 1. For a color image that is stored in 
Red, Green, and Blue (RGB) color space, there are three channels with D = 3. Each channel is an 
H × W matrix, which contains the R or G or B pixel (px) values in the range 0 ≤ px ≤ 255.
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ii) Convolution layer: Convolution is the mathematical process of implementing 
a 2-D convolution with a filter (or kernel) on an input image to extract salient image features. 
The kernel is scanned across the input image and a dot product is computed between the 
corresponding image and the kernel values using four hyperparameters namely; number of filters 
(K), spatial dimension of the filter (F), stride (S) and the amount of zero padding (P). The dimension of 
the input image is H1 × W1 × D1 and the output of the convolution operation is referred to as 
a feature map (Z) with size H2 × W2 × D2 (Savarese, 2020) where; 

H2 ¼
H1 � F þ 2P

Sþ 1
(3)  

W2 ¼
W1 � F þ 2P

Sþ 1
(4)  

D2 ¼ K (5) 

After getting all the values of the feature map from the kernel computation as shown in Equations 
(3) to (5), the map is passed through the Rectified Linear Unit (ReLU) activation function. The ReLU 
function converts all negative values to zero, which increases the non-linearity of the network and 
culminates in faster training time (Shafkat, 2020). The ReLU function is represented as 
Equation (6). 

f Zð Þ ¼ max 0; Zð Þ ¼
Zi if Zi � 0
0 if Zi < 0

�

(6) 

Notably, the first convolution layer is responsible for extracting low-level image features like color, 
edges, and gradient orientation. The upper convolution layers extract high-level features of the 
image (Shafkat, 2020).

Figure 2. Convolutional Neural 
Network Architecture.
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iii) Pooling layer: This layer reduces the dimension of a convoluted image by summarizing 
regions via the application of non-linear downsampling on the feature map. This layer accepts 
the feature map of dimension H2× W2× D2 as inputs and applies the spatial extent (F) and stride (S) 
as hyperparameters to produce an output of dimension H3× W3× D3 where; 

H3 ¼
H2 � F
Sþ 1

(7)  

W3 ¼
W2 � F
Sþ 1

(8)  

D3 ¼ D2 (9) 

The available pooling options are, max and average poolings with the max pooling being used 
commonly in CNN. To perform max pooling, the pooling size (or spatial extent F) and stride (S) are 
selected. In each selected grid, the highest pixel value is chosen as the value of the corresponding 
pixel in the new image. On the other hand, for average pooling, the average value of the pixels in 
the selected grid is computed. The number of pixels to slide the grid across the image is a function 
of the stride. The sliding of the grid continues until the entire convoluted image (i.e. feature map) is 
covered (Brownlee, 2020).

iv) Fully connected or dense layer: The Fully Connected (FC) or dense layer in a CNN is the last 
learning phase that maps the extracted features in the previous layers to the desired outputs. The 
neurons in this layer are fully connected to neurons in the previous and the following layers with 
links (or edges), which are called weights (W) and biases (b). Assuming there are L layers in the 
CNN with 0 ≤ l ≤ L and the number of neurons for the lth layer is n[l], the sum of weighted inputs to 
each layer and the corresponding output from each layer are represented as: 

Z l½ �
i ¼ ∑

n l½ �

i¼1
W l½ �

i a l� 1½ �

i þ b l½ � (10)  

a l½ �
i ¼ σ l½ �

i Z l½ �
i

� �
(11) 

for 1 ≤ i ≤ n[l] where

n[l]—is the number of neurons in the lth layer,

Z[l]—represents the sum of weighted inputs for the neurons in each of the layers,

a[l]—denotes the layers’ neurons activation,

a[0]—is the input layer of the network,

a[L]—is the predicted output from the network,

W[l] and b[l]—are the lth layer’s parameters and,
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σ[l]—represents the activation functions for each of the neurons, which may be ReLU as repre-
sented in Equation (6) (Saha, 2020; Savarese, 2020).

v) Softmax layer: This follows the FC layer output and contains a special kind of activation 
function. It performs multi-class classification and objects recognition by generating a discrete 
probability distribution across the neurons in the layer with each neuron representing a label (or 
class) in the dataset. The probability distribution of softmax activation for a neuron to generate an 
output y = j given the test dataset X is represented as: 

P y ¼ jjXð Þ ¼
eXTWj

∑K
k¼1 eXTWk

(12) 

Some state-of-the-art techniques used in CNN to prevent overfitting and enhance generalization 
include dropout, batch normalization and gradient clipping among others (Goodfellow et al., 2016; 
Savarese, 2020).

3.4. Identification of the Coronavirus Z-Curve “RGB” images using deep CNN

Definition 1: Unique identification of the Z-Curve “RGB” images of each of the coronavirus strains is 
a supervised learning problem (LeCun et al., 2015). In supervised learning, the training dataset is 
{(xj,cj)} with j ε {1, . . .,N}, where each xj is a training sample, N is the total number of samples in the 
dataset, and the corresponding set of class labels is cj ε {1, . . .,m}, where m is the number of classes 
in the dataset. Therefore, the supervised learning task involves the development of a model with 
the set of N samples as inputs. The developed model is used to predict the class label during 
training (or unknown samples during testing) as the outputs. In this study, xj represents the 
Z-Curve “RGB” images obtained from curated samples of each of the three strains (or extracted 
features from the images), N = 300 and m = 3 classes (i.e. MERS, SARS-CoV, and SARS-CoV-2).

Definition 2: For image classification with deep CNN, cross-entropy is often engaged during 
supervised training to evaluate the difference between the expected and actual predictions 
(Savarese, 2020). Given the predictions ŷ, on all examples m, and a target output y, the cross- 
entropy loss J, is represented as: 

J ¼ � ∑
m

i¼0
yilog y_i

� �

3.5. Development of machine learning models
In order to build a supervised learning model using the Z-Curve images generated in this study, we 
carried out two experiments based on two different deep learning approaches and a third experiment 
using shallow machine learning approach. In the first experiment, we created our own 15-layer CNN 
architecture to explore the potency of a natively designed deep learning model based on our experi-
mental exploration of an optimal architecture for the problem at hand. The description of the different 
layers of the architecture for our designed CNN model is detailed in Table 2. The 15-layer architecture 
has input layer of dimension 227 × 227 × 3 with zero center normalization. There are three convolutional 
layers, three batch normalization layers, three Rectified Linear Unit (ReLU) layers, two max-pooling 
layers, one Fully connected (FC) layer of three neurons, one softmax layer, and one classification layer.

In the second experiment, we explored Transfer Learning (TL) by adopting AlexNet as the pre- 
trained CNN model. Notably, AlexNet was trained by Krizhevsky et al. (Krizhevsky et al., 2017) with 
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a million images having 1,000 different object classes, thereby possessing rich feature representa-
tions for a wide range of image classes.

All our datasets were resized to 227 × 227 × 3, which is the dimension of the AlexNet image 
input layer (this is the first procedure for using any pre-trained CNN model in TL). Afterward, we 
transferred all the architectural parameters and weights from the second layer (the first convolu-
tion layer) to the 22nd layer (a dropout layer). Since the last three layers of AlexNet were 
configured for 1,000 classes, we replaced these layers with a fully connected layer. This includes 
three neurons (for the three classes in this study), a softmax layer, and a classification output 

Table 2. Parameters of the architecture for the 15-layer CNN model in experiment 1
Layer Number Name of Layer Description of Layer 

Type
Activations

1 ImageInput Image input layer of 
227 × 227 × 3 images 
with “zerocenter” 
normalization

227 × 227 × 3

2 conv1 Convolution layer of 8 
3 × 3 × 3 convolutions 
with stride [1 1] and 
padding “same”

227 × 227 × 8

3 batchnorm1 Batch normalization layer 
with 8 channels

227 × 227 × 8

4 relu1 Rectified Linear Unit 
(ReLU) layer

227 × 227 × 8

5 maxpool1 2 × 2 max pooling layer 
with stride [2 2] and 
padding [0 0 0]

113 × 113 × 8

6 conv2 Convolution layer of 16 
3 × 3 × 8 convolutions 
with stride [1 1] and 
padding “same”

113 × 113 × 16

7 batchnorm2 Batch normalization layer 
with 16 channels

113 × 113 × 16

8 relu2 ReLU layer 113 × 113 × 16

9 maxpool2 2 × 2 max pooling layer 
with stride [2 2] and 
padding [0 0 0].

56 × 56 × 16

10 conv3 Convolution layer of 32 
3 × 3 × 16 convolutions 
with stride [1 1] and 
padding “same”

56 × 56 × 32

11 batchnorm3 Batch normalization layer 
32 channels

56 × 56 × 32

12 relu3 ReLU layer 56 × 56 × 32

13 FC Fully Connected (FC) layer 
with 3 neurons

1 × 1 × 3

14 softmax Softmax layer 1 × 1 × 3

15 classoutput Classification layer of 
cross entropy with MERS, 
SARS-CoV and SARS-CoV 
-2 as class labels
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layer. The configuration summary of the 25 different layers of our TL-CNN model (based on 
AlexNet) in the second experiment is presented in Table 3.

The CNN models in the first and second experiments were both trained with a Stochastic Gradient 
Descent with Momentum (SGDM) optimizer having a learning rate of 0.0001 and a mini-batch size of 10.

Table 3. Parameters of the architecture for the AlexNet-based CNN model in experiment 2
Layer Number Name of Layer Description of Layer Type Activations
1 ImageInput Image input layer of 227 × 227 × 3 images 

with “zerocenter” normalization
227 × 227 × 3

2 conv1 Convolution layer with 96 11 × 11 × 3 
convolutions with stride [4 4] and padding 
[0 0 0 0]

55 × 55 × 96

3 relu1 ReLU layer 55 × 55 × 96

4 norm1 Cross channel normalization layer with 5 
channels per element

55 × 55 × 96

5 pool1 Max pooling layer with 3 × 3 max pool, 
stride [2 2] and padding [0 0 0 0]

27 × 27 × 96

6 conv2 Convolution layer with 2 groups of 128 
5 × 5 × 48 convolutions with stride [1 1] and 
padding [2 2 2 2]

27 × 27 × 256

7 relu2 ReLU layer 27 × 27 × 256

8 norm2 Cross channel normalization layer with 5 
channels per element

27 × 27 × 256

9 pool2 3 × 3 max pooling layer with stride [2 2] and 
padding [0 0 0 0]

13 × 13 × 256

10 conv3 Convolution layer of 384 3 × 3 × 256 
convolutions with stride [1 1] and padding 
[1 1 1 1]

13 × 13 × 384

11 relu3 ReLU layer 13 × 13 × 384

12 conv4 Convolution layer with 2 groups of 192 
3 × 3 × 192 convolutions with stride [1 1] 
and padding [1 1 1 1]

13 × 13 × 384

13 relu4 ReLU layer 13 × 13 × 384

14 conv5 Convolution layer with 2 groups of 128 
3 × 3 × 192 convolutions with stride [1 1] 
and padding [1 1 1 1]

13 × 13 × 256

15 relu5 ReLU layer 13 × 13 × 256

16 pool5 3 × 3 max pooling layer with stride [2 2] and 
padding [0 0 0 0]

6 × 6 × 256

17 fc6 4096 FC layer 1 × 1 × 4096

18 relu6 ReLU layer 1 × 1 × 4096

19 drop6 50% Dropout layer 1 × 1 × 4096

20 fc7 4096 FC layer 1 × 1 × 4096

21 relu7 ReLU layer 1 × 1 × 4096

22 drop7 50% Dropout layer 1 × 1 × 4096

23 fc 3 FC layer 1 × 1 × 3

24 softmax Softmax layer 1 × 1 × 3

25 classoutput Classification layer having cross entropy 
with MERS-CoV, SARS-CoV and SARS-CoV-2 
as the class labels
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Furthermore, we conducted a third experiment with the aim of comparing the deep architec-
tures in the first and second experiments with the classical shallow machine learning approach. 
This involves the use of Histogram of Oriented Gradient (HOG) as a handcrafted descriptor to 
extract discriminative features from the Z-Curve images in each of the three classes and Multilayer 
Perceptron (MLP) as the classifier (Adetiba et al., 2015).

HOG is a texture, shape, and appearance descriptor with good invariance to illumination. Earlier 
works have shown that HOG outperforms the Local Binary Pattern (LBP) descriptor for the extrac-
tion of handcrafted features from genomic images (Adetiba et al., 2015; Adetiba & Olugbara, 2015; 
Dalal & Triggs, 2005). To implement the HOG for this study, we utilized a 3 × 3 block of cells and 9 
bins, which culminated in a feature vector of 81 elements from each of the images following the 
approach (Dalal & Triggs, 2005).

Multilayer Perceptron (MLP) neural network is a shallow machine learning method that is com-
monly used by researchers to solve pattern classification and function approximation problems 
(Zhang, 2000). MLP normally comprises of at least one input layer, one or more hidden layers and 
an output layer. MLP network with one hidden layer can approximate any continuous functions, while 
more hidden layers can lead to poor performance due to the vanishing gradient effect in few local 
minimal (Che et al., 2011; Popescu et al., 2009). Thus, we configured one input, hidden, and output 
layer respectively for the MLP. The input layer contains 81 neurons based on the number of elements 
in each HOG feature vector. The output layer contains three neurons since there are three classes in 
the dataset while we experimented with varying numbers of neurons in the hidden layer from 10 to 
100 in step of 10.

Other configuration details of the MLP model are presented in Table 4.

The datasets for the three experiments were partitioned into 80% for training and 20% for 
validation. The code for the Z-Curve color image transformation was implemented in MATLAB 
R2020a; we utilized its Deep Learning toolbox for the deep learning experiments while the Neural 
Network toolbox was used for the third experiment. Our development system is an HP ML110 G7 
server with four core Intel Xeon processor. The results of these experiments are presented in 
Section 4.

4. Results and discussions
The Z-Curve color images as well as the power spectrum plots for MERS-CoV, SARS-CoV, and SARS- 
CoV-2 are shown in Figures 3 and 4. Through visual inspection of Figure 3, it is evident that the 
texture of the Z-Curve images of the Coronavirus strains is fine-grained and highly similar. Apart 
from the textural similarity, the color distributions and rendering of the images are so similar that 
it is difficult to differentiate the strains by mere qualitative visual inspection. However, we carried 
out a quantitative analysis of each of these images based on contrast and homogeneity measures. 

Table 4. Configurations of the mlp neural network
Quantities Configuration
Activation functions Input layer = linearHidden layer = tansigOutput 

layer = tansig

Training algorithm Levenberg-Marquardt (LM)

Performance metrics Accuracy, Mean Square Error (MSE)

Target outputs MERS-CoV = 0 0 1 SARS-CoV = 0 1 0 SARS-CoV2 = 1 0 0
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These measures are both second-order Haralick statistical values used for quantification and/or 
differentiating the textural features of images (Adetiba et al., 2015; Gebejes & Huertas, 2013). 
Images with heavy texture usually have high contrast with low homogeneity values, while the 
reverse is the case for images with soft texture. The low contrast values obtained for all the strains 
as shown in Table 5 confirm the soft texture of the images. Nonetheless, SARS-CoV-2 posted the 
highest contrast value (4.6626), followed by SARS-CoV (4.6599) while MERS-CoV has the least value 
(4.5888). The corresponding homogeneity values are also shown in the Table. In codicil, we 
computed the Euclidean distance matrices among the three strains based on the contrast and 
homogeneity values as shown in Tables 6 and 7. This is to quantitatively ascertain the extent of 
similarity of the Z-Curve image textures. The values we obtained show that the textural character-
istics of the three Z-Curve images are very close with borderline distinctiveness. In terms of the 
contrast values in Table 6, SARS-CoV-2 is closer to SARS-CoV with a distance of 0.0027 than to 
MERS-CoV with a distance of 0.0738. In the same vein, the homogeneity distance presented in 
Table 7 indicates that SARS-CoV-2 and SARS-CoV are closer with a distance of 0.0006, while the 
distance of SARS-CoV-2 to MERS-CoV is 0.0029.

Notably, the shapes of the power spectra of the three strains are highly similar in terms of 
spectral details and sharp peaks as shown in Figure 4(a–c). Both MERS-CoV and SARS-CoV have four 
sharp peaks at similar nucleotide positions. In addition, SARS-CoV-2 has three sharp peaks at 
locations similar to where MERS-CoV and SARS-CoV have the first three sharp peaks, which suggest 
similar protein-coding locations for the three strains. However, the absence of a fourth sharp peak 
minimally differentiates the power spectrum of SARS-CoV-2 from the other two.

We further carried out analysis of variance (ANOVA) to test the null hypothesis that the Z-Curve 
images of MERS-CoV, SARS-CoV and SARS-CoV2 have the same contrast and homogeneity values. 
At 95% Confidence Interval (CI), p = 1.38e-08 for contrast and p = 3.85e-09 for homogeneity 
indicate that the textural features of the Z-Curve images of the three strains are not the same 
despite the similar visual rendering (Figure 3).

Figure 5 presents accuracy and loss functions with respect to the epoch for the first experiment. 
The training was completed after 10 epochs with 10 iterations, a training time of 76 seconds, 
a validation accuracy of 91.67% and a validation loss of 0.2397. The computational strength of the 
server on which the experiments were performed as well as the number of classes in the dataset 
provided a basis for the high processing speed obtained for this and other experiments.

The validation accuracy and loss represent the generalization ability of the CNN model in our first 
experiment since they were obtained with the testing dataset. The confusion matrix in Figure 6 
provides details of the overall accuracy and the accuracy of each of the classes. Note that MERS-

Figure 3. Sample Z-Curve color 
images for the three 
Coronavirus strains.

Adetiba et al., Cogent Engineering (2022), 9: 2017580                                                                                                                                                    
https://doi.org/10.1080/23311916.2021.2017580                                                                                                                                                       

Page 15 of 26



Figure 4. Power spectrum plot 
for—a) MERS-CoV strain b) 
SARS-CoV strain and c) SARS- 
CoV-2 strain.
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CoV is labeled as MERS and SARS-CoV is labeled as SARS-CoV1 in the confusion matrix for 
programming convenience. Figure 6 shows that one MERS-CoV instance was wrongly classified 

Figure 4. Continued.

Table 5. Contrast and homogeneity values of the Z-Curve images
Strain Contrast Homogeneity
MERS-CoV 4.5888 0.4985

SARS-CoV 4.6599 0.4950

SARS-COV-2 4.6626 0.4956

Table 6. Z-Curve images’s contrast distance matrix
MERS-CoV SARS-CoV SARS-CoV-2

MERS-CoV 0 0.0711 0.0738

SARS-CoV 0.0711 0 0.0027

SARS-COV-2 0.0738 0.0027 0

Table 7. Z-Curve images’ homogeneity distance matrix
MERS-CoV SARS-CoV SARS-CoV-2

MERS-CoV 0 0.0035 0.0029

SARS-CoV 0.0035 0 0.0006

SARS-COV-2 0.0029 0.0006 0
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Figure 5. Training outcome of 
the CNN model in the first 
experiment.

Figure 6. Confusion matrix for 
the first experiment.
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as SARS-CoV-2, three SARS-CoV instances were wrongly classified as SARS-CoV-2, while one SARS- 
CoV-2 was wrongly classified as SARS-CoV.

Figure 7 shows the accuracy and loss plots for the TL-CNN model (based on AlexNet) of 25-layers 
in our second experiment. The model posted a validation accuracy of 98.33% and a loss of 0.0222 
after 10 epochs with 240 iterations. The model’s confusion matrix in Figure 8, which provides 
details of the overall classification accuracy and the accuracy for each of the classes shows that 
only one instance of MERS-CoV was misclassified as SARS-CoV. This result strongly attests to the 
stronger generalization ability of a pre-trained model used for a new task in a similar domain (i.e. 
transfer learning). Furthermore, we explored the basis for this high accuracy and low loss by 
unearthing the feature visualization of the fully connected layer (i.e. layer 23) of the second model.

The images that formed the basis for the classification outputs of the second model are shown 
in Figure 9. By visual inspection, it is clear that the Z-Curve images for MERS-CoV, SARS-CoV, and 
SARS-CoV2, respectively, have distinct texture vis-a-vis color features after the transformation by 
the TL-CNN model. This result is a confirmation that the higher layers of a deep learning model 
(especially using TL approach) amplify aspects of the input image that are critical for discrimina-
tion (LeCun et al., 2015).

The validation accuracies and MSEs for the third experiment are presented using the bar charts in 
Figure 10. The model with 20 neurons in the hidden layer posted the highest accuracy of 96.90% with 
MSE of 0.0157. From 50 hidden layer neurons (with an accuracy of 96.45% and MSE of 0.0154), the 
performance of the model degraded gradually until the lowest accuracy of 87.95% (with MSE of 
0.0482) was obtained at 100 neurons in the hidden layer. This result implies that the MLP model 

Figure 7. Training outcome of 
the TL-CNN model in the second 
experiment.
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overfits the training features when the number of neurons in the hidden layer becomes high. The 
overfitting became appreciable from 80 neurons (with an accuracy of 90.60% and MSE of 0.0358) 
until the least performance was obtained at 100 neurons. This indicates that for shallow machine 
learning models, too many neurons in one hidden layer may lead to lack of generalization depending 
on the underlying characteristics of the dataset. This corroborates an earlier assertion that more 
hidden layers can lead to poor performance (Popescu et al., 2009).

Furthermore, we carried out “deployment” testing in which we curated 10 new samples for each of the 
classes (MERS-CoV, SARS-CoV, and SARS-CoV2), culminating in a total of 30 samples. These samples 
were not part of the training/validation samples utilized for building the models. This is to investigate 

Figure 8. Confusion matrix for 
the second experiment (TL-CNN 
model).

Figure 9. Features visualization 
of the last fully connected layer 
for the second experiment (TL- 
CNN model).

Adetiba et al., Cogent Engineering (2022), 9: 2017580                                                                                                                                                    
https://doi.org/10.1080/23311916.2021.2017580

Page 20 of 26



how well the three different models generalize to samples that are not in the training and validation 
dataset. This also simulates a production scenario in which the model is deployed either in the cloud or 
on edge devices for real-time analysis of genomic sequences. Table 8 shows the results obtained. The 
CNN model of 15-layer that we designed from the scratch in the first experiment could identify 15 (50%) 
samples correctly (i.e. 1 MERS-CoV, 9 SARS-CoV, and 5 SARS-CoV2). The TL-CNN model in the second 
experiment identified 27 (90%) samples correctly (i.e. 7 MERS-CoV, 10 SARS-CoV, and 10 SARS-CoV2). 
While the shallow MLP model identified only 10 (33.33%) samples correctly (i.e. 10 MERS-CoV, 0 SARS- 
CoV, and 0 SARS-CoV2).

Figure 10. Plots of the accuracy 
and MSE of the MLP model in 
the third experiment.

Table 8. “Deployment” testing results

Number of correctly identified/predicted sequences

CNN (15-Layer) TL-CNN (Using AlexNet) MLP-ANN
MERS-CoV 1 7 10

SARS-CoV 9 10 0

SARS-COV-2 5 10 0

TOTAL/30 15 27 10

% of correctly identified seq. 50% 90% 33.33%
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The ANOVA carried out on the “deployment” result shows that the prediction accuracies of the 
three models are statistically different (p = 1.04e-05). A multi-comparison analysis at 95% CI 
indicates that the prediction accuracies of the 15-layer CNN (first experiment) and TL-CNN (second 
experiment) are significantly different (p = 0.002) with a 95% CI of [−0.6711,-0.1289]. Similarly, the 
difference between the prediction accuracies of the TL-CNN (second experiment) and MLP (third 
experiment) is statistically significant (p = 0.0000) with 95% CI of [0.2956, 0.8378]. However, the 
difference between the prediction accuracies of the 15-layer CNN (first experiment) and MLP (third 
experiment) is not significant (p = 0.3122) with 95% CI of [−0.1044, 0.4378].

The foregoing statistical analysis further attests to the superior performance of the TL-CNN 
model over the other two models. Thus, the TL-CNN model (tagged DeepCOVID-19 identification 
model in this paper) is deemed appropriate for the unique identification of SARS-CoV-2 genomic 
sequences and its explicit differentiation from the highly similar MERS-CoV and SARS-CoV genomic 
sequences. This model with associated codes and files are available on our Github at (https:// 
github.com/aspmirlab/DeepCOVID-19.git) for interested researchers to download and explore.

Overall, the observed similarity in SARS-CoV-2 and SARS-CoV displayed in the Z-Curve images in 
Figure 3, corroborated the assertion of similarities in both Coronaviruses after phylogenetic analysis of 
full-length genome sequences by Wang et al. (Wang et al., 2020). This is further validated by our 
observation of a closer homogeneity distance of 0.0006 between these two viruses as contained in 
Table 7. This similarity in SARS-CoV-2 and SARS-CoV might also be responsible for the reported genetic 
clusters among the two members of Betacoronaviruses (World Health Organization (WHO), 2020c; 
World Health Organization (WHO), 2020d). The similarity displayed in the Z-Curve images of MERS- 
CoV with SARS-CoV and SARS-CoV-2 in our study (Figure 3) can as well be attributed to the same 
genetic clusters of SARS-CoV-2 to other related members of Betacoronaviruses (World Health 
Organization (WHO), 2020c; World Health Organization (WHO), 2020d). However, our second experi-
ment in this study, which produced the TL-CNN model, has shown that deep learning, which is a state- 
of-the-art Artificial Intelligence (AI) method with the GSP-based Z-Curve imaging can accurately 
differentiate the genomes of the three Coronavirus strains (MERS-CoV, SARS-CoV, and SARS-CoV-2) 
in spite of their very high similarity. This can be leveraged as a bioinformatics phase in a workflow for 
differentiation of the three Coronaviruses. In corroboration of our methodology in this study 
(although in another vital application area of bioinformatics), Morales et al. (Morales et al., 2020) 
recently carried out a study where images generated from Voss mapping and deep learning were 
utilized to build a model for classification of coding regions, long non-coding regions and pseudo-
genes with acceptable accuracy. Therefore, our model has proven very effective in differentiating 
SARS-CoV-2 from their closely related coronavirus strains based on the statistical analysis of our 
results and the model is thus recommended for further studies and applications.

5. Limitations of the study
An alignment-free-based model that depends on GSP and deep learning has been developed in this 
study. Besides the general limitations of memory for storing multigenome sequences and the compu-
tation requirements, which can be circumvented with the use of state-of-the art cloud platforms, the 
model is limited to the tested coronaviruses. This kind of limitation is not uncommon in bioinformatics 
domain, as every microorganism’s identification model needs frequent retraining or dataset updates to 
be applicable for more microbial diversities and the emergence of mutant or novel strains (Galperin 
et al., 2020). Nevertheless, more training and validation of the model would be done in our follow-up 
studies to accommodate additional respiratory viruses or even other pathogenic viruses.

MATLAB is one of the scripting environments that is actively used by researchers in GSP, machine 
learning and bioinformatics, aside from other programming tools like Python, R, Perl and C/C++ 
(Zielezinski et al., 2017). Thus, the computational methods that underlie our model were developed 
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as MATLAB scripts, which most computational researchers in the domain can comfortably use and 
extend. However, practitioners in bioinformatics may see this as a limitation. Therefore, in order to 
address this, software developers could supplement the model with either a web application or cloud 
pipeline for ease of access by practitioners.

6. Conclusion
In this article, the development of a DeepCOVID-19 identification pipeline has been presented. The 
model was developed based on GSP, deep learning and genomic datasets of Severe Acute 
Respiratory Syndrome CoV-2 (SARS-CoV-2), Severe Acute Respiratory Syndrome CoV (SARS-CoV), 
and Middle East Respiratory Syndrome CoV (MERS-CoV) with a validation accuracy of 98.33% 
obtained with the transfer learning-based approach in the second experiment. Based on this 
value of accuracy and the statistical comparison of our results, DeepCOVID-19 can successfully 
differentiate the genomes of the three Coronavirus strains despite their very high similarity. This 
provides an innovative pipeline for an alignment-free-based sequence analysis with GSP and deep 
learning, which is a vital contribution to the bioinformatics body of knowledge. This pipeline can be 
extended and/or adapted to other sequence analysis problems. Thus, our future studies will involve 
an exploration of the efficacy of the model for other critical bioinformatics tasks.

Acknowledgements
This work was carried out at the Advanced Signal Processing 
and Machine Intelligence Research (ASPMIR) group labora-
tory, IoT Enabled Smart and Connected Community Research 
Cluster, Covenant University. The High Performance 
Computing node of the Covenant Applied Informatics and 
Communication African Centre of Excellence (CApIC-ACE) 
FEDGEN Testbed was utilized for experimentations. The 
Covenant University Centre for Research, Innovation and 
Development (CUCRID), Covenant University, Ota, Nigeria 
provided full sponsorship for the publication of this work.

Funding
The authors received no direct funding for this research.

Author details
Emmanuel Adetiba123 

E-mail: emmanuel.adetiba@covenantuniversity.edu.ng 
Joshua A. Abolarinwa4 

E-mail: j.abolarinwa@futminna.edu.ng 
Anthony A. Adegoke5 

E-mail: aayodegoke@gmail.com 
Tunmike B. Taiwo6 

E-mail: tunmike.bukola@yahoo.com 
Oluwaseun T. Ajayi2 

E-mail: seunajayi.sa@gmail.com 
Abdultaofeek Abayomi7 

E-mail: abayomi.abdultaofeek@mut.ac.za 
Joy N. Adetiba8 

E-mail: joyadetiba@gmail.com 
Joke A. Badejo24 

E-mail: joke.badejo@covenantuniversity.edu.ng 
Zhongmin JinReviewing editor 
1 Department of Electrical and Information Engineering, 

College of Engineering, Covenant University, 
Canaanland, P.M.B 1023, Ota, Nigeria. 

2 HRA, Institute for Systems Science, Durban University of 
Technology, Durban 4000, South Africa. 

3 Covenant Applied Informatics and Commu`nication 
African Center of Excellence, Covenant University, 
Canaanland, P.M.B 1023, Ota, Nigeria. 

4 Department of Telecommunication Engineering, Federal 
University of Technology, Minna, Nigeria. 

5 Department of Microbiology, Faculty of Science, 
University of Uyo, P.M.B 1018, Uyo, Nigeria. 

6 Covenant Applied Informatics and Communication 
African Center of Excellence, Covenant University, 
Canaanland, P.M.B 1023, Ota, Nigeria. 

7 Department of Information and Communication 
Technology, Mangoshutu University of Technology, 
Jacobs, 4026 Durban, South Africa. 

8 Department of Nursing, Durban University of 
Technology, Durban 4000, South Africa. 

Disclosure statement
No potential conflict of interest was reported by the 
author(s).

Citation information 
Cite this article as: DeepCOVID-19: A model for identifica-
tion of COVID-19 virus sequences with genomic signal 
processing and deep learning, Emmanuel Adetiba, Joshua 
A. Abolarinwa, Anthony A. Adegoke, Tunmike B. Taiwo, 
Oluwaseun T. Ajayi, Abdultaofeek Abayomi, Joy N. Adetiba 
& Joke A. Badejo, Cogent Engineering (2022), 9: 2017580.

References
Abo-Zahhad, M., Ahmed, S. M., & Abd-Elrahman, S. A. 

(2012). Genomic analysis and classification of exon 
and intron sequences using DNA numerical mapping 
techniques. International Journal of Information 
Technology and Computer Science, 4(8), 22–36. 
https://doi.org/10.5815/ijitcs.2012.08.03

Adegoke, A. A., Adetiba, E., Babalola, D. T., Akanle, M. B., 
Thakur, S., Okoh, A. I., & Aiyegoro, O. A. (2019). 
Detection of pools of bacteria with public health 
importance in wastewater effluent from 
a municipality in south africa using next generation 
sequencing and metagenomics analysis. 
Bioinformatics and Biomedical Engineering Lecture 
Notes in Computer Science. 11466 , 136–146 
doi:10.1007/978-3-030-17935-9_13.

Adetiba, E., Badejo, J. A., Thakur, S., Matthews, V. O., 
Adebiyi, M. O., & Adebiyi, E. F. (2017). Experimental 
investigation of frequency chaos game representa-
tion for in silico and accurate classification of viral 
pathogens from genomic sequences. Bioinformatics 
and Biomedical Engineering Lecture Notes in 

Adetiba et al., Cogent Engineering (2022), 9: 2017580                                                                                                                                                    
https://doi.org/10.1080/23311916.2021.2017580                                                                                                                                                       

Page 23 of 26

https://doi.org/10.5815/ijitcs.2012.08.03
https://doi.org/10.1007/978-3-030-17935-9_13


Computer Science. 10208. 155–164 doi:10.1007/978- 
3-319-56148-6_13.

Adetiba, E., Olugbara, O. O., & Li, X. (2015). Improved 
classification of lung cancer using radial basis func-
tion neural network with affine transforms of voss 
representation. Plos One, 10(12), e0143542. https:// 
doi.org/10.1371/journal.pone.0143542

Adetiba, E., Olugbara, O. O., Taiwo, T. B., Adebiyi, M. O., 
Badejo, J. A., Akanle, M. B., & Matthews, V. O. (2018). 
Alignment-Free Z curve genomic cepstral coefficients 
and machine learning for classification of viruses. 
Bioinformatics and Biomedical Engineering Lecture 
Notes in Computer Science. 10813 , 290–301. https:// 
doi.org/10.1007/978-3-319-78723-7_25.

Adetiba, E., & Olugbara, O. O. (2015). Lung cancer pre-
diction using neural network ensemble with histo-
gram of oriented gradient genomic features. The 
Scientific World Journal, 2015, 117. https://doi.org/10. 
1155/2015/786013

Adetiba, E., & Olugbara, O. O. (2016). Classification of 
eukaryotic organisms through cepstral analysis of 
mitochondrial DNA. Lecture Notes in Computer 
Science Image and Signal Processing. 9680 , 243–252. 
https://doi.org/10.1007/978-3-319-33618-3_25.

Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. 
(2015). Predicting the sequence specificities of DNA- 
and RNA-binding proteins by deep learning. Nature 
Biotechnology, 33(8), 831–838. https://doi.org/10. 
1038/nbt.3300

Almeida, J. D., Berry, D. M., Cunningham, C. H., Hamre, D., 
Hofstad, M. S., Mallucci, L., Mcintosh, K., & 
Tyrrell, D. A. J. (1968). Virology: Coronaviruses. 
Nature, 220(650), https://doi.org/10.1038/220650b0 , 
650–650.

Banerjee, R., Weidman, M. K., Echeverri, A., Kundu, P., & 
Dasgupta, A. (2004). Regulation of poliovirus 3C pro-
tease by the 2C polypeptide. Journal of Virology, 78 
(17), 9243–9256. https://doi.org/10.1128/JVI.78.17. 
9243-9256.2004

Biswas, A., Bhattacharjee, U., Chakrabarti, A. K., 
Tewari, D. N., Banu, H., & Dutta, S. (2020). Emergence of 
novel coronavirus and COVID 19: Whether to stay or 
die out? Critical Reviews in Microbiology, 46(2), 182–193. 
https://doi.org/10.1080/1040841X.2020.1739001

Boheemen, S. V., Graaf, M. D., Lauber, C., Bestebroer, T. M., 
Raj, V. S., Zaki, A. M., Osterhaus, A. D. M. E., 
Haagmans, B. L., Gorbalenya, A. E., Snijder, E. J., & 
Fouchier, R. A. M. (2012). Genomic characterization of 
a newly discovered coronavirus associated with acute 
respiratory distress syndrome in humans. mBio, 3(6), 
doi:10.1128/mBio.00473-12.

Borrayo, E., Mendizabal-Ruiz, E. G., Vélez-Pérez, H., Romo 
Vázquez, R., Mendizabal, A. P., Morales, J. A., & 
Bajic, V. B. (2014). Genomic signal processing meth-
ods for computation of alignment-free distances 
from DNA sequences. PLoS ONE, 9(11), e110954. 
https://doi.org/10.1371/journal.pone.0110954

Brian, D. A., & Baric, R. S. (2005). Coronavirus genome 
structure and replication. Current Topics in 
Microbiology and Immunology Coronavirus 
Replication and Reverse Genetics. 287 , 1–30 
doi:10.1007/3-540-26765-4_1.

Brownlee, J. (2020). A Gentle Introduction to Pooling 
Layers for Convolutional Neural Networks. Retrieved 
August 20, 2020, from https://machinelearningmas 
tery.com/pooling-layers-for-convolutional-neural- 
networks/

Chan, J. F.-W., To, K. K.-W., Tse, H., Jin, D.-Y., & Yuen, K.-Y. 
(2013). Interspecies transmission and emergence of 
novel viruses: Lessons from bats and birds. Trends in 
Microbiology, 21(10), 544–555. https://doi.org/10.1016/ 
j.tim.2013.05.005

Chan, J. F.-W., Yuan, S., Kok, K.-H., To, K. K.-W., Chu, H., 
Yang, J., Xing, F., Liu, J., Yip, C. C.-Y., Poon, R. W.-S., 
Tsoi, H.-W., Lo, S. K.-F., Chan, K.-H., Poon, V. K.-M., 
Chan, W.-M., Ip, J. D., Cai, J.-P., Cheng, V.-C.-C., 
Chen, H., Hui, C. K.-M., & Yuen, K.-Y. (2020). A familial 
cluster of pneumonia associated with the 2019 novel 
coronavirus indicating person-to-person transmis-
sion: A study of a family cluster. The Lancet, 395 
(10223), 514–523. https://doi.org/10.1016/S0140- 
6736(20)30154-9

Che, Z.-G., Chiang, T.-A., & Che, Z.-H. (2011). Feed-forward 
neural networks training: A comparison between 
genetic algorithm and back-propagation learning 
algorithm. International Journal of Innovative 
Computing, Information and Control, 7(10), 5839– 
5850, http://www.ijicic.org/10-03015-1.pdf.

Chen, Y., Liu, O., & Guo, D. (2020). Emerging corona-
viruses: Genome structure, replication, and 
pathogenesis. Journal of Medical Virology, 92(4), 
418–423. https://doi.org/10.1002/jmv.25681

Cheng, V. C. C., Lau, S. K. P., Woo, P. C. Y., & Yuen, K. Y. 
(2007). Severe acute respiratory syndrome corona-
virus as an agent of emerging and reemerging 
infection. Clinical Microbiology Reviews, 20(4), 
660–694. https://doi.org/10.1128/CMR.00023-07

Dalal, N., & Triggs, B. (2005). Histograms of oriented gra-
dients for human detection. In 2005 IEEE computer 
society conference on computer vision and pattern 
recognition (CVPR’05), 1. San Diego, CA, USA, 886–893 
doi:10.1109/CVPR.2005.177.

Dimitrova, N., Cheung, Y. H., & Zhang, M. (2006). Analysis 
and visualization of DNA spectrograms: open possi-
bilities for the genome research. In Proceedings of 
the 14th annual ACM international conference on 
Multimedia. Santa Barbara CA USA, pp. 1017–1024. 
https://doi.org/10.1145/1180639.1180861.

Galperin, M. Y., Wolf, Y. I., Makarova, K. S., Alvarez, R. V., 
Landsman, D., & Koonin, E. V. (2020). COG database 
update: Focus on microbial diversity, model organisms, 
and widespread pathogens. Nucleic Acids Research, 49 
(D1) . https://doi.org/10.1093/nar/gkaa1018

Gebejes, A., & Huertas, R. (2013). Texture characterization 
based on grey-level co-occurrence matrix. In 
Proceedings of the Conference of Informatics And 
Management Sciences, ICTIC. Yogyakarta, Indonesia, 
pp. 375–378.

Gennaro, F. D., Pizzol, D., Marotta, C., Antunes, M., 
Racalbuto, V., Veronese, N., & Smith, L. (2020). 
Coronavirus diseases (COVID-19) current status and 
future perspectives: A narrative review. International 
Journal of Environmental Research and Public Health, 
17(8), 2690. https://doi.org/10.3390/ijerph17082690

Goodfellow, I., Bengio, Y., Courville, A., & Bengi, Y. (2016). 
Deep learning (Vol. 1). MIT press.

Guo, Q., Li, M., Wang, C., Wang, P., Fang, Z., Tan, J., Wu, S., 
Xiao, Y., & Zhu, H. (2020). Host and infectivity pre-
diction of Wuhan 2019 novel coronavirus using deep 
learning algorithm. BioRxiv. https://doi.org/10.1101/ 
2020.01.21.914044.

Haan, C. A. M. D., Kuo, L., Masters, P. S., Vennema, H., & 
Rottier, P. J. M. (1998). Coronavirus particle assembly: 
Primary structure requirements of the membrane 

Adetiba et al., Cogent Engineering (2022), 9: 2017580                                                                                                                                                    
https://doi.org/10.1080/23311916.2021.2017580

Page 24 of 26

https://doi.org/10.1007/978-3-319-56148-6_13
https://doi.org/10.1007/978-3-319-56148-6_13
https://doi.org/10.1371/journal.pone.0143542
https://doi.org/10.1371/journal.pone.0143542
https://doi.org/10.1007/978-3-319-78723-7_25
https://doi.org/10.1007/978-3-319-78723-7_25
https://doi.org/10.1155/2015/786013
https://doi.org/10.1155/2015/786013
https://doi.org/10.1007/978-3-319-33618-3_25
https://doi.org/10.1038/nbt.3300
https://doi.org/10.1038/nbt.3300
https://doi.org/10.1038/220650b0
https://doi.org/10.1128/JVI.78.17.9243-9256.2004
https://doi.org/10.1128/JVI.78.17.9243-9256.2004
https://doi.org/10.1080/1040841X.2020.1739001
https://doi.org/10.1128/mBio.00473-12
https://doi.org/10.1371/journal.pone.0110954
https://doi.org/10.1007/3-540-26765-4_1
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://doi.org/10.1016/j.tim.2013.05.005
https://doi.org/10.1016/j.tim.2013.05.005
https://doi.org/10.1016/S0140-6736(20)30154-9
https://doi.org/10.1016/S0140-6736(20)30154-9
http://www.ijicic.org/10-03015-1.pdf
https://doi.org/10.1002/jmv.25681
https://doi.org/10.1128/CMR.00023-07
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1145/1180639.1180861
https://doi.org/10.1093/nar/gkaa1018
https://doi.org/10.3390/ijerph17082690
https://doi.org/10.1101/2020.01.21.914044
https://doi.org/10.1101/2020.01.21.914044


protein. Journal of Virology, 72(8), 6838–6850. 
https://doi.org/10.1128/JVI.72.8.6838-6850.1998

Huang, Y., Yang, Z.-Y., Kong, W.-P., & Nabel, G. J. (2004). 
Generation of synthetic severe acute respiratory 
syndrome coronavirus pseudoparticles: Implications 
for assembly and vaccine production. Journal of 
Virology, 78(22), 12557–12565. https://doi.org/10. 
1128/JVI.78.22.12557-12565.2004

Kantorovitz, M. R., Robinson, G. E., & Sinha, S. (2007). 
A statistical method for alignment-free comparison 
of regulatory sequences. Bioinformatics, 23(13), i249– 
i255. https://doi.org/10.1093/bioinformatics/btm211

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). 
ImageNet classification with deep convolutional 
neural networks. Communications of the  
jACM, 60(6), 84–90. https://doi.org/10.1145/ 
3065386

Kwan, H. K., & Arniker, S. B. (2009). Numerical represen-
tation of DNA sequences. In 2009 IEEE International 
Conference on Electro/Information Technology. ON, 
Canada, pp. 307–310 doi:10.1109/EIT.2009.5189632.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. 
Nature, 521(7553), 436–444. https://doi.org/10.1038/ 
nature14539

Li, Y., Tian, K., Yin, C., He, R. L., & Yau, S. S.-T. (2016). Virus 
classification in 60-dimensional protein space. 
Molecular Phylogenetics and Evolution, 99, 53–62. 
https://doi.org/10.1016/j.ympev.2016.03.009

Masters, P. S. (2006). The molecular biology of 
coronaviruses. Advances in Virus Research, 48, 193– 
292 doi:10.1016/S0065-3527(06)66005-3.

Mendizabal-Ruiz, G., Román-Godínez, I., Torres-Ramos, S., 
Salido-Ruiz, R. A., Morales, J. A., & Ouzounis, C. A. 
(2017). On DNA numerical representations for geno-
mic similarity computation. Plos One, 12(3), 
e0173288. https://doi.org/10.1371/journal.pone. 
0173288

Morales, J. A., Saldaña, R., Santana-Castolo, M. H., Torres 
Cerna, C. E., Borrayo, E., Mendizabal-Ruiz, A. P., Vélez- 
Pérez, H. A., & Mendizabal Ruiz, G. (2020). Deep 
learning for the classification of genomic signals. 
Mathematical Problems in Engineering, 2020, 1–9. 
https://doi.org/10.1155/2020/7698590

Mousavizadeh, L., & Ghasemi, S. (2020). Genotype and 
phenotype of COVID-19: Their roles in pathogenesis. 
Journal of Microbiology, Immunology and Infection 24 
(2) doi:10.1016/j.jmii.2020.03.022 .

Pan, X., Rijnbeek, P., Yan, J., & Shen, H.-B. (2018). 
Prediction of RNA protein sequence and structure 
binding preferences using deep convolutional and 
recurrent neural networks. BMC Genomics, 19(1). 1– 
11. https://doi.org/10.1186/s12864-018-4889-1

Perlman, S. (2020). Another decade, another coronavirus. 
New England Journal of Medicine, 382(8), 760–762. 
https://doi.org/10.1056/NEJMe2001126

Pickett, B. E., Sadat, E. L., Zhang, Y., Noronha, J. M., 
Squires, R. B., Hunt, V., Liu, M., Kumar, S., Zaremba, S., 
Gu, Z., Zhou, L., Larson, C. N., Dietrich, J., Klem, E. B., & 
Scheuermann, R. H. (2011). ViPR: An open bioinfor-
matics database and analysis resource for virology 
research. Nucleic Acids Research, 40 .D593–D598. 
doi:10.1093/nar/gkr859.

Popescu, M. C., Balas, V. E., Perescu-Popescu, L., & 
Mastorakis, N. (2009). Multilayer perceptron and 
neural networks. WSEAS Transactions on Circuits and 
Systems, 8(7), 579–588. https://dl.acm.org/doi/10. 
5555/1639537.1639542.

Quang, D., & Xie, X. (2016). DanQ: A hybrid convolutional 
and recurrent deep neural network for quantifying 
the function of DNA sequences. Nucleic Acids 
Research, 44(11), e107. https://doi.org/10.1093/nar/ 
gkw226

Randhawa, G. S., Hill, K. A., Kari, L., & Hancock, J. (2019). 
MLDSP-GUI: An alignment-free standalone tool with 
an interactive graphical user interface for DNA 
sequence comparison and analysis. Bioinformatics, 
36(7), 2258–2259. https://doi.org/10.1093/bioinfor 
matics/btz918

Randhawa, G. S., Hill, K. A., & Kari, L. (2019). ML-DSP: 
Machine learning with digital signal processing for 
ultrafast, accurate, and scalable genome classifica-
tion at all taxonomic levels. BMC Genomics, 20(1), 
267. https://doi.org/10.1186/s12864-019-5571-y

Randhawa, G. S., Soltysiak, M. P. M., Roz, H. E., 
Souza, C. P. E. D., Hill, K. A., Kari, L., & Schildgen, O. 
(2020). Machine learning using intrinsic genomic 
signatures for rapid classification of novel pathogens: 
COVID-19 case study. Plos One, 15(4), e0232391. 
https://doi.org/10.1371/journal.pone.0232391

Robertson, D. L. (2000). HIV-1 nomenclature proposal. 
Science, 288(5463), 55–55. https://doi.org/10.1126/ 
science.288.5463.55d

Saha, S. (2020). A Comprehensive Guide to Convolutional 
Neural Networks — The ELI5 way. Retrieved August 
20, 2020, from https://towardsdatascience.com/ 
a-comprehensive-guide-to-convolutional-neural- 
networks-the-eli5-way-3bd2b1164a53

Santo, E., & Dimitrova, N. (2007). Improvement of spectral 
analysis as a genomic analysis tool. In 2007 IEEE 
International Workshop on Genomic Signal Processing 
and Statistics. Tuusula, Finland, pp. 1–4.

Savarese, S. (2020). Introduction to Convolutional Neural 
Network. Retrieved August, 2020, from https://web. 
stanford.edu/class/cs231a/lectures/intro_cnn.pdf

Shafkat, I. (2020). Intuitively Understanding Convolutions 
for Deep Learning. Retrieved August 20, 2020, from 
https://towardsdatascience.com/intuitively- 
understanding-convolutions-for-deep-learning 
-1f6f42faee1

Shen, Z., Bao, W., & Huang, D.-S. (2018). Recurrent neural 
network for predicting transcription factor binding 
sites. Scientific Reports, 8(1), 1–10. https://doi.org/10. 
1038/s41598-018-33321-1

Solis-Reyes, S., Avino, M., Poon, A., Kari, L., & Tee, K. K. 
(2018). An open-source k-mer based machine learn-
ing tool for fast and accurate subtyping of HIV-1 
genomes. Plos One, 13(11), e0206409. https://doi. 
org/10.1371/journal.pone.0206409

Trabelsi, A., Chaabane, M., & Ben-Hur, A. (2019). 
Comprehensive evaluation of deep learning archi-
tectures for prediction of DNA/RNA sequence binding 
specificities. Bioinformatics, 35(14), i269–i277. 
https://doi.org/10.1093/bioinformatics/btz339

Wang, C., Horby, P. W., Hayden, F. G., & Gao, G. F. (2020). 
A novel coronavirus outbreak of global health 
concern. The Lancet, 395(10223), 470–473. https:// 
doi.org/10.1016/S0140-6736(20)30185-9

Woo, P. C. Y., Huang, Y., Lau, S. K. P., & Yuen, K.-Y. (2010). 
Coronavirus genomics and bioinformatics analysis. 
Viruses, 2(8), 1804–1820. https://doi.org/10.3390/ 
v2081803

World Health Organization (WHO). (2020a). WHO 
Coronavirus Disease (COVID-19) Dashboard. Retrieved 
August 20, 2020, from https://covid19.who.int/

Adetiba et al., Cogent Engineering (2022), 9: 2017580                                                                                                                                                    
https://doi.org/10.1080/23311916.2021.2017580                                                                                                                                                       

Page 25 of 26

https://doi.org/10.1128/JVI.72.8.6838-6850.1998
https://doi.org/10.1128/JVI.78.22.12557-12565.2004
https://doi.org/10.1128/JVI.78.22.12557-12565.2004
https://doi.org/10.1093/bioinformatics/btm211
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1109/EIT.2009.5189632
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.ympev.2016.03.009
https://doi.org/10.1016/S0065-3527(06)66005-3
https://doi.org/10.1371/journal.pone.0173288
https://doi.org/10.1371/journal.pone.0173288
https://doi.org/10.1155/2020/7698590
https://doi.org/10.1016/j.jmii.2020.03.022
https://doi.org/10.1186/s12864-018-4889-1
https://doi.org/10.1056/NEJMe2001126
https://doi.org/10.1093/nar/gkr859
https://dl.acm.org/doi/10.5555/1639537.1639542
https://dl.acm.org/doi/10.5555/1639537.1639542
https://doi.org/10.1093/nar/gkw226
https://doi.org/10.1093/nar/gkw226
https://doi.org/10.1093/bioinformatics/btz918
https://doi.org/10.1093/bioinformatics/btz918
https://doi.org/10.1186/s12864-019-5571-y
https://doi.org/10.1371/journal.pone.0232391
https://doi.org/10.1126/science.288.5463.55d
https://doi.org/10.1126/science.288.5463.55d
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://web.stanford.edu/class/cs231a/lectures/intro_cnn.pdf
https://web.stanford.edu/class/cs231a/lectures/intro_cnn.pdf
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
https://doi.org/10.1038/s41598-018-33321-1
https://doi.org/10.1038/s41598-018-33321-1
https://doi.org/10.1371/journal.pone.0206409
https://doi.org/10.1371/journal.pone.0206409
https://doi.org/10.1093/bioinformatics/btz339
https://doi.org/10.1016/S0140-6736(20)30185-9
https://doi.org/10.1016/S0140-6736(20)30185-9
https://doi.org/10.3390/v2081803
https://doi.org/10.3390/v2081803
https://covid19.who.int/


World Health Organization (WHO). (2020b). Statement on 
the second meeting of the International Health 
Regulations (2005) Emergency Committee regarding 
the outbreak of novel coronavirus (2019-nCoV). 
Retrieved May, 2020, from https://www.who.int/ 
emergencies/diseases/novel-coronavirus-2019/ 
events-as-they-happen

World Health Organization (WHO). (2020c). WHO 
Statement regarding cluster of pneumonia cases in 
Wuhan, China 2020. Retrieved May 19, 2020, from 
https://www.who.int/China/news/detail/09-01- 
2020a-who-statement-regarding-cluster-of- 
pneumonia-cases-in-wuhan-China

World Health Organization (WHO). (2020d). Novel 
Coronavirus – China 2020b. Retrieved May 20, 2020, 
from https://www.who.int/csr/don/12-january-2020- 
novel-coronavirus-China/en/

Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Zheng, M., 
Zheng, M., Zheng, M., Zheng, M., Zheng, M., Zheng, M., 
Chen, L., & Li, H. (2020). Analysis of therapeutic tar-
gets for SARS-CoV-2 and discovery of potential drugs 
by computational methods. Acta Pharmaceutica 
Sinica B, 10(5), 766–788. https://doi.org/10.1016/j. 
apsb.2020.02.008

Xu, X., Jiang, X., Ma, C., Du, P., Li, X., Lv, S., Yu, L., Chen, Y., 
Su, J., & Lang, G. (2020). Deep learning system to 
screen coronavirus disease 2019 pneumonia. arXiv 
Preprint arXiv:2002.09334. doi:10.1016/j. 
eng.2020.04.010.

Yu, D., & Deng, L. (2011). Deep learning and its applica-
tions to signal and information processing 

[Exploratory DSP]. IEEE Signal Processing Magazine, 
28(1), 145–154. https://doi.org/10.1109/MSP.2010. 
939038

Yu, N., Li, Z., & Yu, Z. (2018). Survey on encoding schemes 
for genomic data representation and feature learn-
ing—from signal processing to machine learning. Big 
Data Mining and Analytics, 1(3), 191–210. 
doi:10.26599/BDMA.2018.9020018.

Zeng, H., Edwards, M. D., Liu, G., & Gifford, D. K. (2016). 
Convolutional neural network architectures for pre-
dicting DNA–protein binding. Bioinformatics, 32(12), 
i121–i127. https://doi.org/10.1093/bioinformatics/ 
btw255

Zhang, G. P. (2000). Neural networks for classification: A 
survey. IEEE Transactions on Systems, Man and 
Cybernetics Part C: Applications and Reviews, 30(4), 
451–462. https://doi.org/10.1109/5326.897072

Zhang, R., & Zhang, C.-T. (2002). Single replication origin 
of the archaeon Methanosarcina mazei revealed by 
the Z curve method. Biochemical and Biophysical 
Research Communications, 297(2), 396–400. https:// 
doi.org/10.1016/S0006-291X(02)02214-3

Zheng, C., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., 
Liu, W., & Wang, X. (2020). Deep learning-based 
detection for COVID-19 from chest CT using weak 
label. medRxiv. https://doi.org/10.1101/2020.03.12. 
20027185.

Zielezinski, A., Vinga, S., Almeida, J., & Karlowski, W. M. 
(2017). Alignment-free sequence comparison: 
Benefits, applications, and tools. Genome Biology, 18 
(1), 186. https://doi.org/10.1186/s13059-017-1319-7

© 2022 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. 
You are free to:  
Share — copy and redistribute the material in any medium or format.  
Adapt — remix, transform, and build upon the material for any purpose, even commercially.  
The licensor cannot revoke these freedoms as long as you follow the license terms.  

Under the following terms:  
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.  
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.  
No additional restrictions  

You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Engineering (ISSN: 2331-1916) is published by Cogent OA, part of Taylor & Francis Group.  
Publishing with Cogent OA ensures:  
• Immediate, universal access to your article on publication  
• High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online  
• Download and citation statistics for your article  
• Rapid online publication  
• Input from, and dialog with, expert editors and editorial boards  
• Retention of full copyright of your article  
• Guaranteed legacy preservation of your article  
• Discounts and waivers for authors in developing regions  
Submit your manuscript to a Cogent OA journal at www.CogentOA.com   

Adetiba et al., Cogent Engineering (2022), 9: 2017580                                                                                                                                                    
https://doi.org/10.1080/23311916.2021.2017580

Page 26 of 26

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen
https://www.who.int/China/news/detail/09-01-2020a-who-statement-regarding-cluster-of-pneumonia-cases-in-wuhan-China
https://www.who.int/China/news/detail/09-01-2020a-who-statement-regarding-cluster-of-pneumonia-cases-in-wuhan-China
https://www.who.int/China/news/detail/09-01-2020a-who-statement-regarding-cluster-of-pneumonia-cases-in-wuhan-China
https://www.who.int/csr/don/12-january-2020-novel-coronavirus-China/en/
https://www.who.int/csr/don/12-january-2020-novel-coronavirus-China/en/
https://doi.org/10.1016/j.apsb.2020.02.008
https://doi.org/10.1016/j.apsb.2020.02.008
https://doi.org/10.1016/j.eng.2020.04.010
https://doi.org/10.1016/j.eng.2020.04.010
https://doi.org/10.1109/MSP.2010.939038
https://doi.org/10.1109/MSP.2010.939038
https://doi.org/10.26599/BDMA.2018.9020018
https://doi.org/10.1093/bioinformatics/btw255
https://doi.org/10.1093/bioinformatics/btw255
https://doi.org/10.1109/5326.897072
https://doi.org/10.1016/S0006-291X(02)02214-3
https://doi.org/10.1016/S0006-291X(02)02214-3
https://doi.org/10.1101/2020.03.12.20027185
https://doi.org/10.1101/2020.03.12.20027185
https://doi.org/10.1186/s13059-017-1319-7

	1.  Introduction
	2.  Literature review
	2.1.  Genomics of coronaviruses
	2.2.  Analysis of genomes with machine learning

	3.  Materials and methods
	3.1.  Data acquisition
	3.2.  Encoding of genomic signals as Z-Curve RGB images
	3.3.  Deep convolutional neural network for image classification
	3.4.  Identification of the Coronavirus Z-Curve “RGB” images using deep CNN
	3.5.  Development of machine learning models

	4.  Results and discussions
	5.  Limitations of the study
	6.  Conclusion
	Acknowledgements
	Funding
	Author details
	Disclosure statement
	References

