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a b s t r a c t

Artificial intelligence (AI) models for refrigeration, heat pumps, and air conditioners have emerged
in recent decades. The universal approximation accuracy and prediction performances of various AI
structures like feedforward neural networks, radial basis function neural networks, adaptive neuro-
fuzzy inference and recurrent neural networks are encouraging interest. This review discusses existing
topographies of neural network models for RHVAC system modelling, energy prediction and fault(s),
and detection and diagnosis. Studies show that AI structures require standardization and improvement
for tuning hyperparameters (like weight, bias, activation functions, number of hidden layers and
neurons). The selection of activation functions, validation, and learning algorithms depends on author’s
suitability for a particular application. Backpropagation, error trial selection of the number of hidden
layer, and hidden layers’ neurons, and Levenberg–Marquardt learning algorithms, remain prevalent
methodologies for developing AI structures. The major limitations to the application of AI models in
RHVAC systems include exploding or/and vanishing gradients, interpretability, and accuracy trade off,
and training saturation and limited sensitivity. This review aims to give up-to-date applications of
different AI architectures in RHVAC systems and to identify the associated limitations and prospects.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Energy conservation, performance management, and tech-
nology enhancement of refrigeration, heating, ventilation, and
air conditioning systems (RHVAC) are forefront challenges. It
is almost impossible to develop an ideal RHVAC system with
the capacity to address dynamic recommendations from United
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.egyr.2022.06.062
http://www.elsevier.com/locate/egyr
http://www.elsevier.com/locate/egyr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyr.2022.06.062&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:damola.adelekan@covenantuniversity.edu.ng
https://doi.org/10.1016/j.egyr.2022.06.062
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


D.S. Adelekan, O.S. Ohunakin and B.S. Paul Energy Reports 8 (2022) 8451–8466

N
g
e
r
r
h
r
s
(
g
n
m
o
u

w
a
c
u
2
t
a
m
p
e
t
T
A
n

t
o
p
t
s
s
r
a
o
H
e
i
i
n
a
n
d
m
p
t
s
t
v
c
a
a
n
a
g
m

s
i
t
r
d

(
A
c
2
h
i
i
i
f
m
f
o
b
(

A
l
S
i
A
a

ations Environmental Protection (UNEP) and consumers’ re-
arding optimum safety, performance, and economy (Adelekan
t al., 2021). The complexities arising from (i) phasing out and
etrofitting conventional working fluids (refrigerants) like chlo-
ofluorocarbons (CFCs), hydrochlorofluorocarbon (HCFCs), and
ydrofluorocarbons (HFCs) categories, (ii) identification of ideal
efrigerants compatible to emerging user pattern especially for
tand-alone, centralized or decentralized RHVAC system, and
iii) compatibility clauses for renewable (like wind, solar, tidal,
eothermal) sources as alternative energy are justifications for
ew RHVAC system development (Sarbu, 2014). Thus, complex
ulti-objective problems that require high precision solutions to
ptimize the cost and performance of ideal RHVAC are solved
sing artificial intelligence techniques (Mohanraj et al., 2012).
Comparing experimental and theoretical testing approaches

ith artificial intelligence-based models shows improved speed,
ccuracy, and shorter evaluation time (Aprea et al., 2017). Many
umbersome modelling and monitoring of engineering systems
sing AI models are available in recent literature (Aprea et al.,
017; Mohanraj et al., 2012). Observations of efficient computa-
ional speed, simplicity, and ability to solve multivariate linear
nd non-linear problems using AIs are common conclusions. AI
odels excellently map the relationship between input and out-
ut variables without requiring analytical equations (Mohanraj
t al., 2012). AI is a branch of computer science that develops sys-
ems with reasoning and intelligence capacities closer to humans.
he capacity of simplified biological neural networks inspires
I to apply to computational-based models of artificial neuron
etworks (Park and Lek, 2016).
Significance of artificial intelligence systems includes (i) ability

o learn the functional relationship between data inputs and
utputs, (ii) approximate accuracy of continuous functions, (iii)
redict unseen linear/non-linear data, and (iv) use generaliza-
ion and flexibility functions more accurately than traditional
tatistical methods (Gill et al., 2020). The primary goal of AI
ystem development is to assure accuracy closer to humans in
easoning, action, perception, and uncertainty. AI systems model
nd forecast non-linear time series engineering applications, rec-
gnize patterns and classify and resolve clustered problems (See
osoz and Ertunc (2016)). Studies on AI systems are rapidly
volving, and identifying variations in emerging classifications
s increasingly difficult. The distinction between machine learn-
ng, artificial intelligence, and data science approaches is almost
on-existent. AIs combine methodologies of machine learning
lgorithms (such as support vector, decision tree, k based neural
etwork, Bayesian learning, deep learning), neurocomputing and
ata science techniques (including statistics, visualization, text
ining, experimentation, time series forecasting, process mining,
rocessing paradigms, data preparation) to enhance its ability
o mimic required human cognitive functions. Many engineering
ystems, including refrigeration and air conditioning, adopt AI
echniques of natural language processing, decision science, bias,
ision, robotics, linguistics, and planning for monitoring energy
onsumption or evaluation of process and consumer behaviour,
nd prediction and modelling of performance and fault detection
nd correction (Hosoz and Ertunc, 2016; Esen et al., 2008; Mir-
aghi and Haghighat, 2020) (See Fig. 1). These are due to AI’s
bility to extract useful information without requiring complex
overning equations and assumptions through data mining and
achine learning algorithms.
AI machine learning is classified into supervised, semi-

upervised, unsupervised, deep and reinforced learning depend-
ng on the data type (continuous, discrete, qualitative, quanti-
ative) and task requirement (Fig. 2). Supervised learning algo-
ithms are better suited for classification and regression problems

ue to their prediction and modelling accuracies (Lizhi et al., i
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2021). In contrast, unsupervised learning algorithms are suit-
able for clustering problems. The need for superior advantages
to supervised and unsupervised learning algorithms led to the
development of semi-supervised learning. Thus, it enables the
mapping of labelled and unlabelled data (See Gangadhar and
Shanta (2018)). In reinforced learning, optimal steps towards
the target goal depend on previous training environment con-
sequences. Deep learning combines initialization of weights and
biases using unsupervised learning and backpropagation tuning
algorithms (Jelmer et al., 2020). Most AI learning algorithms
can minimize error functions (or loss function, cost function) by
accurately tracking the global optimal parameters through opti-
mization techniques (like swarm particle optimization, simplex,
support vector machines, and visualization monitoring of gradi-
ent descent, batch gradient descent, stochastic gradient descent,
mini gradient descent).

AIs neurons estimate inputs and outputs data relationship
models. These neurons in groupings called layers can be input,
output and hidden layers, respectively. The number of input and
output neurons accounts for input and output variables of inter-
est. At the same time, the number of hidden layers affects over-
all performance. Neuron interconnections between these layers
enable the reception and transmission of signals. The earliest ar-
tificial neuron network architecture is the multilayer Perceptron
(MLP) arranged in a feedforward manner. Feedforward artificial
neural network allows only forward signals processing using neu-
rons equal to identified input and output variables. The simplified
structure of neural networks NNs consists of at least one input,
output and hidden layer. Reception, processing and transmission
of information signals occur between these multiple intercon-
nected computational block layers. These layers contain neurons
equipped with pre-infused summation and transfer functions.

Neurons receive an accurate number of input signals and
transmit a non-linear estimate of these input signals as output
signals. The non-linear estimated outputs from nodes or neurons
consist of the real value input signal, weights, biases, summation
function and activation function (Fig. 3). Typically, summation
functions sum all input signal assigned weights and bias. Compu-
tational outputs of a neuron squash to different ranges (such as 0
and 1, +1 and −1 etc.) as per their selected activation functions
like a sigmoid, hyperbolic tangent, binary, linear functions etc.).
I classification, forecasting, pattern recognition etc., attributes
orrelate directly to selected activation functions (Enrico et al.,
018). AI are mimics of the neuro-computing capacities of the
uman brain. Thus, diverse AI structures with unique function-
ng capacities and mechanism controls for information process-
ng and decision-making exist. Various AI system classifications
n accordance to structures (such as feedforward, radial based
unction, Kohonen self-organizing recurrent, convolutional, and
odular neural networks (see Mulholland et al., 1995), type of

unctions (summation, activation, transfer), algorithms (learning
r validation), cost function mapping approach (gradient descent,
atch gradient descent etc.) and statistical performance gauging
RMSE, R2, COV etc.).

This review aims to give up-to-date applications of different
I architectures in RHVAC systems and to identify the associated
imitations and prospects. This work is structured as follows:
ection 1 introduces the work; Section 2 reviews the efficient
mplementation of AI in RHVAC systems; Section 3 illustrates
I structures for refrigerators, air conditioners and heat pumps,
nd Section 4 discusses the limitations and prospects of artificial

ntelligence models in RHVAC system.
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Fig. 1. Branches of artificial intelligence.
Fig. 2. AI learning algorithm classifications.

2. Recent application of AI in RHVAC system

Applications of AI structures like artificial neural networks,
multi-feedforward neural networks, adaptive neuro-fuzzy infer-
ence systems, recurrent neural networks, radial biased neural
networks, and convolutional neural network for different RHVAC
applications is available in extant literature. Existing reviews de-
tailed specialized AI applications for modelling, prediction, faults
detection and monitoring refrigerators, air conditioners and heat
8453
pump systems. However, understanding the capacity of AI sys-
tems for future applications requires details of available vari-
eties within existing AI structures. For instance, Mohanraj et al.
(2012) reviewed the performance and characteristics of artifi-
cial neural networks structures radial biased neural network,
adaptive neuro-fuzzy inference system, multilayer feedforward
neural network, generalized regression neural network for pre-
dictive modelling of air conditioners, heat pump and refrigeration
systems. The authors did not provide information on the char-
acteristics of the AI structure capacities for modelling hybrids
of these systems. Since the primary justification for adopting
artificial neural networks is the ability to solve complex system
processes, the complexities encountered with single and hybrid
heating, cooling and power system integration energy and exergy
analysis, building RHVAC load forecasting. RHVAC fault detection
and diagnosis can be resolved with AI structures (Hadi et al.,
2015; Gill et al., 2019a; Chen, 2020; Zhimin et al., 2014). Artificial
intelligence neural networks can adequately model erratic or
random systems (Haslinda et al., 2013). Other justifications for se-
lecting artificial intelligent neural networks include (i) reasoning
capacities (Gill et al., 2019b); and memory retention (Sendra-
Arranz and Gutiérrez, 2020). Available modelling technologies
for air conditioners are identified as ARIMA, backpropagation
neural network and long short-term memory recurrent neural
network by Chonggang et al. (2020). Although these models de-
pend on regression models, ARIMA and backpropagation neural
networks are not sensitive to randomness induced by the envi-
ronment. Authors’ identification of backpropagation neural net-
work low sensitivity to environmental variations (random data)
encouraged their development of an experience retaining long
short-term memory neural network (also called recurrent neural
network) for an air conditioner energy prediction. The selec-
tion requirements and justifications for adopting any AI architec-
ture within RHVAC systems depend on the different application

characteristics. Optimizing the safety, performance, and economy
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Fig. 3. Representation of activation neuron.
f refrigeration, air conditioning, and heating systems (RACHPs)
as been a significantly complex challenge in recent decades.
bundant optimization studies on RACHPs subcomponents, pri-
ary/secondary working fluids (refrigerants) replacement, oper-
ting/ambient temperature etc., assert long computational time
s justification for increasing AI modelling approach (Li et al.,
019; Tomczak and Kaminski, 2001). The use of neural networks
s a state of the art trend for heat pump, refrigeration and air
onditioning system development.

. AI structures for refrigeration, air conditioning and heat
umps

This section describes applications of feedforward neural net-
orks, adaptive neuro-fuzzy inference systems, radial basis func-
ion neural networks, and recurrent neural network models for
ACHPs system. Inferences on the characteristics and selection
ustifications for these neural networks are also discussed.

.1. ANN(s): Characteristics And application

Artificial neural networks (ANNs), also known as biological
eural networks, are the most widely used AI models in RACHPs.
NNs process information using neuron relationship modelling
f inputs to outputs (Gill and Singh, 2018a). ANNs behaves like
lack boxes equipped with interconnected processing units (that
s, neurons). ANN neurons receive process, and send transformed
ignals between each other using mathematical functions that
ould be activation, summation or transfer functions. ANNs, like
he human brain, memorize and learn from experience (Gill et al.,
020). Arrangement of neurons is according to layers, namely,
nput layer(s), output layer(s) and probably hidden layers. Artifi-
ial neural network (ANN) models deliver output(s) from input(s)
hrough sets of computational processing units and predefined
ctivation functions within neurons. ANN neurons identification
epends on selected activation or transfer functions. Although the
arliest applications of ANNs were suitable for learning, vision
nd conditioning, the development of ANN models has enhanced
heir widespread adoption. ANNs models can be linear mathe-
atical or non-parametric and applied to linear and non-linear
roblems (Gill et al., 2018a). ANN models’ performance depends

n the number of hidden layers, number of hidden layer neurons,

8454
selection of training algorithms, activation function character-
istics and error parameters (Mohanraj et al., 2012). The trial-
and-error method of selecting the optimum number of hidden
layers have been widely used in existing literature. Although a
mathematical model to determine the number of hidden lay-
ers and hidden layer neurons is shown in the work of Wang
et al. (2020). The observation of higher prediction accuracy with
two hidden layer neural network model in comparison to single
hidden layer model is shown in Thomas et al. (2017). In Gill
et al. (2018a) study, activation functions were reported to be real,
positive, limited, and continuous and have sigmoid shape. Activa-
tion functions simply correspond to calculation performed within
artificial neurons of neural networks. A typical neural network
neuron activation function consists of summation and transfer
functions. The summation functions are a standard weighted
sum of neural network inputs, bias and weights. In contrast, a
linear or non-linear transformation of summation function so-
lutions occurs in transfer functions of the activation function.
Sigmoid, linear and Gaussian are popularly adopted forms of
transfer functions (Kros et al., 2006). Sigmoid function also known
as standard logistic function gives a simple differential equation
solution ranging between 0 and 1. However, vanishing gradient
problems occur in sigmoid or threshold activation function neural
networks with three or more hidden layers. This limitation en-
couraged the development and adoption of rectified linear unit
activation function. Neural network activation functions can be
transcendental or algebraic groups. Algebraic activation functions
are analytic functions having polynomial mathematical solutions,
whereas transcendental activation functions (like sigmoid and
tangent hyperbolic activation functions) do not have polyno-
mial output solutions. Popular examples of algebraic activation
functions are segmented linear function, step function, and al-
gebraic sigmoid function. Other available activation functions
include linear function, piecewise function, rectified exponential
linear unit, partial rectified exponential linear units, leaky recti-
fied exponential linear units, hyperbolic tangent, and logarithmic
sigmoid function. Activation functions enable optimum perfor-
mance of neural networks by controlling the speed of models
during training and local minima determination processes. Since
computations from activation layer are determined by activation
functions, improving their performance is justifying development
of new activation functions. Application of neurons with rectified

activation functions as activation layers of neural networks are
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Fig. 4. (a) Feedforward backpropagation neural network; (b) Cascade forward backpropagation neural network; (c) Elman backpropagation neural network.
nown as rectified linear units (RELU) (see Nair and Hinton,
010). RELU activation functions have (i) easier and faster exe-
ution in comparison to sigmoid and tanh activation functions,
ii) better optimization of vanishing gradients, (iii) sparseness
nducement and enforcement, and (iv) improve training speed
or neural network with up to a thousand layers. However, RELU
ptimization performance is limited by their non-zero mean,
nbounded outputs and negative missing characteristics (Zhou
t al., 2021). RELU is compatible and efficiently adaptive with
isual recognition-based feed forward neural networks (He et al.,
016).
Buchhop and Ranganathan (2019) successfully applied ELU,

igmoid and rectified ELU (RELU) based artificial neural networks
or load profiling of residential dishwasher, furnace, refrigerator
nd stove. Gill et al. (2018a) adopted a sigmoid activation function
or a domestic refrigerator energy parameter modelling, while
aghunatha Reddy et al. (2020) adopted log sigmoid activation
unction. Application of tangent sigmoid is available in Nasruddin
t al. (2018), whereas log sigmoid was adopted by Faegh et al.
2021). It is important to note that the selection of the activation
unctions depends on the authors’ requirements and preferences
see Ibham et al. (2022)].

The importance of training and validation algorithms in se-
ecting optimum weights and biases for AI neurons cannot be
veremphasized. It is arguably the toughest step required to im-
rove the performances of AI models. Available validation tech-
iques investigate prediction accuracy limits. Gill et al. (2018a)
eported that setting the number of neurons in the hidden layer
elped fit the experimental data accurately. The authors elimi-
ated underfitting and overfitting of the experimental data using
ross-validation and backpropagation algorithms.
8455
3.2. Feedforward neural network and applications in RHVAC systems

Feedforward neural network allows unidirectional flow of sig-
nals from inputs to output without signal cycling or loop. These
networks, like multilayer perceptron networks, are universal ap-
proximators for linear regression functions. Universal approx-
imation functions give accurate gradient information between
inputs and outputs. The outputs of neural networks are the sum-
mation of weights, biases and inputs. The primary character-
istics of universal approximation feedforward neural networks
are the application of non-polynomial activation functions and
linear outputs (Leshno et al., 1993). Thus, besides traditional
Bayesian classifier and linear discrimination model applications
of feedforward neural networks, efforts to extend approximation
capabilities of feedforward neural networks have been widely
successful. Feedforward neural networks are better suited for
either classification or regression problems. Feedforward neural
networks train to set their weights and biases parameters using
different backpropagation techniques (Feedforward backpropa-
gation, Cascade backpropagation and Elman backpropagation).
Nasruddin et al. (2018) reported that feedforward backpropaga-
tion neural networks differ from cascade backpropagation neural
networks and Elman backpropagation neural networks by the
uniqueness of their inputs–output correlations. There is no direct
correlation between the input(s) and output(s) of feedforward
backpropagation neural networks.

In contrast, cascade and Elman backpropagation neural net-
works directly correlate their input(s) and output(s). Elman back-
propagation neural network, an extra layer called context layer,
is included for weight adjustment without feeding the output(s)
(Fig. 4a–c). Pure feedforward neural networks and their hybrid

(like ANFIS) is widely adopted for predicting performances of
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efrigeration, air conditioner and heat pumps systems. Gill et al.
2018a) developed an artificial neural network based on feed-
orward neural network for predicting irreversibility and second
aw efficiency of various LPG-TiO2 nano lubricants in a refriger-
tor. The training and validation of the ANN models employed
ybrid simulated and conjugate gradient method training al-
orithms and cross-validation techniques. The inputs neurons
apped inputs are condensing temperature, evaporating tem-
erature, nanoparticle concentration and refrigerant mass charge.
hey obtained their signals through ten (10) hidden layer neurons
o give desired outputs (second law efficiency and irreversibility).
he ANN model prediction is permissibly accurate in compar-
son to the experimental results. Some authors used a similar
pproach to predict the power consumption, refrigeration capac-
ty and coefficient of performances of LPG-TiO2 nano-refrigerant
riven refrigerator in Gill et al. (2018b). An assessment of arti-
icial neural network (ANN) and adaptive neuro-fuzzy inference
ystem (ANFIS) in predicting the performance of a variable speed
croll compressor is shown in the work of Zendehboudi et al.
2017a,b). The artificial neural network is characterized by a back-
ropagation algorithm, Levenberg–Marquardt algorithm, trial by
rror approach, number of hidden layer selection, 6-8-5 neuron
umber input/hidden/output layer architecture, and sigmoid and
urelin transfer functions. While the ANFIS system had Sugeno
uzzy inference system, five layers (where layer 1 is for fuzzi-
ication or mapping fuzzy set to membership functions; layer 2
ultiplies input signals to produce output; layers 3 and 4 are

or normalization, defuzzification and layer 5 for summation);
nd utilized genfis2 subtractive clustering configuration selection
lgorithm. The comparison of the ANFIS and ANN models showed
hat the ANFIS model has the best prediction accuracy. Recently,
pplications of hybrid feedforward neural networks and fuzzy
nference systems called ANFIS to RHVAC systems have grown.
ables 1 & 2 show other applications and characteristics of pure
nd hybrid feedforward neural networks applied in refrigeration,
eat pumps and air conditioners. Comparative prediction perfor-
ances of ANN and ANFIS models for a ground sourced heat
ump studied by Esen and Inalli (2010) concluded that ANFIS
odel is better. The architecture of the best ANFIS model is

riangular with two membership function. Similar affirmation is
vailable in Sun et al. (2015);

.3. Adaptive neuro-fuzzy inference system

Adaptive neural fuzzy inference system is a development
ntroduced to fuzzy logic techniques for improved performance in
ngineering applications. In fuzzy systems, inputs are processed
sing predefined fuzzy arithmetic and rules to give output(s).
hus, Fuzzy systems have better reasoning capacity while neural
etworks have improved learning ability. Two types of adaptive
nference systems based on fuzzy rules (Mamdani and Sugeno
ype) are adapted for engineering applications. In the Mam-
ani adaptive neuro-fuzzy system, the membership functions are
uzzy in nature, while Sugeno has linear or constant membership
unctions that enhance simplicity and accuracy. Mamdani ANFIS
ules are more intuitive and interpretable than Sugeno ANFIS,
specially where interpretability is absent and higher degree of
reedom. Sugeno ANFIS are better suitable for multiple outputs
ased on computational analysis, whereas Mamdani ANFIS is
ore applicable to single output based functional analysis. ANFIS
re simply the optimization of fuzzy inference systems using
eural network. ANFIS combines if-then rules to membership
unctions to appropriately track inputs to outputs. Performance of
NFIS is dependent on minimization of prediction errors through
odifications of if-then rules and membership functions. The
arliest ANFIS development was developed in 1992 by Jyh-Shing
8456
Roger Jang. The Sugeno ANFIS had a multilayer feedforward
neural network. Typical ANFIS model developments required
specification of fuzzy rules (the rule 1 and 2), membership func-
tions (A1, A2, B1, and B2) and design parameters (q1, q2, p1, p2,
1, and r2) acquired through training to function accurately (See
qs. (1)–(2)).

ule 1 = if x is A1 and y is B1, then f1 = p1x + q1y + r1 (1)

ule 2 = if x is A2 and y is B2, then f2 = p2x + q2y + r2 (2)

Specification of predefined functions of ANFIS models is at-
ained in hidden layers. For instance, Gill and Singh (2017a)
elected triangular and bell shape membership functions to de-
ermine its hypothetical parameters in the first layer. In contrast,
he strength of multiplication rules, normalized strength rule,
inear combination rule and summation rule were determined in
he second, third, fourth and fifth layers. The authors developed
n ANFIS model to predict the coefficient of performance, total
xergy destruction and exergy efficiency of a domestic refriger-
tor using a 28–72 mass fraction of R134a/LPG refrigerant blend
see Gill and Singh (2017a)). The selection of multi-feedforward
eural network, 2-5-1 neurons input, hidden and output layers,
ircular and square membership function and two fuzzy rules
ave the least error in the refrigeration system performance
redictions compared to experimental test results. In another
ork by previous authors, a Sugeno ANFIS was developed to pre-
ict the coefficient of performance from refrigerant mass charge,
vaporating temperature and capillary tube length variations of
134a/LPG driven refrigerator. The ANFIS model fuzzy inference
ystem was based on grid partitioning development within MAT-
AB fuzzy logic toolbox. The two fuzzy rules, five hidden layers,
hree input layers and one output layer gave the best prediction.
etails of the system backpropagated neural network training
lgorithm revealed authors used gradient descent tracking of
he error functions between the predicted and target values and
east square error methodology. In addition, the selection of the
est ANFIS model was based on the absolute fraction of vari-
nce, root mean square error, mean absolute percentage error
f predictions. Different ANFIS has been successfully applied for
omplex modelling and predicting heat transfer characteristics
nd energy and exergy performances of refrigerators Gill and
ingh (2017b). Features like the coefficient of performance, ex-
rgy destruction, mass flow rate, total irreversibility, heat transfer
oefficient, second law efficiency; were evaluated using ANFIS in
ecent literature (see Table 1b). Gill et al. (2020) applied triangu-
ar and bell shaped membership functions within a Sugeno ANFIS
odel. Minimization of prediction errors was through backprop-
gation gradient descent algorithms. The ANFIS model contained
six-layer multi feedforward neural networks and a grid parti-

ion fuzzy inference system developed using MATLAB fuzzy logic
oolbox. Yuliang et al. (2020) developed an ANFIS based predictive
ystem for a liquid desiccant air conditioner. The five-layer ANFIS
odel used to predict the humidity ratio and air temperature
f the system consists of Takagi–Sugeno fuzzy inference sys-
em, backpropagation and least square algorithms. The primary
akagi–Sugeno fuzzy inference system maps the correlation be-
ween the input and outputs while the backpropagation and least
quare algorithms set the parameters of the neurons. The relative
rrors in terms of root mean square error and mean absolute
rror of the ANFIS predictive model compared to experimental
alues were 2% and 4% for the outlet air temperature and humid-
ty ratio, respectively. Innovations to improve the performances
f ANFIS models have emerged in recent times. Elimination of
low training speed and development encountered with hybrid
radient descent and simulated annealing ANFIS algorithms used
or large scale univariate and multivariate time series problems
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Table 1
Applications of FeedForward neural network in refrigerator, air conditioner and heat pumps.
S/N Application Author(s) AI types Specification Input/Output

parameter(s)
Conclusion

1 Refrigerator
(LPG-TiO2
nanorefriger-
ant)

Gill et al.
(2018a)

Multilayer
feedforward 10
hidden layer
neurons ANN
and ANFIS

– Hybrid training algorithm of simulated
annealing and conjugate gradient training
method
– Leave one out cross validation technique
– One hidden layer

Nanoparticle
concentration,
Refrigerant mass,
Evaporating and
Condensing
temperature/ second
law efficiency, total
irreversibility

The ANN models
and experimental
results correlated
perfectly

2 Refrigerator
(LPG-TiO2
nanorefriger-
ant)

Gill et al.
(2019a)

Multilayer
feedforward with
9 hidden layer
neurons ANN

– Hybrid training algorithm containing
simulated annealing and conjugate gradient
training method.
– Leave one out cross validation technique
– One hidden layer

Nanoparticle
concentration,
Refrigerant mass
charge, Evaporating
and Condensing
temperatures/
Power consumption,
refrigeration
capacity, coefficient
of performance

ANN modelled
the experimental
results with high
precision

3 Refrigerator
(28/72)
R134a/LPG

Gill et al.
(2019b)

Multilayer
feedforward with
1 hidden layer
with 10 neurons

– Hybrid training algorithm containing
simulated annealing and conjugate gradient
training method.
– Leave one out cross validation technique/
– One hidden layer

Evaporating and
Condensing
temperatures/
second law
efficiency, total
irreversibility

Comparison of
the AI models
showed ANN
models predict
the experimental
results with
higher accuracy
than ANFIS
models

4 Refrigerator
(28/72)
R134a/LPG

Gill and Singh
(2018b)

– Levenberg and Marquardt training algorithm
– Linear transfer function
– Tangent sigmoid function
–

Cumulative of
refrigerant
properties and
subcooling, inlet
pressure, effect of
coiled capillary
tube, capillary tube
geometry/ Reynolds
number

Comparison of
ANN and
dimensionless
modelling
showed the ANN
model was
better with
higher R2 and
lower RMSE and
MAPE values

5 Thermo-
acoustic
refrigerator
(Helium
refrigerant, λ/4
resonator tube)

Anas and
Xiaoqing
(2017)

Multilayer
feedforward with
10 hidden layer
neuron

– Backpropagation
– Summation and activation functions
– Undefined validation technique

Pressure, frequency/
cooling load

Observation of
minimum
prediction error
was observed
with the use of
one hidden layer
having ten (10)
neurons

6 Ejector
absorption heat
pump
(methanol/LiCl)

Adnan et al.
(2004)

Multilayer
feedforward with
7 hidden layer
neuron

– Backpropagation
– Levenberg and Marquardt
– Gradient descent
– Scaled conjugate gradient
– Single hidden layer
– Logistic sigmoid function
– Polak–Ribiere conjugate gradient

Temperature,
Pressure and
Concentration of
salts/ Specific
volume

ANN models
were considered
to faster and
simpler than
other
mathematical
models

7 Refrigerator Hasan et al.
(2016)

Multilayer
feedforward with
5 hidden layer
neuron

– Backpropagation
– Levenberg and Marquardt
– Tangent sigmoid
– Trial and error

Evaporator surface
temperature, Gap
between evaporator
and glass shelf, fan
velocity, Evaporator
height/ evaporator
heat rate,
evaporator
temperatures

The performance
of the ANN and
CFD models are
comparable

(continued on next page)
prompted the development of fast Fourier transform embedded
with recursive least square ANFIS algorithms by Molbanin and
Scott (2019). Mohammed et al. (2020) reported that integration
of the firefly algorithm within ANFIS improves the prediction
accuracies 1, 2 and 3 hourly energies consumed within different
buildings. There are records in literature where another artificial
intelligent model outperforms ANFIS. For instance, a comparison
8457
for selecting the most suitable model for different nanorefrigerant
mixtures of R113, R114. Cu, Al, Al2O3 and CuO, respectively, was
accessed by Zendehboudi et al. (2017b) using predictive mod-
els, namely multiple linear regression, multilayer perceptron-
artificial neural network, adaptive neuro-fuzzy inference system
(ANFIS), and least-square support vector machine. The authors
concluded that a multilayer perceptron-artificial neural network
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Table 1 (continued).
S/N Application Author(s) AI types Specification Input/Output

parameter(s)
Conclusion

8 Magnetic
refrigerator

Aprea et al.
(2017)

Multilayer
feedforward with
11 hidden layer
neuron

– Levenberg and Marquardt
– Cross validation
– Sigmoid function
– Trial and error

Rotation of
magnetic,
volumetric flow
rate, heat rejection
temperature,
temperature span/
electric motor
power, pump
electric power,
cooling capacity,
coefficient of
performance

The system can
be accurately
modelled

9 Vapour
compression
refrigerator

Raghu-
natha Reddy
et al. (2020)

Multilayer
feedforward with
22 hidden layer
neuron

– Log sigmoid
– Backpropagation
– Levenberg and Marquardt
– One hidden layer

Capillary length,
refrigerant charge,
evaporator
temperature/
refrigeration effect,
coefficient of
performance, power
consumption

The multilayer
neural network
predicted with
higher accuracy
the multiple
regression model

10 Absorption chiller
(LiBr-H2O)

Nasruddin
et al. (2018)

Feedback
propagation,
Cascade forward
backpropagation,
Elman
Backpropagation

– Tangent Sigmoid
– Bayesian regularization
– Two hidden layer
– Backpropagation
– Elman backpropagation
– Cascade forward
backpropagation

Radiation, ambient
temperature, dry
bulb temperature/
hot water
temperature

Elman
backpropagation
had the least
training error
and poor
validation error.
Feedforward
backpropagation
gave the best
validation error

11 Electric vehicle air
conditioning
system

Tian et al.
(2015)

Multilayer
feedforward with
one hidden layer

– Levenberg–Marquardt
– Logarithmic sigmoid
– Tangent sigmoid
– 0.1–0.9 normalization
range
– 0.01 learning rate
– 1000 number of epochs
– Trial by error method for
selecting the best number
of hidden layer neurons

Compressor speed,
electronic expansion
valve opening,
condenser inlet air
temperature,
evaporator inlet air
temperature/ mass
flow rate, condenser
heat rejection,
refrigeration
capacity, energy
consumption

Application
4-13-4 ANN
architecture
model
successfully
predicted the
performance of
the electric
vehicle air
conditioning
system with
least error.

12 Automotive air
conditioning
system

Jani et al.
(2016)

Feedforward
with 2 hidden
layers

– Trainlm,
– learngdm,
– Tansig
– Backpropagation

Temperature,
relative humidity,
mass flow rate/
coefficient of
performance,
cooling capacity and
input power

12-12-3-3
neuron per layer
network gave
the best
modelling
performance

13 Solar hybrid liquid
desiccant air
conditioning
system

Abdulrahman
et al. (2013)

Multilayer
feedforward with
2-11 hidden
layer neurons

– Backpropagation
– Trial and error
– Tan-sigmoid
– 0 and 1 normalization
range
–

Air flow rate,
desiccant flow rate,
air inlet humidity
ratio, air inlet
temperature,
desiccant inlet tem-
perature/humidity
ratio, temperature,
moisture removal
rate, effectiveness

5-5-1 ANN
structure gave
the best
prediction for
moisture
removal rate
while 5-11-11-1
ANN structure
gave the best
effectiveness
prediction

(continued on next page)
t
c

3

d
D
d

btained the best model parameter in terms of R2, MSE, RMSE
nd AARD. Inference from these results is that the performance
f models depends on the process characteristics. Saee et al.
2018) optimized the prediction performance of an ANFIS model
sing five optimization algorithms (namely genetic algorithm,
article swarm optimization, ant colony optimization, differential
volution, and backpropagation) for modelling pool boiling heat
ransfer of nanofluids containing ester oil (VG68), R113 with
ither diamond or copper nanoparticle. The authors concluded
8458
hat particle swarm optimization with the ANFIS model is the best
ompared to other developed models.

.4. Radial basis function networks

RBF network is a variation of feedforward neural network
riven by radial basis transfer functions within its hidden layer.
ifferent radial functions (like multi-quadratic and Gaussian ra-
ial functions) applied in radial neural networks originate from



D.S. Adelekan, O.S. Ohunakin and B.S. Paul Energy Reports 8 (2022) 8451–8466
Table 1 (continued).
S/N Application Author(s) AI types Specification Input/Output

parameter(s)
Conclusion

14 Automotive air
conditioner

Haslinda
et al. (2013)

Feedforward
neural network
with one hidden
layer

– Tangent sigmoid
– Backpropagation
– Levenberg–Marquardt

Compressor speed,
evaporator inlet
temperature,
evaporator inlet air
velocity, condenser
inlet air
temperature/
cooling effect,
compressor input
power, coefficient of
performance

The use of 4-3-3
neuron ratio
gave the best
ANN prediction
accuracy in
modelling the
automotive air
conditioner
performance

15 Ground coupled
heat pump

Esen et al.
(2008)

Multilayer
Feedforward
neural network
based on 3
algorithms for 7,
10, 13 and 15
hidden layer
neurons

– Levenberg–Marquardt
– Scaled and Polak–Ribiere
conjugate gradients, tangent
sigmoid

Ground, discharge
and condensing
temperatures/
coefficient of
performance

Levenberg–
Marquardt based
neural network
gave the least
prediction errors

16 Ground coupled
heat pump

Esen and
Mustafa
(2009)

Multilayer
Feedforward
neural network
based on 3
algorithms for 6,
8 and 10 hidden
layer neurons

– Levenberg–Marquardt
– Scaled and Polak–Ribiere
conjugate gradients, tangent
sigmoid

Inlet and exit
temperatures of
evaporator and
condenser,
antifreeze solution
inlet and exit
temperatures/
coefficient of
performance

Levenberg–
Marquardt based
neural network
gave the least
prediction errors

17 Vertical ground
source heat pump

Esen and
Inalli (2010)

Multilayer
Perceptron and
Back propagation

– Levenberg–Marquardt
– Scaled Conjugate Gradient
– Polak–Ribiere conjugate
gradients for 6, 8 and 10
single hidden layer neurons

The input layers
include air
temperatures at the
inlet and exit of the
evaporator,
condenser and
water antifreeze
solution. The output
layers are the
heating and cooling
coefficient of
performance

Levenberg–
Marquardt based
neural network
gave the best
convergence

18 Direct expansion
air conditioner

Li et al.
(2013)

ANN based on
Inverse model

Online based adaptive
controller

Input layer
parameters include
compressor speed
and fan speed and
the output layer
parameters are the
indoor air humidity
and air temperature

High control
accuracy was
obtained with
the online based
controller for the
dry and wet bulb
temperatures

19 Automotive air
conditioning
system

Ng et al.
(2014)

Online trained
ANN

– Levenberg–Marquardt
– Sliding stack window
– 1 step-10 step prediction
validation
– Feed forward architecture
– Back propagation

Parameters
investigated include
Evaporator air
speed, inlet air
temperature of
condenser and
evaporator and
thermal load of
cabin

The controllers
had improved
reference
tracking,
disturbance
rejection and
adaptation
capacity
approximation theories. RBF has fast learning speed and univer-
sal approximation. While both RBF and multilayer perceptron
neural networks are suitable for non-linear regression problems,
RBF networks are examples of non-linear feedforward neural
networks suitable for regression, classification, time series and
pattern recognition. RBF neural networks have a high degree of
tolerance to noise. RBF can be trained to firstly set the centres and
widths of hidden layers using unsupervised learning algorithms
like vector quantization, decision trees, and k means and lastly,
the connecting weights using a least-squares algorithm, gradient
descent algorithm, particle swarm optimization algorithm, ge-
netic algorithm, ant colony algorithm, and differential evolution
algorithm.
8459
Simplified RBF has one hidden layer, unlike MLP that requires
more than one. Hao et al. (2016) compared the predictive per-
formances of multilayer perceptron neural network, radial basis
function neural network and support vector machine for an ejec-
tor air conditioner. Comparison of the neural networks favoured
the selection of MLP based on the best accuracy. The earliest de-
velopment of radial basis function neural network came in 1987
through Powel that applied it for clustering and pattern recog-
nition (Powell, 1987). RBF neural networks have a fast-learning
rate, simple generalization estimation theory and good prediction
performance compared to other neural networks (Seyed et al.,
2016). The primary justifications for selecting RBF neural network
by Seyed et al. (2016) include the ability to model non-linear
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Table 2
Hybrid feedforward neural network (Adaptive neuro-fuzzy inference system).
S/N Application Author(s) AI types Specification Input/Output parameter(s) Error

parameter

1 Refrigerator
(28/72)
R134a/LPG

Gill and Singh
(2017a)

ANFIS (MLFFNN
& Sugeno Fuzzy)

Gradient descent
Backpropagation
Least square
5 fuzzy rules

Refrigerant mass, Evaporating and
Condensing temperatures/ Coefficient
of performance, Exergy efficiency,
Total exergy destruction

R2 , MAPE
and RMSE

2 Refrigerator
(28/72)
R134a/LPG

Gill and Singh
(2018a)

ANFIS (MLFFNN
& Sugeno Fuzzy)

Gradient Descent
Backpropagation
Least square
5 fuzzy rules

Refrigerant mass, Evaporating and
Condensing temperatures/ Coefficient
of performance, Power consumption,
Refrigeration capacity

R2 , MAPE
and RMSE

3 Refrigerator
(28/72)
R134a/LPG

Gill et al.
(2018c)

ANFIS (MLFFNN
& Sugeno Fuzzy)

2 fuzzy rules
Leave one out cross
validation
Grid partitioning
and subtractive
training

Refrigerant mass, and evaporating
and condensing temperatures/ exergy
destruction in compressor, condenser,
evaporator and capillary tube

MSE, R2 ,
MAPE and
RMSE

4 Refrigerator
(LPG-TiO2)

Gill et al.
(2020)

ANFIS (MLFFNN
& Sugeno Fuzzy)

2 fuzzy rules
Leave one out cross
validation
Grid partitioning
and subtractive
training

Refrigerant mass, nanoparticle
concentration, and evaporating and
condensing temperatures/ total
irreversibility and second law
efficiency

MSE, R2 ,
MAPE and
RMSE

5 Refrigerator
(28/72)
R134a/LPG

Gill and Singh
(2017b)

ANFIS (MLFFNN
& Sugeno Fuzzy)

Gradient descent,
Backpropagation
Least square
2 fuzzy rules

Cumulative of refrigerant properties
and subcooling, inlet pressure, effect
of coiled capillary tube, capillary tube
geometry/ Reynolds number

MSE, R2 ,
MAPE and
RMSE

6 Refrigerator
(28/72)
R134a/LPG

Gill and Singh
(2017c)

ANFIS (MLFFNN
& Sugeno Fuzzy)

Gradient descent,
Backpropagation
Least square
2 fuzzy rules

Refrigerant mass, evaporating
temperature, capillary tube length/
coefficient of performance

MSE, R2 ,
MAPE and
RMSE

5 hidden layers
Grid partitioning
3-3-3 Gaussian
input
processes quickly and resist weighted sum convexity. The authors
applied the RBF to select an optimum PID controller for regulating
the temperature and humidity of a hybrid HVAC system. Faegh
et al. (2021) identified a peculiar attribute of the RBF neural
network to be the application of non-linear kernel activation
functions. The authors explained that RBF neural networks use
lesser weights between input and output layers, thus yielding
better learning speed than MLP neural networks. The RBF neural
network prediction performance better than ANFIS and lower
than MLP neural network, respectively.

Similarly, Sina et al. (2016) modelled an HVAC system for
mproved humidity and thermal comforts using an RBF neural
etwork. The authors evaluation of RBF and fuzzy systems based
n statistical parameter comparison favoured the selected RBF
eural network. Extant study of RBF neural network applica-
ion shows limited adoption in RHVAC systems. Faegh et al.
2021) predicted the performance of heat pumps using ANN,
BF and ANFIS models. Swider et al. (2001) successfully adapted
generalized RBF neural network to model the coefficient of
erformance of a liquid chiller with a prediction accuracy of ±5%.
nhancement in the load forecast accuracy of an air conditioning
ystem is found with a RBF neural network aided with ternary
orecast correction models (namely; multiple linear regression,
utoregressive integrated moving average and grey model) when
ompared with ordinary RBF neural network, or RBF with single
odel correction by Yao et al. (2006). Similar conclusion on
rediction accuracy of RBF applied on a liquid chiller to deter-
ine coefficient of performance and compressor work input is
vailable in Bechtler et al. (2001). Inference observed studying
he application of RBF neural networks for RHVAC system control
how limited application.
8460
3.5. Recurrent neural network in RAC

Recurrent neural network, also known as auto-associative
neural network, has cyclic connections that enable interchang-
ing back and forth signal loop processes. The development of
recurrent neural networks by John Hopfield in 1982 was due
to the need for high universal approximation estimation accu-
racy and quick memorization through feedback looping. Unlike
feedforward network with no back-loop signals, recurrent neural
network is proficient for time series and sequential data analysis.
Literature suggests that Elman in 1993 and Jordan developed
modified recurrent neural networks in 1996. Many non-linear and
dynamic engineering systems can be adapted for identification
(pattern and speech recognition), time series modelling and elim-
ination of adaptive noise (Tatyana et al., 2019). The limitations
of modelling dynamics non-linear system process using feedfor-
ward networks justified application of partial recurrent networks
(Adorn et al., 2000). The study investigated the accuracies of mod-
elling non-linear processes with two types of partial recurrent
neural networks. The structures were equipped with local output
feedback and four training algorithms. The training algorithms
utilized backpropagation techniques in the training and testing
of the networks. The networks modelled the simulated non-
linear process accurately. In the work of Ramazan and Tung
(1997), Elman based recurrent neural network gave better noise
filtering capacity than feedforward network. According to Robert
and Gregory (2020), gated recurrent units and long short-term
memory architecture of recurrent neural networks are modified
feedforward neural networks with the capacity to estimate vari-
able or infinite length sequential data. Recurrent neural networks
popular training algorithms include generalized delta rule or
energy minimization function (Tarun and Khalid, 2019). Typically,
recurrent neural networks analyze outputs from two inputs (that
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resent and past time step data inputs). Recurrent neural net-
orks keep information of immediate previous time step data
nd apply it in processing the next output (Fig. 4). Zhihong
t al. (2020) compared prediction accuracies of artificial neural
etworks and recurrent neural network models developed from
ctual meteorological data of a weather station. The recurrent
eural network gave the best prediction accuracy in comparison
o the actual data. Scanty studies on recurrent neural network
pplication in refrigerators exist. Habtom (1999) investigated the
erformance of a recurrent multilayer perceptron neural network
rained using backpropagation for predicting the relative humid-
ty and temperature of a mechanical refrigerator. The recurrent
etworks had one hidden and output layer and three input
ariables. Levenberg–Marquardt learning algorithm improves the
erformance of the recurrent neural network in predicting both
elative humidity and temperature. However, recurrent neural
etwork suits random data prediction (or time series processes).
he search for recurrent neural networks applications in RHVAC
ystems showed surging applications of long-short memory units,
nd gated memory recurrent neural networks abound in building
HVAC systems. Recurrent neural networks are innovative ways
o solve demand-side energy management of HVAC systems in
uildings (Sendra-Arranz and Gutiérrez, 2020); faults identifica-
ion and diagnosis (Hadi et al., 2019), thermal comfort automation
Zhengbo et al., 2020); predicting energy consumption in com-
ercial and residential buildings (Ali et al., 2019). Compatibility
f recurrent neural network with smart grid networks analy-
is of electricity use pattern and consumer behaviour enables
eak-average ratio reduction, peak shaving and cost reduction
stimation (Rogers et al., 2019). Long and short-term memory
nits and gated recurrent units’ architectures of recurrent neu-
al networks can accurately predict future energy demand in
rid-connected systems and self-consumption of local energy
eneration systems (See Sendra-Arranz and Gutiérrez (2020)).
ecurrent neural network design requires the selection of an
lgorithm capable of modelling the actual time series problem
nd setting the prediction limits for implementation. In the work
f Sendra-Arranz and Gutiérrez (2020), the absence of neural
etwork models for short and ultra-short periodic variations of
VAC energy consumption monitoring as demand management
trategies justified the application of long-short memory recur-
ent artificial neural network for HVAC load predictions. Authors
eveloped and verified three stacked long-short memory recur-
ent neural networks for a solar house called Magicbox. These
ecurrent neural networks were multilayer perceptron aided with
hrough-time based backpropagation and backpropagation learn-
ng and training algorithms. Information processing between
nputs, outputs and forget gates allowed memory retention in
he long, short recurrent network. In contrast, neuron network
ystem computations used tanh and hyperbolic sigmoid activa-
ion functions and Hadamard product. According to Hadi et al.
2019), the primary limitation of existing RHVAC fault detection
nd diagnosis methodologies is the need for historical data before
mplementation and accurate tracking of multiple faults and
lassification of faults. The unavailability of extensive historical
ata for modelling faults diagnosis led to the development of a
enerative adversarial network for fault detection diagnosis in
hillers by Ke et al. (2020). Applications of feedforward artificial
eural networks for fault diagnosis require extensive validation
nd testing data. The availability of memorization in recurrent
eural networks increases their adoption for modelling and fault
iagnosis of HVAC systems. The increasing applications of fault
etection and diagnosis methodologies in recent times is driven
y reasons not limited to; (i) energy conservation; (ii) improved
conomy; (iii) reduced maintenance cost; (iv) reduced peak load;
v) reduced peak load; (vi) efficient feedback on system perfor-
ance and (vii) environmental protection (Rogers et al., 2019).
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Fig. 5. Architecture of recurrent neural network.

Other available applications and architectures of existing recur-
rent neural networks for fault diagnosis and predicting energy
consumption based on occupancy and performance parameter(s)
RHVAC systems is depicted in Table 3 (see Fig. 5).

The complexity associated with developing accurate fault de-
tection, monitoring and diagnosis (FDMD) system for RHVAC de-
pend on accurate estimation of error signal transmission and clas-
sification. Resolving different faults with similar symptoms and
different symptoms to a fault is a challenge widely researched.
Incomplete information resulting from lack of data, faulty data,
lack of sensors and physical scenario uniqueness; and uncertainty
from measurements, symptom-fault probability and system pro-
cess are issues limiting the development of improved physical
FDMD systems (Zhao et al., 2019). Existing FDMD methods are
data or knowledge-based approaches, while adopted artificial
intelligence FDMD techniques include classification based, unsu-
pervised learning-based and regression-based methods. Artificial
intelligence models used for classification, association and pre-
diction in FDMD technologies has increased considerably. These
AI model applications (such as regression-based AI, association
rule-based, clustering-based, support vector-based, probabilistic
based, logarithmic based, principal component analysis based
and classification based) were developed to enhance quantitative,
qualitative and process history based physical FDMD methods
(Katipamula and Brambley, 2005, 2011). In the work of Shiqiang
et al. (2019), problems associated with a centralized model,
databased sensor fault detection and diagnosis methods justi-
fied the development of microprocessor aid to a decentralized
sensor fault network controller for RHVAC systems. The au-
thors employed swarm particle algorithm in a decentralized
RHVAC system to eradicate existing limitations and obtain equal-
improved performance to conventional centralized sensor fault
detection and diagnosis systems.

Huajing et al. (2019) reviewed applications of RHVAC system
optimization designs. Three approaches, namely white box, black
box and grey box approaches, were identified. The white box
is based on traditional mathematical modelling of heat, mass,

energy, and momentum transfer balances in building an RHVAC
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Table 3
Application of recurrent neural network for RHVAC systems.
S/N Application Author(s) Description Specification Input/Output parameter(s) Error parameter

1 Sensor and
actuator
faults

Hadi (2020) Generalized
Elman neural
network (layer
recurrent neural
network)

Bayesian
regularization
Backpropagation,
prediction model
based on 5 sub
RNN models,
hyperbolic tangent
sigmoid function,
2 hidden layers
with 5 neurons,
linear transfer
functions,

Intermediate product concentrations, cooling
jacket temperature, / free radical
concentrations (Ca , Cb), monomer
concentration, temperature of reactor

Maximum
absolute error

2 Multiple
fault
diagnosis of
HVAC
system

Hadi et al.
(2019)

Layer recurrent
network

Bayesian
regularization
Backpropagation,
hyperbolic tangent
sigmoid function,
3 hidden layers
with 5 neurons
and 1 delay, linear
transfer functions,
and subspace
identification

Valve opening, inlet air and water
temperatures/ supply air temperature, outlet
water temperature

Maximum
absolute error

3 HVAC
system
Sensor data
validation

Mariam
et al. (2020)

Auto associative
neural network
(optimal
architecture
11-48-3-48-11)

3 hidden layers
namely mapping,
bottleneck and
demapping layers,
k fold validation,
sigmoid and Tanh
activation
function, Adam
backpropagation
algorithm, grid
search for
selecting the best
structure

Sensor parameter/ sensor correction, missing
data replacement, noise reduction, inaccuracy
reduction

Network
reconstruction
accuracy, and
reduced noise
level, mean
squared error

4 Building
energy
forecast

Hanane
et al. (2019)

Very short-term
load and
short-term load
forecasting
neural network
models

Cross validation,
fitness function,
backpropagation,
Levenberg–
Marquardt,
Bayesian
regularization,

Humidity, dew point and dry bulb
temperatures, occupancy index, previous
energy demand data/

MAPE and RMSE

5 Occupancy
prediction
for building
energy
analysis

Wei et al.
(2018)

Markov recurrent
neural network
aided with WiFi
probe technology

Input, hidden,
context and
output layers,
sigmoid function,

In-door air temperature, CO2 concentration,
humidity/ number of occupants

MAE, RMSE
MAPE

6 Building
energy
analysis

Aowabin
et al. (2018)

Comparison of
Recurrent neural
networks to
multilayer
perceptron
neural network

ADAM gradient
descent, gating
function, long
short-term
activation
function, weight
decay
regularization,
early stopping
generalization,
six-layer recurrent
models, 3-layer
multi-perceptron
model

Humidity, wind speed, solar irradiation, hourly,
daily and monthly schedule plans/ aggregate
electricity consumption

Relative error,
RMSE, Pearson
coefficient
system. In contrast, black box employs data-driven artificial in-
telligence to understand and model the behaviour of HVAC sys-
tems. Lastly, the grey box approach combines black and white
box capabilities for improved performance. The use of genetic
algorithm-based optimizations was found to be the most selected
technique for RHVAC system optimization. Fault detection and
diagnosis control mechanism for RHVAC system is a trend that
improves aspects like energy conservation, reduction of energy
cost, limitation of the maintenance cost, reduced peak load and
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demand, enhanced environmental efficiency and efficient sys-
tem designs. Identified methodologies for fault detection and
diagnosis have included the use of artificial intelligence to aid
ease of fault detection and categorizing faults into soft or hard
classifications. Notable faults that influence the performance of
RHVAC systems includes filter blockage, fouled evaporator, bad
filter, refrigerant undercharges, refrigerant overcharge, damage
refrigerant duct or pipe, bad dryer or expansion valve, low pump
power, valve leakage etc. Availability of modelling, classification,
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Table 4
Artificial intelligence for fault and diagnosis in RHVAC systems.
S/N Author(s) Application AI structure

1 Mavromatidis et al. (2013) Supermarket RHVAC system energy and fault
monitoring

Feedforward neural network (3-4-2 neuron per
layer)

2 Dehestani et al. (2013) HVAC air supply fan and damper faults
tracking

Feedforward neural network integrated with
support vector machine classification

3 Hou et al. (2006) Development of sensor fault detection and
diagnosis system using air handling unit
temperature and humidity monitoring

Rough set approach and ANN

4 Zhimin et al. (2014) Development of a detection system for soft
sensor biases faults in HVAC system.

Backpropagation feedforward neural network
with subtractive clustering classifier
imaging and prediction capacities within AI structures are some
of the justifications that increase their selection. Traditional fault
detection and diagnosis methodologies require tracking faults to
performance. This raises two challenges (i) single faults may give
multiple symptoms, and (ii) multiple faults may result in a single
symptom. For instance, low cooling capacity can result from
insufficient refrigerant driven by undercharging or leakage or low
compressor pumping power. Whereas undercharging, refrigerant
leakage and low pumping power may result in high energy con-
sumption, low cooling capacity, and noisy compressor operation.
AI structures for fault detection and diagnosis analysis rely on
physical thermodynamic laws to model or track steady/transient
performance variabilities. All thermodynamic models, including
linear, non-linear, polynomial, and Bayesian functions, can be
accurately solved by AI structures universal approximations. Ev-
idence of AI capacity to accurately process electrical automation
challenges like fault control, detection and diagnosis of process,
equipment and operation is available in a mini performance
review by Li (2020). The fundamental theories and methodologies
of identifying the occurrence, locations of faults are extensive
explained by Yaguo (2017). Selected applications of AI structures
for fault detection and diagnosis is shown in Table 4.

3.6. Energy demand monitoring and prediction/forecasting of HVAC
system

Overcoming the shortcomings of building HVAC system de-
and management technologies has increased the application of
rtificial intelligence for monitoring and predictive analysis. The
recision and fitness accuracy of AI algorithms for time series
orecasting is better than regression models. Thus, Sendra-Arranz
nd Gutiérrez (2020) developed several stacked long short-term
emory artificial neural network models and verified their HVAC
nergy consumption forecasting accuracies within buildings.
hree recurrent neural networks (RNN) architectures were de-
eloped to mathematically model the non-linear time series
cenario. The backpropagation trained RNN accurately moni-
ored six input variables (outdoor temperature, relative humid-
ty, irradiance, user reference temperature, indoor temperature
nd carbon dioxide level) to predict the next day energy con-
umption of the building. Similarly, the energy demand of a
uilding installed fan coil was accurately predicted using four
nput data (indoor air temperature, impulse air velocity, and
he fan energy consumptions for samples one and two) radial
ased neural network by Yaser et al. (2018). The RBNN was
rained using a gradient descent-based error minimization strat-
gy (Levenberg–Marquardt training algorithm). The authors se-
ected the best RBNN models using the least root mean square
rror and normalized root mean square error, respectively.
An assessment of significant input variables from 14 input data

o predict energy use intensity in building HVAC systems was
tudied using multiple regression and artificial neural network
y Chirab et al. (2018). The authors used Levenberg–Marquardt
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training algorithm with a backpropagation learning approach to
determine the weight vector that gives the least error between
the target and predicted output in the feedforward multilayer
perceptron neural network. The study informed that selecting
four input factors (including chiller plant efficiency, gross floor
area, operational hour and energy consumption of air condi-
tioners) gave the best energy use intensity prediction accuracies
for the ANN model. Unlike the ANN model prediction, 5 inputs
gave the best prediction accuracy with the regression model.
Higher R2 and lower MAPE values were observed for the ANN
model when compared to the regression model. The best weights
within the ANN architecture were based on gradient descent error
minimization tracking of loss functions.

4. Limitations and prospects of artificial intelligent models in
RHVAC system

The consensus on the performance of artificial intelligence de-
pendent models to selected activation functions is popular. Thus,
considerable efforts to improve the performance of traditional ac-
tivation functions like sigmoid, rectified linear unit, partial RELU,
tangent sigmoid, etc., are justifying the development of new
activation functions like RELU swish, exponential swish, sinc-
sigmoid, generalized swish, triple state swish and mean swish
activation [See Kocak and Üstündağ Şiray, 2021].

Vanishing and exploding gradient problems, are dominant
limitations to the performance of traditional activation functions
in artificial intelligence networks. According to Alexander and
Andreas (2020), the need to eliminate vanishing and exploding
gradient problems of Elman recurrent neural networks, justified
the development of gated units like long short-term memory and
gated recurrent unit. Gated unit neural network such as long-
short term memory network is easier to train than traditional
recurrent neural network like Elman recurrent neural networks
[See Goulas et al. (2021)]. The differences in the network topolo-
gies of Elman recurrent neural network and long-short term
memory network in spite of their similar network architecture
is responsible for long-short term memory network fast training
capability.

Vanishing gradient problem in artificial neural networks espe-
cially feed forward neural networks with more than two hidden
layers reduces approximation accuracies. The non-zero centre
property of logistic sigmoid activation functions during training of
artificial neural networks invariably lead to saturation and limited
sensitivity (Brownlee, 2020). These limitation is resolved using
rescaled logistic sigmoid activation functions by Xu et al. (2016).
The application of accelerated Levenberg–Marquardt algorithm,
equipped with error information filtering and width adjustment
mechanisms also resolved vanishing gradient problem, memo-
rization in training and increase learning performance of RBF
neural networks as shown in the work of Miaoli et al. (2020).

Apart from the inability of feed forward artificial neural net-
works to account for interdependencies between its input vari-
ables in applications, other limitations of artificial neural net-
works shown in Ibham et al. (2022) include: (i) over fitting
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usceptibility, (ii) convergence uncertainty, (iii) big data require-
ent, (iv) undefined validation methodology, (v) trial and error

or determining optimal network structure, (vi) limited regulation
n amount and data training methods, (vii) complexity in the
evelopment of cause–effect correlations, (viii) absence of stan-
ard for determining the number of hidden layer neurons, (ix)
nsufficient information on criteria for selecting optimum training
lgorithm, and (x) absence of efficient training and validation
lgorithms in spite of their stability and accuracy.
ANFIS algorithm with reputable high generalization capabil-

ties are costly to implement practically for increasing parame-
ers. Complexities associated with ANFIS structure and gradient
escent estimations, limit their practical implementation (see
alleh et al., 2017). Other identified limitations include: (i) select-
ng accurate membership function type and number, (ii) dimen-
ionality problem, (iii) membership function location, and (iv)
nterpretability and accuracy trade off. The proposed solutions
nvolve applying efficient training methods, and reducing rule-
ase or/and number of parameters. Reducing adaptive neurofuzzy
nference system rule-base invariably reduces the computation
ime and number of parameters, and enhance accuracy (Salleh
t al., 2017). Metaheuristic algorithms like particle swam al-
orithm (Kini et al., 2013), hierarchical hyperplane clustering
ynthesis (Panella, 2012), and Karnaugh map (Soh and Kean,
012), are applicable solutions for addressing interpretability and
ccuracy trade-off limitations of ANFIS.

. Conclusion

This work summarizes the applications of AI structures such
s feed forward, radial basis function, adaptive neuro-fuzzy in-
erence system and recurrent neural networks in refrigeration,
eat pumps and air conditioners which focus on employed AI
rchitectures and justifications for their selection. It was observed
hat feedforward neural work remains an excellent predictive
odel for RHVAC system approximation, while improvement in

ts performance depends on the accurate specification of train-
ng, testing and validation algorithms. The varieties of recurrent
eural networks using Sigmoid activation function are improv-
ng modelling applications of AI in random or transient RHVAC
rocess monitoring. Apart from predicting specific performance,
mprovement in the accuracy of fault detection and diagnosis,
ontrol, and monitoring of RHVAC systems has increased re-
ently. However, the performance of the applications of these
rtificial intelligence models have been significantly impaired
y vanishing and exploding gradient problems, costly computa-
ional/long training time during optimization of algorithms, and
imitations in interpretability/accuracy trade-offs. The develop-
ent and adoption of new and improved activation functions is
eing employed to address these application challenges.
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