IN SILICO PREDICTION AND BIOCHEMICAL VALIDATION OF PROTEIN TARGETS IN Anopheles gambiae

ADEDEJI, EUNICE OLUWATOBILOBA (17PCP01674)

DECEMBER, 2022

IN SILICO PREDICTION AND BIOCHEMICAL VALIDATION OF PROTEIN TARGETS IN Anopheles gambiae

BY

ADEDEJI, EUNICE OLUWATOBILOBA (17PCP01674) B.Sc Biochemistry, University of Ibadan, Ibadan M.Sc Biochemistry, University of Ibadan, Ibadan

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D) IN BIOCHEMISTRY IN THE DEPARTMENT OF BIOCHEMISTRY, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

DECEMBER, 2022

ACCEPTANCE

This is to attest that this thesis is accepted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy in Biochemistry in the Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria.

Miss. Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, **ADEDEJI**, **EUNICE OLUWATOBILOBA** (**17PCP01674**) declare that this research was carried out by me under the supervision of Prof. Olubanke O. Ogunlana of the Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria and Dr. Segun A. Fatumo of the Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom. I attest that the thesis has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this thesis are duly acknowledged.

ADEDEJI, EUNICE OLUWATOBILOBA

Signature and Date

CERTIFICATION

We certify that this thesis titled "*IN SILICO* **PREDICTION AND BIOCHEMICAL VALIDATION OF PROTEIN TARGETS IN** *Anopheles gambiae*" is an original research work carried out by **ADEDEJI, EUNICE OLUWATOBILOBA** (**17PCP01674**) in the Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. Olubanke O. Ogunlana and Dr. Segun A. Fatumo. We have examined and found this work acceptable as part of the requirements for the award of Doctor of Philosophy (Ph.D) degree in Biochemistry.

Prof. Olubanke O. Ogunlana (Supervisor)

Dr. Segun A. Fatumo (Co-Supervisor)

Prof. Israel S. Afolabi (Head of Department)

Prof. God'swill N. Anyasor (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DEDICATION

This work is dedicated to God Almighty, the source of my life, strength, and wisdom. In Him alone I have my being.

ACKNOWLEDGEMENTS

I give thanks to the Almighty God, who gave me the privilege, wisdom, strength, insight, and courage to carry out this research. I am eternally grateful to you, Lord.

I appreciate the Chancellor and Chairman, Board of Regents, Covenant University, Dr. David O. Oyedepo, for being such a visionary leader. Thank you, sir, for providing the right environment for me to carry out my research. To the Vice-Chancellor of Covenant University, Prof. Abiodun H. Adebayo, the Acting Registrar, Mr. Emmanuel K. Igban, the Dean School of Postgraduate Studies, Prof. Akan B. Williams, the Sub-Dean, School of Postgraduate Studies, Dr. Emmanuel O. Amoo and the Dean College of Science and Technology, Prof. Timothy A. Anake, thank you for the exemplary leadership that has facilitated the completion of this program. May the good Lord bless you all. I appreciate the Head of Department, Prof. Israel S. Afolabi, who has been of great help to me in the course of this program. Thank you for your exemplary leadership and for ensuring all your students succeed. I appreciate my examiners, Prof. Abiodun H. Adebayo, Prof. Jelili O. Oyelade and Prof. Emmanuel Adetiba, thank you for your time, encouragement, corrections and contribution to the success of this work.

I am tremendously grateful to my supervisor, Prof. Olubanke O. Ogunlana. Thank you so much, ma, for your guidance, encouragement, advice, time and the drive you kept giving me towards completing this research. God bless you abundantly, ma. Also, my Co-Supervisor, Dr. Segun A. Fatumo, thank you, sir, for your support, guidance and the time you have committed to this research. I am very grateful, sir. I sincerely appreciate Prof. Ezekiel F. Adebiyi for providing a scholarship opportunity that provided me the opportunity to attend this prestigious university. Thank you, sir, for your leadership.

I sincerely appreciate my lecturers; Prof. Abiodun H. Adebayo, Prof. Shalom N. Chinedu, Prof. Emeka E. J. Iweala, Prof. Emmanuel N. Maduagwu, Prof. Solomon O. Rotimi and others. Thank you very much for impacting me with your wealth of knowledge. Thank you so much for your encouragement and help. God bless you. I appreciate Dr. Titilope M. Dokunmu, Dr. Omolara F. Yakubu, Dr. Omolola E. Omotosho, Dr. Oluwakemi A. Rotimi, Dr. Tolulope D. Olawole, Dr. Opeyemi C. De Campos, Dr. Wisdom O. Joel, Dr. Franklin N. Iheagwam, Mrs Gloria N. Okenze, Miss Omeremime E. Dania and Miss Evarista A. Ebigwai, Dr. Bababode I. Adelani, Mrs. Deborah K. Akinlabu, Mr. Alaba O. Adeyemi, Mrs. Omowunmi R. Afolabi and Miss. Bose E. Adegboye. I appreciate the entire staff of Covenant University Bioinformatics Research (CUBRe). God bless you all. I also appreciate Dr Marion O. Adebiyi. Thank you so much for your contribution, ma. God bless you.

I appreciate Prof. Rainer Koenig and Dr. Thomas Beder of the Institute of Infectious Diseases and Infection Control, Jena University Hospital, Germany, for being very supportive. Thank you for the push, advice and time. I appreciate Prof. Jason Rasgon of the Department of Entomology, Penn State University, State College, USA and the entire members of Rasgon's lab. Thank you for the privilege of learning gene editing using Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) to deliver Clustered Regularly Interspaced Short Palindromic Repeats and its associated endonuclease 9 (CRISPR/Cas9 system) into mosquitoes in your lab. Thank you, Dr. Chan C. Heu, for the training you provided while in the lab. I appreciate Dr. Marco Brustolin and his wife Sara for being my first family at State College. Thank you for lodging me in your place till I got an accommodation. Thank you for always being there. Mrs Benedicta, Korryn, SCA family, thank you for providing the warmth, support and love I needed to sail through my research in State College, USA. God bless you

I appreciate Dr. Sophia Tapanelli of Imperial College London. Thank you for all your help. Thank you for connecting me to Guido Favia's lab at University of Camerino, Italy. I appreciate Prof. Favia Guido, Dr. Claudia Damiani, Dr. Alessia Cappelli, Dr. Paolo Rossi, Dr. Anastasia Accoti, Dr. Matteo Valzano and Prof. Annette Habluetzel of the University of Camerino, Camerino, Italy for providing an enabling environment for me to carry out the RNAi experiment. Thank you for your help and advice. I appreciate Dr. Matthew Peirce of the University of Perugia, Italy, for providing guidance to ensure the success of the RNAi experiments.

My sincere appreciation goes to my amazing parents, Rev. Mike and Rev. (Mrs) Nike Babatunde and Dcn. Abraham and Mrs Rhoda Adedeji. Thank you for being wonderful parents. Thank you for your prayers, support, calls, and encouragement all through the period of this program. May you continually live long to enjoy the fruit of your labour.

I appreciate my wonderful siblings, Deborah, Esther, Michael, Joseph, Tobi, Tolu, and Feranmi, for your support, prayers, understanding, and encouragement. God bless you.

I am very grateful to Mrs. Moriyike Makinde. Thank you for being a wonderful aunt, sister and friend. Thank you for providing me with love, warmth and shelter during this program. Thank you for being a shoulder I could lean on. Dr. Taiwo Makinde, Dr. Kehinde Makinde, Dr. Oore Makinde, Nifemi Makinde and every member of the Makinde's family; thank you so much for being my first family in Ota. Thank you for your support and prayers. God bless you abundantly.

I appreciate Rev. Bunmi and Pastor Funke Idowu and the entire members of Shinning Light Family Church. Thank you for your prayers, support, love, calls, messages, and encouragement throughout this period. The Lord bless you abundantly.

I appreciate God for giving me an amazing husband, Dr. Paul A. Adedeji, who stood by me, supported, encouraged, prayed for, cared for and sacrificed for me throughout this period. Thank you so much for encouraging me to apply for this program even when my chances were slim. Thank you for everything. God bless you abundantly and increase you on all fronts. I love you.

TABLE OF CONTENTS

CONTENT	PAGES
COVER PAGE	i
TITLE PAGE	ii
ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	V
DEDICATION	vi
ACKNOWLEDGEMENTS	vii
TABLE OF CONTENTS	Х
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
LIST OF APPENDICES	xix
LIST OF ABBREVIATIONS	XX
ABSTRACT	xxiii

CHAPTER ONE	1
INTRODUCTION	1
1.1. Background to the Study	1
1.2. Statement of the Problem	9
1.3. Research Questions	10
1.4. Research Hypothesis	10
1.5. Aim and Objectives	11
1.5.1. Aim	11
1.5.2. Specific objectives	11
1.6. Justification of the Study	11
1.7. Scope of the Study	13

CHAPTER TWO	15
LITERATURE REVIEW	15
2.1. Life Cycle of Anopheles Mosquitoes	15
2.2. <i>Plasmodium</i> Infection and Immune Response in <i>Anopheles</i> Mosquito	17
2.2.1. Innate immune system of <i>Anopheles</i>	17
2.2.1.1. Immune signalling pathways	19
2.2.1.2. Phagocytosis and melanisation	21
2.3. Anopheles Metabolic Proteins in Malaria Transmission, Prevention and Control	23
2.3.1. Metabolic proteins as insecticide targets	26
2.3.2. Metabolic proteins and insecticide resistance	31
2.3.2.1. Metabolic resistance	32
2.3.2.2. Target site mechanism	38
2.3.2.3. Cuticular resistance	39
2.3.3. Metabolic proteins, blood digestion, immune response and <i>Plasmodium</i> parasite	
development in Anopheles	40
2.3.3.1. Metabolic proteins and blood digestion in Anopheles	40

2.3.3.2. Metabolic proteins and immune response to <i>Plasmodium</i> infection in	
Anopheles	45
2.3.3.3. Role of metabolic proteins in <i>Plasmodium</i> parasite development	47
2.3.3.4. Role of metabolic proteins in fecundity	50
2.3.4. Metabolic proteins and vector control using insecticides: the way forward	52
2.3.4.1. Identifying novel insecticide targets	52
2.3.4.2. Generation of organism-target specific and selective insecticides	56
2.3.4.3. Combining two or more insecticidal agents in a single product	59
2.3.4.4. Combining insecticide with synergists	63
2.3.4.5. Combining insecticides with transmission-blocking agents	68
2.3.4.6. Combining insecticides with sterilants	69
2.3.5. Vector control strategies: genetic modification of metabolism for population	
replacement or suppression	74
2.4. Genome-scale Metabolic Network Reconstruction	75
2.4.1. Methods for predicting essential reactions in a metabolic network	77
2.5. Experimental Validation of Computationally Predicted Targets	78
2.5.1. Gene knockout techniques	78
2.5.2. Gene knockdown techniques	81
2.5.2.1. Morpholinos for gene knockdown	81
2.5.2.2. RNA interference for gene knockdown by injection	82
2.5.3. Chemical Inhibition	84
2.6. Gaps Identified in Literature	86

CHAPTER THREE	88
MATERIALS AND METHODS	88
3.1. Materials	88
3.1.1. Software, Databases, and Web-servers	88
3.1.2. Equipment	88
3.1.3. Kits, Chemicals, Competent cells and Reagents	89
3.1.4. Organisms	89
3.1.5. Mice	90
3.2. Methods	90
3.2.1. Central metabolic model reconstruction and prediction of targets in An. gambiae	
	90
3.2.1.1. Draft metabolic network reconstruction and manual curation	90
3.2.1.2. Compartmentalisation	91
3.2.1.3. Conversion to BiGG model	92
3.2.1.4. Chokepoint and PUPLZ	92
3.2.1.5. Mapping of transcriptomics datasets	93
3.2.1.6. Selection of genes using prediction from leave-one-organism-out cross-	
validation (LOOOCV) model	94
3.2.2. RNAi Experiments	94
3.2.2.1. Rearing of An. gambiae	94
3.2.2.2. Mice handling	95
3.2.2.3. Primer design and handling	95
3.2.2.4. RNA extraction for dsRNA synthesis	95
3.2.2.5. cDNA synthesis for dsRNA preparation	96
3.2.2.6. DNA extraction from <i>E. coli</i> for LacZ template amplification	98

3.2.2.7. PCR amplification of target template from cDNA for dsRNA synthesis	99
3.2.2.8. Agarose gel electrophoresis	103
3.2.2.9. Purification of PCR products	103
3.2.2.10. Gel extraction of PCR products	103
3.2.2.11. Determination of efficiency of qPCR primers	104
3.2.2.12. dsRNA synthesis	109
3.2.2.13. dsRNA injections	111
3.2.2.14. Knockdown efficiency of dsRNA	111
3.2.2.15. Effect of gene knockdown on mosquito survival	112
3.2.2.16. <i>P. berghei</i> infection in mice	112
3.2.2.17. Effect of gene knockdown on <i>Plasmodium berghei</i> infection in mosquitoes	113
3.2.3. Chemical inhibition experiments	113
3.2.3.1. Sample preparation for biochemical assay	114
3.2.3.2. Determination of Trehalose and Glucose concentration	115
3.2.3.3. Protein determination	117
3.2.3.4. Quantitative RT- PCR	120
3.3. Methods of Statistical Analysis	122

CHAPTER FOUR	123
RESULTS	123
4.1. In silico Studies	123
4.1.1. Metabolic model generation and curation	123
4.1.2. Prediction of essential genes	131
4.1.3. Mapping of transcriptomics datasets	131
4.1.4. Selection of genes for experimental validation	141
4.2. RNAi Experiments	145
4.2.1. Primer efficiency determination	145
4.2.2. RNAi by injection of 69 nL of 3 μ g/ μ L dsRNA	146
4.2.3. RNAi by injection of 138 nL of 5 µg/µL dsRNA	153
4.2.4. Effect of knockdown of Arginase or Trehalase on survival of mosquitoes and P.	
berghei development	161
4.2.5. Effect of knockdown of HSP, 2Elf and 1Elf on survival of An. gambiae	167
4.3. Validamycin Inhibition	172
4.3.1. Effect of validamycin treatment on mosquito survival	172
4.3.2. Effect of validamycin treatment on pupation of mosquitoes	172
4.3.3. Protein determination	179
4.3.4. Glucose determination	179
4.3.5. Trehalose determination	179
4.3.6. Effect of treatment on expression of selected genes	184

CHAPTER FIVE	189
DISCUSSION	189
5.1. In silico Studies	189
5.2. RNAi Experiments	195
5.3. Validamycin Inhibition	201

CHAPTER SIX	205
CONCLUSION AND RECOMMENDATIONS	205
6.1. Summary	205
6.2. Conclusion	206
6.3. Contributions to Knowledge	206
6.4. Recommendations	206
6.5. Limitations to the Study	207

REFERENCES APPENDICES

208 244 LIST OF TABLES

TABLES	LIST OF TABLES	PAGES
2.1	Classes of insecticides, their resistance mechanisms and	34
	associated proteins in Anopheles species	
2.2	Efficacy of alphacypermethrin and chlorfenapyr mixture in	61
	insecticide-treated nets	
2.3	Efficacy of pyrethoids and synergist mixture in insecticide-	65
	treated nets	
2.4	Possible Anopheles' metabolic proteins for vector control	71
	strategies based on their role in malaria transmission	
2.5	Gaps identified in literature	86
3.1	Reaction mixture preparation for cDNA synthesis (PrimeScript	97
	RT reagent kit)	
3.2	Primer sequences for dsRNA synthesis	100
3.3	PCR reaction mix preparation (DreamTaq Green DNA	102
	Polymerase)	
3.4	cDNA serial dilution preparation for primer efficiency	105
	determination	
3.5	Real-time PCR reaction component for primer efficiency	106
	determination	
3.6	Real-time PCR cycling conditions	107
3.7	Primer sequences for qPCR	108
3.8	dsRNA synthesis reaction mix preparation	110
3.9	Trehalose determination protocol	116
3.10	Preparation of diluted bovine serum albumin (BSA) standards	119
3.11	Primer sequences for Validamycin inhibition experiments	121
4.1	Network statistics of curated An. gambiae central metabolic	125
	model	
4.2	Subsystem division of metabolic model	127
4.3	Essential reactions and their corresponding genes in An. gambiae	133
	central metabolic network	
4.4	Predicted genes differentially expressed in guts and haemocytes	138
	of P. berghei infected mosquitoes	

4.5	Efficiency of qPCR primers	145
4.6	Percentage knockdown in target genes 72 h after dsRNA	160
	injection	

LIST OF FIGURES

FIGURES	LIST OF FIGURES	PAGES
2.1	Life cycle of Anopheles mosquito	16
2.2	Mosquito innate immunity	22
2.3	Role of Anopheles metabolic proteins in malaria transmission	24
	and control	
2.4	Conserved catalytic serine residue in acetylcholinesterase	29
	(AChE) targeted by insecticides in diverse organisms	
2.5	Paraoxon binds conserved residues in both humans' and	30
	mosquitoes' acetylcholinesterase (AChE), hence toxic to	
	humans	
2.6	Conserved unpaired cysteine residue in the acetylcholinesterase	57
	(AChE) of disease vectors for selective insecticide design	
2.7	Ways of manipulating metabolic proteins of Anopheles for	70
	vector control strategies	
4.1	Summary of genome-scale metabolic model draft	124
	reconstruction for An. gambiae	
4.2	Percentage contribution of reactions to metabolic pathways	126
4.3	Venn diagram showing essential gene prediction using	132
	Chokepoint and PUPLZ	
4.4(a-c)	Metabolic fate of 3-hydroxy-L-kynurenine	142
4.5	Metabolism of Arginine	143
4.6(a-b)	Arginase and NOS expression	144
4.7	Gel image of 4 sets of dsRNA template for 3HKT	147
4.8	Relative gene expression of 3HKT in An. gambiae 72 h after	148
	dsRNA injection	
4.9	Gel image of 3 sets of dsRNA template for Trehalase	149
4.10	Relative gene expression of Trehalase in An. gambiae 72 h after	150
	dsRNA injection	
4.11	Relative gene expression of 3HKT in sugar-fed and blood-fed	151
	females 24 h after a blood meal	

4.12	Relative gene expression of Trehalase in sugar-fed and blood-	152
	fed females 24 h after a blood meal	
4.13	Gel image of dsRNA for HSP, Arg, 2Elf, Tre, 1Elf and LacZ	154
4.14	Relative gene expression of arginase at 24, 48, 72 and 96 h after	155
	dsRNA injection in An. gambiae G3	
4.15	Relative gene expression of trehalase at 24, 48, 72 and 96 h after	156
	dsRNA injection	
4.16	Relative gene expression of HSP at 24, 48, 72 and 96 h after	157
	dsRNA injection in An. gambiae G3	
4.17	Relative gene expression of 3HKT at 24, 48, 72 and 96 h after	158
	dsRNA injection in An. gambiae G3	
4.18	Relative gene expression of 1Elf, 2Elf at 72 h after dsRNA	159
	injection in An. gambiae G3	
4.19	Percentage survival of female An. gambiae mosquitoes blood-	162
	fed at 48 h after knockdown of Trehalase or Arginase	
4.20	Relative gene expression of arginase in not injected blood-fed	163
	(BF) An. gambiae G3 compared to sugar-fed (SF) 24 h after	
	blood-feeding	
4.21	Relative gene expression of arginase at 72 h after dsRNA	164
	injection in blood-fed (BF) An. gambiae G3	
4.22	Relative gene expression of trehalase at 72 h after dsRNA	165
	injection in sugar-fed (SF) and blood-fed (BF) An. gambiae G3	
4.23	P. berghei oocytes count on day 10 post-infection in female An.	166
	gambiae blood-fed with parasitised mice at 48H after	
	knockdown of Arginase	
4.24	Percentage survival of female An. gambiae after knockdown of	168
	HSP, 1Elf or 2Elf	
4.25(a-c)	Percentage survival of control mosquitoes and HSP-knockdown	169
	mosquitoes	
4.26(a-c)	Percentage survival of control mosquitoes and 2Elf-knockdown	170
	mosquitoes	
4.27	Proposed mechanism by which elongation factor 2 causes death	171
	in An. gambiae	

4.28	Percentage survival of L3 An. gambiae larvae exposed to	173
	Validamycin A	
4.29	Percentage survival of 2-day old L1 An. gambiae larvae	174
	exposed to Validamycin A	
4.30	LC ₅₀ concentration of Validamycin A	175
4.31	Dose-response curve	176
4.32	Percentage pupation of validamycin treated L3 An. gambiae	177
	larvae	
4.33	Percentage pupation of 2-day old L1 An. gambiae larvae	178
	exposed to Validamycin	
4.34	Protein Standard Curve	180
4.35	Protein concentration of L3 larvae 24 h after validamycin	181
	exposure	
4.36	Glucose concentration of L3 larvae 24 h after validamycin	182
	exposure	
4.37	Trehalose concentration of L3 larvae 24 h after validamycin	183
	exposure	
4.38	Expression levels of selected genes in pupae following	185
	treatment in L3 larvae	
4.39	Effect of exogenous trehalose on metabolism in An. gambiae	186
4.40	Expression levels of selected genes in L3 24 hours after	187
	Validamycin A treatment	
4.41	Proposed mechanism by validamycin A retards pupae	188
	development in An. gambiae	

LIST OF APPENDICES

APPENDICES	LIST OF APPENDICES	PAGES
Appendix 1	CHREC ethical permit certificate	244
Appendix 2	Alignment of the amino acid sequences of AChE from 13	246
	animal species	
Appendix 3	Chemical preparation	250
Appendix 4	Selected pictures of activities in laboratories	252
Appendix 5	Statistical analysis flow chart for gene expression studies	256
Appendix 6	Anopheles gambiae central metabolic model	257

LIST OF ABBREVIATIONS

1Elf	Elongation factor 1-alpha	
2Elf	Elongation factor 2	
ЗНКТ	3-hydroxykynurenine transaminase	
ABC transporters	ATP-binding cassette transporters	
AChE	Acetylcholinesterase	
AgAQP3	An. gambiae's Aquaporin 3	
AgaCA	An. gambiae's β -class carbonic anhydrase	
AgTreT	An. gambiae's Trehalose transporter	
AMP	Antimicrobial peptides	
An. gambiae	Anopheles gambiae	
Arg	Arginase	
APL1	Anopheles Plasmodium responsive leucine-	
	rich repeat protein 1	
ATP	Adenosine triphosphate	
BiGG reconstruction	Biochemical, genetic and genomic	
	reconstruction	
Cas	Clustered regularly interspaced palindromic	
	repeats associated protein	
CEs	Carboxylesterases	
CLIPs	Clip domain serine proteases	
CRISPR	Clustered regularly interspaced palindromic	
	repeats	
crRNA	CRISPR RNA	
CTLs	C-type lectin-like proteins	
CYP 450s	Cytochrome P450s	
DDT	Dichlorodiphenyltrichloroethane	
DNA	Deoxyribonucleic acid	
dsRNA	Double-stranded RNA	
FBA	Flux Balance Analysis	
FREP 1	Fibrinogen related proteins 1	
GABA	Gamma-aminobutyric acid	

GILT	gamma-interferon-inducible lysosomal thiol
	reductase
GLUT	Glucose transporter
GPCRs	G protein-coupled receptors
GPR	Gene-protein-reaction
gRNA	Guide RNA
GSMM or GEM	Genome-scale metabolic network model
GSTs	Glutathione S-transferases
HNH	Histidine asparagine histidine
HR	Homology directed repair
HSP	Heat shock 70kDa protein 1/8
IAPs	Inhibitor of apoptotic proteins
ILPs	Insulin-like peptides
IRS	Indoor residual spraying
ITNs	Insecticide-treated nets
КМО	Kynurenine 3-monooxygenase
LLINs	Long-lasting insecticidal nets
LRIM1	Leucine-rich repeat immune protein 1
LRRs	Leucine-rich repeat proteins
mRNA	messenger RNA
MRTC	Malaria Research and Training Center
NHEJ	Non homologous end joining
NO	Nitric oxide
NOS	Nitric oxide synthase
NOX5	NADPH oxidase 5
P. berghei	Plasmodium berghei
P. falciparum	Plasmodium falciparum
РАН	Phenylalanine-4-hydroxylase
PAM	Protospacer adjacent motif
PAMP	Pathogen-associated molecular patterns
Pbf	Post-blood-feeding
Pbm	Post blood meal
PCR	Polymerase chain reaction
PDB	Protein data bank

PO	Phenoloxidase
PRR	Pattern recognition receptors
PULPZ	Percentage of unreached products larger than
	zero
QPCR	Quantitative polymerase chain reaction
RNA	Ribonucleic acid
RNAi	RNA interference
RT-PCR	Real-time polymerase chain reaction
RuvC	Resistance to ultraviolet C
SBML	Systems Biology Markup Language
sgRNA	Single guide RNA
siRNA	small interfering RNA
TALEN	Transcription activator-like effector
	nucleases
T. cinnabarinus	Tetranychus cinnabarinus
TEPs	Thioester-containing proteins
trancRNA	Trans-activating CRISPR RNA
Tre	Trehalase
tRNA	Transfer RNA
XA	Xanthurenic acid
YFP	Yellow florescent dye
ZFN	Zinc finger nucleases

ABSTRACT

Malaria, an endemic disease in sub-Saharan Africa, is transmitted by female Anopheles mosquitoes. The major malaria vector control strategy has remained the use of insecticides. However, resistance in Anopheles to all classes of existing insecticides motivates the identification of novel targets for malaria vector control. Anopheles metabolic proteins represent a repertoire of possible targets, however, finding potential targets using experimental methods alone is a tall order. This study aimed to identify and modulate genes genes central for An. gambiae's survival or Plasmodium berghei clearance in the mosquito using in silico and biochemical techniques. A multi-compartment central metabolic model of An. gambiae was constructed using Reconstruction, Analysis and Visualization of Metabolic Networks (RAVEN) toolbox, manual curation was performed, and essential genes were predicted using chokepoint and percentage of unreached products larger than zero criteria. Experimental validation of selected genes was carried out using RNA interference (RNAi) and chemical inhibition methods. Double-stranded RNA (138 nL of 5 µg/µL) for selected genes and LacZ was injected into respective groups of between 2 to 4 days old female An. gambiae mosquitoes. Seventy (70) female mosquitoes per treatment were injected for survival experiments, and survival was monitored from day 2 postinjection until the death of all mosquitoes. Two hundred (200) female mosquitoes per treatment group (LacZ and Arginase) were injected for experiments involving infection with P. berghei. Parasite infection was performed 48 h after injection, and oocyte count was determined. Validamycin was administered at varying concentrations to third-stage (L3) larvae and first-stage (L1) larvae, then biochemical parameters and effect on geneexpression were investigated. Appropriate statistical analyses were carried out on the results. The central metabolic model consisted of 570 reactions, 471 metabolites, and 833 genes distributed across cytoplasm, mitochondria, and extracellular compartments. Three genes out of the 106 genes predicted from the network were selected, and three other nonmetabolic genes for experimental validation in An. gambiae G3 mosquitoes based on established literature alluding to their essentiality. The six genes validated were Trehalase, Arginase, 3-hydroxykynurenine transaminase (3HKT), Heat shock 70kDa protein (HSP), elongation factor 2 (2elf), and elongation factor 1-alpha. Knockdown of HSP and 2elf resulted in a significant reduction (p<0.05) in the percentage survival of mosquitoes compared to control groups. Similarly, knockdown of arginase led to a marked reduction (p<0.05) in the number of oocytes count per midgut compared to the control group. In addition, larval treatment with validamycin A, an inhibitor of trehalase resulted in marked larval death at 48 h in a dose-dependent manner and retarded development of mosquitoes. Lethal concentration 50 (LC₅₀) was 167.1 ppm in L3 larvae and 30.71 ppm in L1 larvae. Treatment with validamycin increased trehalose concentration at all concentrations considered and expression of insulin-like peptide2 at 500 ppm, 24 h after validamycin A exposure. This study suggests trehalase as a possible larvicide target, revealed the importance of HSP and 2elf for mosquito survival, and arginase for parasite development. These may serve as potential targets for vector control. Further studies to identify suitable inhibitors for these targets is recommended.

Keywords: Anopheles, Elongation factor, Heat shock, Plasmodium, Trehalase, Validamycin, Vector control.