ENHANCEMENT OF DATA CENTRE POWER CONSUMPTION THROUGH A PREDICTIVE ALGORITHM

AFOLABI, ROTIMI (15PCK01078)

OCTOBER 2022

ENHANCEMENT OF DATA CENTRE POWER CONSUMPTION THROUGH A PREDICTIVE ALGORITHM

BY

AFOLABI, ROTIMI (15PCK01078) B.Tech Electronic and Electrical Engineering, Ladoke Akintola University of Technology, Ogbomoso M.Sc Electrical Power Systems Engineering, University of Bath, Bath

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D) IN ELECTRICAL AND ELECTRONICS ENGINEERING IN THE DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

OCTOBER 2022

ACCEPTANCE

This is to attest that this thesis is accepted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy in Electrical and Electronics Engineering in the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Nigeria.

Mrs. Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, AFOLABI, ROTIMI (15PCK01078) declare that this research was carried out by me under the supervision of Prof. Bamidele Adebisi of Department of Engineering, Manchester Metropolitan University, Manchester, United Kingdom and Prof. Anthony U. Adoghe of the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Nigeria. I attest that the thesis has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this thesis are duly acknowledged.

AFOLABI, ROTIMI

Hotelin

Signature and Date

CERTIFICATION

We certify that this thesis titled "ENHANCEMENT OF DATA CENTRE POWER CONSUMPTION THROUGH A PREDICTIVE ALGORITHM" is an original research work carried out by AFOLABI, ROTIMI (15PCK01078) in the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. Bamidele Adebisi and Prof. Anthony U. Adoghe. We have examined and found this work acceptable as part of the requirements for the award of Doctor of Philosophy (Ph.D) degree in Electrical and Electronics Engineering.

Prof. Bamidele Adebisi (Supervisor)

Prof. Anthony U. Adoghe (Co-Supervisor)

Prof. Emmanuel Adetiba (Head of Department)

Prof. Tolulope O. Akinbulire (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DEDICATION

This project work is dedicated to Almighty God, The Most Gracious and The Most Merciful for making this project work a reality through the provisions and sustenance which He provided.

ACKNOWLEDGEMENTS

Glory, honour and adoration be to God Almighty who makes everything beautiful in its time, you alone are God and will forever be.

I cannot but appreciate the Visioner and Chancellor of Covenant University, Dr. David Oyedepo for providing a rich platform for productive academic research and an innovative space in a wonderfully conducive, serene, and safe learning environment. I appreciate the entire Covenant University management – the Vice-Chancellor, Prof. Abiodun H. Adebayo, the Registrar, Mrs. Tobi-Davids A. Regina, the Dean of the School of Post-graduate Studies (SPS), Prof. Akan B. Williams, the Sub Dean of SPS, Dr. Emmanuel O. Amao and the Dean of the College of Engineering, Prof. David O. Olukanni.

My profound gratitude also goes to my wonderful supervisors, Prof. Bamidele Adebisi and Prof. Anthony U. Adoghe, who painstakingly and patiently tutored me on this research. I thank you sirs for your guidance, love, support, encouragement, ideas, and advice always. May the good Lord reward your labour of love over me and continue to bless you sirs. I appreciate the Head of Department of Electrical & Information Engineering, Prof. Emmanuel Adetiba and all the lecturers in the Department, for their support during the programme. My sincere and unending appreciation goes to Dr. Ayokunle A. Awelewa, Dr. Ayoade F. Agbetuyi, Dr. Ademola Abdulkareem, Dr Okokpujie Kennedy, Dr Damilare Akande, Dr. Olumide Ajayi, Dr. Samson I. Ojo, Engr. Timileyin Sanni, Engr. Adeyemi Alao, Mr. Lateef Shittu, Miss Bimbola Oladoje and Mrs Chinemere Owuama for their unquantifiable contributions and support so far, God will bless you richly.

A very big thanks to Ven. Matthew Olajide and Mrs Olajide for their prayers and support, I pray for more unction to function, and you will continue to be relevant in His kingdom. Sincere appreciation to my parents late Pa Afolabi Olaleye and Mrs. Mary Olaleye, my siblings, my in-laws, and the entire members of my family for their prayers, unconditional support, and encouragement. Gratitude to my colleagues, friends, Eletrik Planet and Newland Polytechnic management and staff, also to everyone who have contributed in one way or the other to the success of this work. Thank you for your prayer, encouragements, and support in my academic pursuit, you are all incredible and God bless you.

Finally, to my darling wife, Folakemi Ajoke, and my boys, Mojolaoluwa, Oluwafikayomi and Oluwatoni - we did it! Thanks for the encouragement and unwavering support in all ways. Your love and understanding sure gave strength during tough times. You all paid the invaluable price to earning this feat. Thank you.

TABLE OF CONTENTS

ACCEPTANCE	III
DECLARATION	IV
CERTIFICATION	\mathbf{V}
DEDICATION	VI
ACKNOWLEDGEMENTS	VII
TABLE OF CONTENTS	IX
LIST OF TABLES	XIII
LIST OF FIGURES	XIV
LIST OF PLATE	XX
LIST OF ABBREVIATIONS	XXI
ABSTRACT	XXII
CHAPTER ONE: INTRODUCTION	1
1.1 Background to the Study	1
1.2 Statement of the Problem	3
1.3 Aim and Objectives	4
1.4 Scope of the Study	5
1.5 Justification for the Research	5
CHAPTER TWO: LITERATURE REVIEW	7
2.1 Preamble	7
2.1.1 Cloud Computing Technology	7
2.1.1 Cloud Computing Technology 2.1.2 Data Centre	8
2.1.2 Data Centre 2.1.3 Tasks in Cloud Computing	15
2.1.5 Tasks in Cloud Computing 2.1.4 Virtual Machine	15
2.1.5 Data Centre Administrator	16
	10
2.2. Components of Cloud Computing Data Centre	16
2.2.1 Computing Servers	16
2.2.2 Switches and communication Links	16
2.2.3 Workloads	17
2.2.4 Cooling System	17
2.2.5 Storage Devices	18
2.3 Cloud Computing Data Centre Environmental Concepts	18
2.3.1 Virtualization	18
2.3.2 Replication of Data	19
2.4 Energy Efficiency	19

2.5 Factors Affecting Power Consumption in Data Centre	21
2.5.1 Site Location	21
2.5.2 Temperature	21
2.5.3 Relative Humidity	22
2.5.4 Power Density	${22}$
2.5.5 Facility Occupancy	23
2.6. Ontimization Algorithm	23
2.6 Deptimization Algorithm	23
2.0.1 Heuristic Algorithms	24
2.6.2 Meta-Heuristic Algorithms	24
2.7 Kalman Filter	31
2.7.1 KF Initialization	31
2.7.7 Kalman Filter Prediction	32
2.7.2 KE Measurement Undate and Correction	32
2.7.5 KF Wedsurement Opdate and Confection	22
2.7.4 KF Galli	32
2.8 Review of Existing Works on Energy Consumption Optimization in Clou	Jd
Computing System	35
2.9 Gaps in the Literature	45
2.10 Chapter Summary	46
CHAPTER THREE: METHODOLOGY	47
3.1 Preamble	47
3.2 Study Area	47
3 3 Data Collection and Analysis	47
	40
3.3.1 Power Consumption of Selected Data Centre	49
3.3.2 Traffic of Selected Data Centre	50
3.3.3 Ambient temperature of Selected DC	52
3.3.4 Effect of Temperature and Traffic on Power Consumption of Selected D Centre	ata 53
3.4 Data Trend Analysis of the DC using Autoregressive Moving Average	
(ARMA)	54
3.5 Linear Power Consumption Prediction Model (LPCPM) for DC	58
3.6 Power Consumption Optimization using KF with GA	60
3.6.1 Kalman Filter-Based Dower Consumption Estimation Model	60
3.6.2 Optimizing the KE model peremeters using CA	00 61
5.0.2 Optimizing the Kr model parameters using GA	04
3.7 Development of an Adaptive Server Utilization Scheme for DC	69

3.8 Training and Testing Sets of the Real-Time Data	72
3.9 Performance Metrics of the Proposed Strategies	72
3.9.1 Mean Absolute Error (MAE)	72
3.9.2 Root Mean Square Error (RMSE)	73
3.9.3 Mean Absolute Percentage Error (MAPE)	73
3.9.4 Energy Consumption (EC)	73
3.9.5 Power Usage Effectiveness (PUE)	74
3.10 Chapter Summary	74
CHAPTER FOUR: RESULTS AND DISCUSSION	75
4.1 Preamble	75
4.1.1 Evaluation of the Data Centre's Daily Data	75
4.1.2 Hourly Average Data of a Server in the Data Centre	77
4.1.3 Impact of Day of the Week on the DC	80
4.2 Power Consumption and Traffic Trend Analysis by ARMA	90
4.3 Power Consumption Prediction Using Developed Linear Power Consum	otion
Prediction (LPCP) Model	100
4.3.1 Prediction and Analysis of LPCP Model	100
4.3.2 Effectiveness of the developed Linear Power Consumption Prediction for Servers (LPCPS) model	110
4.4 Kalman Filter with Genetic Algorithm model (PCoKFGA)	111
4.4.1 Prediction and Analysis of Kalman Filter with Genetic Algorithm model	
(PCoKFGA)	111
4.4.2 Effectiveness of the PCoKFGA model	120
4.5 Adaptive Server Utilization Scheme (ASUS)	120
4.5.1 Prediction and Analysis of Adaptive Server Utilization Scheme	120
4.5.2 Effectiveness of the ASUS model	129
4.6 Comparison of Power Consumption Prediction Models for the Data Cent	tre
	130
4.6.1 Error Measurements	133
4.6.2 Energy Consumption (EC) and Power Usage Effectiveness (PUE)	135
4.7 Complexity and Implementation of Cost Analyses	136
4.7.1 Computational Complexity of the Models	137
4.7.2 Implementation Cost Analysis of the Models	138
4.8 Chapter Summary	139

CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS	140
5.1 Conclusion	140
5.2 Recommendations	141
5.3 Limitation of Study	141
5.4 Contributions to Knowledge	142
REFERENCES	143
APPENDIX A	153
APPENDIX B	156
APPENDIX C	158
APPENDIX D	160

LIST OF TABLES

TABL	TITLE OF TABLES	PAGES
1.1	Power Consumption DC Over Years in U.S., E.U. and Globally	6
3.1	DC's Data Categorization	49
3.2	Power Consumptions for Dataset 1 of 2019	50
3.3	Power Consumptions for Dataset 1 of 2020	50
3.4	Traffic Load for Dataset 1 of 2019	51
3.5	Traffic Load for Dataset 1 of 2020	51
3.6	Ambient Temperature for Dataset 1 of 2019	53
3.7	Ambient Temperature for Dataset 1 of 2020	53
3.8	Average of Measured Attributes of the DC for Dataset 1 of 2019	54
3.9	Average of Measured Attributes of the DC for Dataset 1 of 2020	54
3.10	Samples of the DC Total Power Consumption Data	56
3.11	GA Simulation Parameters	69
3.12a	Percentage Average Traffic Load by Server	70
3.12b	Percentage Average Traffic Load by Day	70
4.1	Calculated Constant of Proportionality k for each hour	101
4.2	Error Measurements of Power Consumption Prediction for the year 20	19 134
4.3	Error Measurements of Power Consumption Prediction for the year 20	20 134
4.4	EC and PUE of Data Centre for the year 2019	136
4.5	EC and PUE of Data Centre for the year 2020	136
4.6	Computational Complexity of the Models	137

LIST OF FIGURES

FIGU	RES TITLE OF FIGURES	PAGES
1.1	Power Consumption DC over Years in U.S., E.U. and Globally	6
2.1	Data Centre Cloud Computing Domains	10
2.2	Approximate Distribution of Energy amongst the Components of DC	11
2.3	Electrical System Arrangement of a tier 1 Data Centre	12
2.4	The Electrical System Arrangement of a Tier II DC with Panel Voltage	e of
	415V	12
2.5	The Single Line Diagram of Electrical System Arrangement of Tier III	DC
	with Panel Voltage of 415V	13
2.6	Single Line Diagram of a Tier IV DC with Panel Voltage of about 415	V 14
3.1	Schematic Diagram of Data Centre (For 3rd Generation Network)	49
3.2	Schematic Diagram of Data Centre Traffic flow	52
3.3	Flowchart for Finding Appropriate Values for the ARMA Model Lags	57
3.4	Server's Power Consumption Prediction Model	59
3.5	The PCoKFGA Technique for Power Consumption Prediction	60
3.6	Flowchart for Kalman Filter Prediction Model	63
3.7	Coding of the GA Chromosome	66
3.8	Crossover Operation	67
3.9	Mutation Operation	67
3.10	GA Simulation Process	68
4.1a	DC's Power Consumption, Traffic and Ambient Temperature Versus	Day for
	the Year 2019	76
4.1b	DC's Power Consumption, Traffic and Ambient Temperature Versus I	Day for
	the Year 2020	77
4.2a	DC Power Consumption, Traffic and Ambient Temperature Versus Tim	ne for
	the Year 2019	79
4.2b	DC Power Consumption, Traffic and Ambient Temperature Versus Tim	ne for
	the Year 2020	79
4.3a	Power Consumption, Traffic and Ambient Temperature Versus Time for	or
	Sundays of the Year 2019	81

4.3b	Power Consumption, Traffic and Ambient Temperature Versus Time for	
	Sundays of the Year 2020	81
4.4a	Power Consumption, Traffic and Ambient Temperature Versus Time for	
	Mondays of the Year 2019	82
4.4b	Power Consumption, Traffic and Ambient temperature Versus Time for	
	Mondays of the Year 2020	82
4.5a	Power Consumption, Traffic and Ambient Temperature Versus Time for	
	Tuesdays of the Year 2019	84
4.5b	Power Consumption, Traffic and Ambient Temperature Versus Time for	
	Tuesdays of the Year 2020	84
4.6a	Power Consumption, Traffic and Ambient Temperature Versus Time for	
	Wednesdays of the Year 2019	85
4.6b	Power Consumption, Traffic and Ambient Temperature Versus Time for	
	Wednesdays of the Year 2020	85
4.7a	Power Consumption, Traffic and Ambient Temperature Versus Time for	
	Thursdays of the Year 2019	86
4.7b	Power Consumption, Traffic and Ambient Temperature Versus Time for	
	Thursdays of the Year 2020	86
4.8a	Power Consumption, Traffic and Ambient Temperature Versus Time for	
	Fridays of the Year 2019	88
4.8b	Power Consumption, Traffic and Ambient Temperature Versus Time for	
	Fridays of the Year 2020	88
4.9a	Power Consumption, Traffic and Ambient Temperature Versus Time for	
	Saturdays of the Year 2019	89
4.9b	Power Consumption, Traffic and Ambient Temperature Versus Time for	
	Saturdays of the Year 2020	89
4.10a	Prediction of Power Consumption and Traffic of Data Centre by ARMA	
	Model for Sundays in 2019	91
4.10b	Prediction of Power Consumption and Traffic of Data Centre by ARMA	
	Model for Sundays in 2020	91
4.11a	Prediction of Power Consumption and Traffic of Data Centre by ARMA	

	Model for Mondays in 2019	92
4.11b	Prediction of Power Consumption and Traffic of Data Centre by ARMA	
	Model for Mondays in 2020	92
4.12a	Prediction of Power Consumption and Traffic of Data Centre by ARMA	
	Model for Tuesdays in 2019	94
4.12b	Prediction of Power Consumption and Traffic of Data Centre by ARMA	
	Model for Tuesdays in 2020	95
4.13a	Prediction of Power Consumption and Traffic of Data Centre by ARMA	
	Model for Wednesdays in 2019	96
4.13b	Prediction of Power Consumption and Traffic of Data Centre by ARMA	
	Model for Wednesdays in 2020	96
4.14a	Prediction of Power Consumption and Traffic of Data Centre by ARMA	
	Model for Thursdays in 2019	97
4.14b	Prediction of Power Consumption and Traffic of Data Centre by ARMA	
	Model for Thursdays in 2020	97
4.15a	Prediction of Power Consumption and Traffic of Data Centre by ARMA	
	Model for Fridays in 2019	98
4.15b	Prediction of Power Consumption and Traffic of Data Centre by ARMA	
	Model for Fridays in 2020	98
4.16a	Prediction of Power Consumption and Traffic of Data Centre by ARMA	
	Model for Saturdays in 2019	99
4.16b	Prediction of Power Consumption and Traffic of Data Centre by ARMA	
	Model for Saturdays in 2020	100
4.17a	Prediction of Power Consumption of Data Centre by the LPCP Model for	
	Sundays in 2019	102
4.17b	Prediction of Power Consumption of Data Centre by the LPCP Model for	
	Sundays in 2020	103
4.18a	Prediction of Power Consumption of Data Centre by the LPCP Model for	
	Mondays in 2019	103
4.18b	Prediction of Power Consumption of Data Centre by the LPCP Model for	
	Mondays in 2020	104

4.19a	Prediction of Power Consumption of Data Centre by the LPCP Model for	
	Tuesdays in 2019	105
4.19b	Prediction of Power Consumption of Data Centre by the LPCP Model for	
	Tuesdays in 2020	106
4.20a	Prediction of Power Consumption of Data Centre by the LPCP Model for	
	Wednesdays in 2019	106
4.20b	Prediction of Power Consumption of Data Centre by the LPCP Model for	
	Wednesdays in 2020	107
4.21a	Prediction of Power Consumption of Data Centre by the LPCP Model for	
	Thursdays in 2019	107
4.21b	Prediction of Power Consumption of Data Centre by the LPCP Model for	
	Thursdays in 2020	108
4.22a	Prediction of Power Consumption of Data Centre by the LPCP Model for	
	Fridays in 2019	108
4.22b	Prediction of Power Consumption of Data Centre by the LPCP Model for	
	Fridays in 2020	109
4.23a	Prediction of Power Consumption of Data Centre by the LPCP Model for	
	Saturdays in 2019	109
4.23b	Prediction of Power Consumption of Data Centre by the LPCP Model for	
	Saturdays in 2020	110
4.24a	Prediction of Power Consumption of Data Centre by the PCoKFGA Model	
	for Sundays in 2019	112
4.24b	Prediction of Power Consumption of Data Centre by the PCoKFGA Model	
	for Sundays in 2020	113
4.25a	Prediction of Power Consumption of Data Centre by the PCoKFGA Model	
	for Mondays in 2019	113
4.25b	Prediction of Power Consumption of Data Centre by the PCoKFGA Model	
	for Mondays in 2020	114
4.26a	Prediction of Power Consumption of Data Centre by the PCoKFGA Model	
	for Tuesdays in 2019	114
4.26b	Prediction of Power Consumption of Data Centre by the PCoKFGA Model	

	for Tuesdays in 2020	115
4.27a	Prediction of Power Consumption of Data Centre by the PCoKFGA Model	
	for Wednesdays in 2019	115
4.27b	Prediction of Power Consumption of Data Centre by the PCoKFGA Model	
	for Wednesdays in 2020	116
4.28a	Prediction of Power Consumption of Data Centre by the PCoKFGA Mod	el for
	Thursdays in 2019	116
4.28b	Prediction of Power Consumption of Data Centre by the PCoKFGA Mod	el for
	Thursdays in 2020	117
4.29a	Prediction of Power Consumption of Data Centre by the PCoKFGA Model	
	for Fridays in 2019	118
4.29b	Prediction of Power Consumption of Data Centre by the PCoKFGA Model	
	for Fridays in 2020	118
4.30a	Prediction of Power Consumption of Data Centre by the PCoKFGA Model	
	for Saturdays in 2019	119
4.30b	Prediction of Power Consumption of Data Centre by the PCoKFGA Model	
	for Saturdays in 2020	119
4.31a	Prediction of Power Consumption of Data Centre by the ASUS Model for	
	Sundays in 2019	121
4.31b	Prediction of Power Consumption of Data Centre by the ASUS Model for	
	Sundays in 2020	122
4.32a	Prediction of Power Consumption of Data Centre by the ASUS Model for	
	Mondays in 2019	122
4.32b	Prediction of Power Consumption of Data Centre by the ASUS Model for	
	Mondays in 2020	123
4.33a	Prediction of Power Consumption of Data Centre by the ASUS Model for	
	Tuesdays in 2019	124
4.33b	Prediction of Power Consumption of Data Centre by the ASUS Model for	
	Tuesdays in 2020	125
4.34a	Prediction of Power Consumption of Data Centre by the ASUS Model for	
	Wednesdays in 2019	125

4.34b	Prediction of Power Consumption of Data Centre by the ASUS Model for	
	Wednesdays in 2020	126
4.35a	Prediction of Power Consumption of Data Centre by the ASUS Model for	
	Thursdays in 2019	126
4.35b	Prediction of Power Consumption of Data Centre by the ASUS Model for	
	Thursdays in 2020	127
4.36a	Prediction of Power Consumption of Data Centre by the ASUS Model for	
	Fridays in 2019	127
4.36b	Prediction of Power Consumption of Data Centre by the ASUS Model for	
	Fridays in 2020	128
4.37a	Prediction of Power Consumption of Data Centre by the ASUS Model for	
	Saturdays in 2019	128
4.37b	Prediction of Power Consumption of Data Centre by the ASUS Model for	
	Saturdays in 2020	129
4.38	Average Power Consumption Versus Time for the Prediction Models	133
4.39	Cost Versus Energy Consumption of the Models	139

LIST OF PLATE

PLAT	E TITLE OF PLATE	PAGE
1	Clamp Meter Displaying the Reading of the Data Captured	48

LIST OF ABBREVIATIONS

Abbreviations	Description
ASUS	Adaptive Server Utilization Scheme
ARMA	Autoregressive Moving Average
CC	Cloud Computing
CPU	Centre Processing Unit
DC	Data Centre
DPM	Dynamic Power Management
EC	Energy Consumption
GA	Genetic Algorithm
I.T	Information Technology
ICT	Information Communication Technology
ІоТ	Internet of Things
KF	Kalman Filter
LPCPM	Linear Power Consumption Prediction
Model	
MAE	Mean Absolute Error
MAPE	Mean Absolute Percentage Error
NCC	Nigerian Communication Commission
PUE	Power Usage Effectiveness
PCoKFGA	Power Consumption Optimization using KF
with GA	
RMSE	Root Mean Square Error

ABSTRACT

Data Centres (DCs) are of paramount importance in the telecommunications industry to meet up with the rapid increase in the demand for telecommunication services. However, the cost of power consumption of a DC accounts for about 80% of the cost incurred in maintaining Data Centres. This situation is further exacerbated in a country like Nigeria where there is highly unstable power supply from the national grid. The unstable power supply leading to increase in the cost of maintaining a DC due to alternative sources of power supply required. Several research projects such as power consumption prediction model and energy consumption optimization have been carried out to reduce the power consumption of Data Centres. However, the existing works suffer from assumption that all the modular that are not carrying traffic will be on idle mode. This generates additional heat and requires a cooling system that consumes extra power compared to when it is completely off. Also, some of the techniques proposed in the literature lack an accurate prediction of the power consumption in Data Centres. This research therefore reduced DC power consumption through a predictive algorithm using Genetic Algorithm (GA) with Kalman Filter (KF) parameters. Data were collected from five different servers in Nigeria, named BSC 13, BSC 14, BSC 15, RNC 05 and RNC 06 using power analyser, clamp meter and thermometer. The historical assessment of data collected were carried out for the DC under study. Two years data (January to December of 2019 and 2020) were collected from the five servers. The data were recorded on an hourly basis for each 357 days in 2019 and 358 in 2020, to obtain a total of 8568 and 8592 samples respectively. All the hourly data measured, and the ones displayed by rectifier Human Machine Interface (HMI) were compared to obtain the percentage error and ascertain the integrity of the data. The data were pre-processed for consistency and the final data used for each year under study, consists of 8400 samples. The final data were divided and categorized into two Datasets. The first dataset was used to create a prediction model, while the second dataset was used for testing. The GA was used to obtain best KF parameters, afterwards KF was used to predict the future power consumption on hourly basis for each day of the week. The proposed model gave low power consumption with accurate prediction when compared with the existing models. Linear Power **Consumption Prediction Model (LPCPM) and Adaptive Server Utilization Scheme** (ASUS) were also utilized with the assumption that the idle servers are not energised when not required, the performances of these models using different metrics when compared to the existing models in literature demonstrates superiority in terms of cost, power consumption reduction and negligible prediction average absolute error of 0.0025 (0.25%) was obtained.

Keywords: Data Centre, Genetic Algorithm, Kalman Filter, Base Station Controller, Radio Network Controller, Linear Power Consumption Prediction Model, Adaptive Server Utilization Scheme, Power Consumption and Samples.