CLASSIFICATION OF CHEST X-RAY IMAGES OF LUNG DISEASES USING DEEP CONVOLUTIONAL NEURAL NETWORK

OLAYIWOLA, JOY OLUWABUKOLA (20PCJ02085)

DECEMBER, 2022

CLASSIFICATION OF CHEST X-RAY IMAGES OF LUNG DISEASES USING DEEP CONVOLUTIONAL NEURAL NETWORK

BY

OLAYIWOLA, JOY OLUWABUKOLA (20PCJ02085) B.Tech.(Honors) Computer Engineering, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTERS OF ENGINEERING (M.Eng.) DEGREE IN COMPUTER ENGINEERING IN THE DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY, OTA, OGUN STATE

DECEMBER, 2022

ACCEPTANCE

This is to attest that this dissertation has been accepted in partial fulfilment of the requirements for the award of the degree of Masters of Engineering in Computer Engineering in the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akpan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, OLAYIWOLA, JOY OLUWABUKOLA (20PCJ02085) declare that this dissertation is a representation of my work and is written and implemented by me under the supervision of Dr. Joke A. Badejo of the Department of Electrical and Information Engineering, Covenant University, Ota, Nigeria. I attest that this dissertation has in no way been submitted either wholly or partially to any other university or institution of higher learning for the award of a masters' degree. All information cited from published and unpublished literature has been duly referenced.

OLAYIWOLA, JOY OLUWABUKOLA

Signature and Date

CERTIFICATION

This is to certify that the research work "CLASSIFICATION OF CHEST X-RAY IMAGES OF LUNG DISEASES USING DEEP CONVOLUTIONAL NEURAL NETWORK" is an original research work carried out by OLAYIWOLA, JOY OLUWABUKOLA (20PCJ02085), meets the requirements and regulations governing the award of Masters of Engineering (M.Eng.) degree in Computer Engineering from the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, and is approved for its contributions to knowledge and literary presentation.

Dr. Joke A. Badejo (Supervisor)

Prof. Emmanuel Adetiba (Head of Department)

Prof. Jonathan GanaKolo (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This research work is dedicated first and foremost to God Almighty, the custodian of all wisdom, knowledge, and understanding, for His grace and favour throughout the duration of carrying out this research. Then to my family for their endless support and love.

ACKNOWLEDGMENTS

My profound gratitude goes firstly to God Almighty for His unspeakable gifts wherewith He has so lavishly poured upon me, and His daily benefits that I enjoy, most pertinent of which is life itself.

My sincere appreciation goes to the Chancellor, Covenant University, Dr. David O. Oyedepo, whose words have always been a constant reminder that anything is possible and achievable. Thank you very much sir, and may your legacy outlive you. Also, to the Vice Chancellor, Professor Abiodun H. Adebayo, the Dean School of Postgraduate Studies, Prof. Akan B. Williams, the Head of Department Electrical and Information Engineering Department, Prof. Emmanuel Adetiba of Covenant University for all their tireless pursuits in seeing to the realization of vision 10:2022 for Covenant University being among the top ten Universities in the World. May God Almighty immensely reward all your efforts.

My deep appreciation goes to my amiable supervisor, Dr. Joke A. Badejo for her kindheartedness, support, mentorship, and advice she gave to me through the stages of this research work enabling me to complete it in time. The word "well done" from her to me, give me a lot of courage in achieving success. Thank you very much, ma, God Almighty will bless you and yours. Many thanks also to the entire Academic and Non-Academic staff in the Department of Electrical and Information Engineering. May the good Lord reward you all for your investments in my life. Also, to our Departmental PG representative Dr.Ayokunle A. Awelewa, I really appreciate you, sir. Thanks for all you do. God bless you and reward your labour of love.

I also want to appreciate deeply my colleagues; Adetola, Emmanuel, Oghor, Emeka, Kingsley, Kennedy, Andrew, and Innocent, to name a few, whose contributions were invaluable all through my postgraduate studies. God bless you all and reward you abundantly.

I also appreciate the HOD (Engr. D.W.S. Alausa) and staff of the Department of Computer Engineering, Federal Polytechnic, Ilaro, Ogun State, for the support given to me during this program. I also appreciate the following people for their immense support; Dr. Afolabi Olajide, Opeyemi Dada, Mr.& Mrs Olufemi Ige, and Mrs Jegede O.W. to mention a few, God rewards your labour of love.

My heartfelt and deep appreciation goes to my darling husband Mr. AdewoleOlayiwola and my children (Great Nations) for their love, moral & financial support, and prayers. My heartfelt appreciation also goes to my parents, Elder & Mrs Abayomi Osasona, Elder &DcnAyoadeFajinmi, and Dr.& Mrs Taiwo Obateru who has always been there for me and stood in prayers for my destiny. Words cannot express how indebted I am to you. I pray you will live long enough to reap the benefits of the seeds you have sown in my life and that of my siblings. I love you. God bless you all.

TABLE OF CONTENT

COVER PAGE	i
TITLE PAGE	ii
ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	V
DEDICATION	vi
ACKNOWLEDGMENTS	vii
TABLE OF CONTENT	ix
LIST OF FIGURES	xi
LIST OF TABLES	xiii
ABSTRACT	xiv

CHAPTER ONE: 1INTRODUCTION		1
1.1	Background to the Study	1
1.2	Motivation for the Study	7
1.3	Statement of the Problem	8
1.4	Aim and Objectives of the Research	8
1.5	Scope of the Research	9
1.6	Dissertation Organisation	9

CHAPTER TWO: LITERATURE REVIEW

10

2.1	Preamble	10
2.2	Chapter Introduction	10
2.3	Chest X-Ray as Medical Imaging Technologies	14
2.4	CNN and Medical Image Classification	15
2.4.1	Pneumonia and COVID-19	18
2.4.2	Tuberculosis and COVID-19	20
2.4.3	COVID-19 Detection Using Artificial Intelligence Techniques	21
2.5	Transfer Learning	26
2.6	Pooling Layer	27
2.7	MobileNetV2 Architecture	29
2.8	Residual neural networks (ResNet 50/101) Architecture	30
2.9	AlexNet Architecture	31
2.10	Gaps in Existing Knowledge	32
2.11	Chapter Summary	32

CHAPT	TER THREE: MATERIALS AND METHODS	33
3.1	Preamble	33
3.2	Conceptual Framework of the Research	33
3.3	Dataset Description	34
3.4	Dataset Pre-processing	35
3.5	Dataset Analysis	36
3.6	Deep Learning Methods	37
3.7	Pre-processing of the Images to Resolve Inconsistent Data Format	46
3.8	Model Compiling	47
3.9	Chapter Summary	49
CHAPT	TER FOUR:RESULT AND DISCUSSION	50
4.1	Preamble	50
4.2	Curated Dataset Containing Images of Chest X-Ray of Lung Diseases	50
4.3	Performance Metrics of the Subclass Classification Model	51
4.3.1	Performance Metrics for 6-subclass Classification	52
4.3.2	Performance Metrics of 5-Subclass Classification	66
4.3.3	Performance Metrics of 4-Subclass Classification	78
4.4	Discussion of Results	84
4.5	Chapter Summary	87
СНАРТ	TER FIVE: CONCLUSION AND RECOMMENDATION	88
5.1	Summary	88
5.2	Conclusion	89
5.3	Contributions to Knowledge	89

5.4	Recommendations	90

REFERENCES	91
APPENDIX	101

LIST OF FIGURES

FIGURES LIST OF FIGURES

2. 1:	Chest X-ray Images	11
2.2:	The sampled images of Chest x-ray used in this study (a) COVID-19 (b)	
	Pneumonia (c) Normal (d) Tuberculosis positive (e) lung-opacity (f) bacterial	
	pneumonia	13
2.3:	An overview of the architecture of a convolutional neural network	16
2.4:	The General Design of the MobileNetV2 Model	18
2.5:	Illustration of Transfer Learning	27
2.6:	Global average pooling	28
2.7:	Max pooling	29
2.8:	The MobileNets convolution architecture	30
2.8:	An illustration of the architecture of AlexNet	31
3.1:	Chest X-ray Image classification	34
3.2:	Functions of the data folder for the chest X-ray classification	37
3.3:	Transfer learning Pipeline for Chest X-Ray Image Classification	39
3.4:	The building block of MobileNetV2 architecture	40
3.5:	The Architecture of a depthwise separable convolution block used in	
	MobileNetV2 architecture	41
3.6:	Architectural block diagram of the MobileNetV2 CNN model	42
3.7:	Architectural block diagram of the ResNet CNN model	44
3.8:	Architectural block diagram of the AlexNet CNN model	46
3.7:	Normalisation of the dataset	47
4.1:	Distribution of sample dataset (a) Training (b) Testing	51
4.3:	MobileNetV2 confusion matrix analysis of 6-subclass classification	54
4.4:	MobileNetV2 6-subclass classification training and validation accuracy	55
4.5:	MobileNetV2 6-subclass classification training and validation loss	56
4.6:	ResNet-50 confusion matrix analysis of 6-subclass classification	59
4.7:	ResNet-50 training and validation accuracy 6-subclass classification	60
4.8:	ResNet-50 training and validation loss 6-subclass classification	60
4.9:	ResNet-101 confusion matrix analysis of 6- subclass classification	61
4.10:	ResNet-101 training and validation loss 6-subclass classification	62
4.11:	ResNet-101 training and validation accuracy 6-subclass classification	62
	AlexNet confusion matrix analysis 6-subclass classification	64
4.13:	AlexNet training and validation loss 6-subclass classification	64
4.14:	AlexNet training and validation accuracy 6-subclass classification	65
4.15:	MobileNetV2 training and validation accuracy 5-subclass classification	69
	MobileNetV2 training and validation loss 5-subclass classification	69
4.17:	MobileNetV2 confusion matrix analysis 5-subclass classification	70
	ResNet-50 confusion matrix analysis 5-subclass classification	71
	ResNet-50 training and validation accuracy 5-subclass classification	72

4.20:	ResNet-50 training and validation loss 5-subclass classification	72
4.21:	ResNet-101 confusion matrix 5-subclass classification	73
4.22:	ResNet-101 training and validation loss 5-subclass classification	74
4.23:	ResNet-101 training and validation accuracy 5-subclass classification	74
4.24:	AlexNet confusion matrix 5-subclass classification	76
4.25:	AlexNet training and validation loss 5-subclass classification	77
4.26:	AlexNet training and validation accuracy for 5-subclass classification	77
4.27:	MobileNetV2 confusion matrix analysis of 4-subclass classification	81
4.28:	MobileNetV2 training and validation accuracy 4-subclass classification	81
4.29:	MobileNetV2 training and validation loss 4-subclass classification	82
4.30:	ResNet-50 confusion matrix analysis 4-subclass classification	82
4.31:	MobileNetV2 training and validation loss 4-subclass classification	83
4.32:	ResNet-50 training and validation loss 4-subclass classification	83

LIST OF TABLES

TABLES LIST OF TABLES

PAGES

2.1:	Pneumonia Detection Performance Comparison	19
2.2:	Tuberculosis detection performance comparison.	20
2.3:	Comparison of COVID-19 detection algorithm performance	23
3.1:	Chest X-Ray Images of Lung Disease Dataset Description	35
3.2:	Description of the total number of Images of Chest X-Ray per folder	36
3.3:	Architectural analysis of MobileNetV2 model	43
4.1:	MobileNetv2 results for macro average metrics for 6-subclass classification	52
4.2:	MobileNetV2 results for micro average metrics for 6-subclass classification	53
4.3	MobileNetv2 classification loss and accuracy function for 6-subclass	
	classification	55
4.4:	ResNet-50 results for macro average metrics for 6-subclass classification	57
4.5:	ResNet-50 results for micro average metrics for 6-subclass classification	57
4.6:	ResNet-50 loss and accuracy function for 6-subclass classification	58
4.7:	ResNet-101 loss and accuracy function for 6-subclass classification	63
4.8:	AlexNet loss and accuracy function for 6-subclass classification	65
4.9:	MobileNetv2 results for macro average metrics for 5-subclass classification	66
4.10:	MobileNetV2 results for micro average metrics for each class for 5- subclass	
	classification	66
4.11:	MobileNetV2 loss and accuracy for 5-subclass classification	67
4.12:	ResNet-50 results for macro average metrics for each class for 5- subclass	
	classification	67
4.13:	ResNet-50 results for micro average metrics for each class for 5-subclass	
	classification	68
4.14:	ResNet-50 loss and accuracy function for 5- subclass classification	68
4.15:	ResNet-101 loss and accuracy function for 5- subclass classification	75
4.16:	AlexNet loss and accuracy function for 5- subclass classification	78
4.17:	MobileNetV2 results for macro average metrics for 4-subclass classification	78
4.18:	MobileNetV2 results for micro average metrics for 4- subclass classification	79
4.19:	MobileNetV2 loss and accuracy for 4-subclass classification	79
4.20:	ResNet-50 results for macro average metrics for 4-subclass classification	79
4.21:	ResNet-50 results for micro average metrics for 4- subclass classification	80
4.22:	ResNet-50 loss and accuracy function for 4-subclass classification	80
4.23:	Comparison of the training time	85
4.24:	Comparison to the previous literature on the detection of lung diseases with ch	nest
	X-ray images	86

ABSTRACT

The accurate diagnosis of lung disease in infected patients is a crucial step in coping with and combating such diseases. Lung opacity, tuberculosis, COVID-19, bacterial pneumonia, and viral pneumonia are examples of infectious diseases that similarly affect the lungs. Classifying accurately which of these diseases (lung opacity, tuberculosis, COVID-19, bacterial pneumonia, and viral pneumonia or normal) an image of chest Xray is being infected with despite the similarities in the images is crucial. Therefore, this research aimed at developing a convolutional neural network, CNN-based model to classify the lung diseases. In this research work, four convolutional neural network models, MobileNetV2, Resnet-50, ResNet-101, and AlexNet were empirically analysed in order to classify lung diseases from images of chest X-rays. The models were utilised in three classification modes: 6-subclass (lung opacity, tuberculosis, COVID-19, bacterial pneumonia, viral pneumonia, and normal), 5-subclass (lung opacity, viral pneumonia, COVID-19, tuberculosis, and normal), and 4-subclass (lung opacity, viral pneumonia, COVID-19, and normal); to investigate the effect of high interclass similarity. The retrained ResNet-50 architecture provided the best classification accuracy with 97.22%, 92.14%, and 96.08% for 6-subclass, 5-subclass, and 4-subclass respectively. Nevertheless, ResNet-101 has the lowest classification accuracy with 78.12% and 79.49% for 6subclass and 5-subclass respectively while MobileNetV2 has the lowest classification accuracy of 88.89% for 4-subclass. The findings suggest that the ResNet-50 model can be applied to accurately diagnose lung diseases from chest images of X-rays even with high interclass similarity. Also, this corroborates the success of adopting computer-aided detection (CAD) systems designed for decision support in the classification of lung diseases.

Keywords: Lung disease, Deep Learning, Diagnosis, ResNet-50, MobileNetV2, Transfer Learning.