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ABSTRACT

The accurate diagnosis of lung disease in infected patients is a crucial step in coping with

and combating such diseases. Lung opacity, tuberculosis, COVID-19, bacterial

pneumonia,and viral pneumonia are examples of infectious diseases that similarly affect

the lungs. Classifying accurately which of these diseases (lung opacity, tuberculosis,

COVID-19, bacterial pneumonia, and viral pneumonia or normal) an image of chest X-

ray is being infected with despite the similarities in the images is crucial. Therefore, this

research aimed at developing a convolutional neural network, CNN-based model to

classify the lung diseases. In this research work, four convolutional neural network

models, MobileNetV2, Resnet-50, ResNet-101, and AlexNet were empirically analysed

in order to classify lung diseases from images of chest X-rays. The models were utilised

in three classification modes: 6-subclass (lung opacity, tuberculosis, COVID-19, bacterial

pneumonia, viral pneumonia, and normal), 5-subclass (lung opacity, viral pneumonia,

COVID-19, tuberculosis, and normal), and 4-subclass (lung opacity, viral pneumonia,

COVID-19, and normal); to investigate the effect of high interclass similarity. The

retrained ResNet-50 architecture provided the best classification accuracy with 97.22%,

92.14%, and 96.08% for 6-subclass, 5-subclass, and 4-subclass respectively. Nevertheless,

ResNet-101 has the lowest classification accuracy with 78.12% and 79.49% for 6-

subclass and 5-subclass respectively while MobileNetV2 has the lowest classification

accuracy of 88.89% for 4-subclass. The findings suggest that the ResNet-50 model can be

applied to accurately diagnose lung diseases from chest images of X-rays even with high

interclass similarity. Also, this corroborates the success of adopting computer-aided

detection (CAD) systems designed for decision support in theclassification of lung

diseases.

Keywords: Lung disease, Deep Learning, Diagnosis, ResNet-50, MobileNetV2,
Transfer Learning.
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