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In this study, Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) was used to predict
the mechanical properties of self‐compacting concrete (SCC) with silica fume as partial cement replacement
and Polyethylene terephthalate (PET) solid waste as partial sand replacement. PET plastic was varied between
0 and 20 wt% while the silica fume was varied between 0 and 40 wt%. The parameters investigated were the
compressive strength, tensile strength and impact strength of SCC. The RSM model was fairly accurate
(R2 ≥ 0.92) in predicting the mechanical properties. The model was statistically significant (p‐value < 0.5)
and did not possess any prediction bias. The ANN model was able to capture the variability of the data as evi-
denced by the good R2 threshold (R2 > 0.93) for training, testing and validation. Parity plots revealed that
both the ANN and RSM models do not have any prediction bias. However, the ANN model is superior because
of its higher accuracy and the use of admixtures enhanced the workability suitability for dataset. The 3D
microstructural analysis showed that the interfacial adhesion between the aggregates and the cementitious
materials reduced at increased partial replacement leading to a decrease in the strength.
Introduction

Self‐compacting concrete (SCC) is a type of concrete that possesses
superior flowability and self‐compacting ability compared to conven-
tional concrete (Ofuyatan and Edeki, 2018a; Ofuyatan and Edeki,
2018b). It first emerged in Japan in the 1980s (Okamura and Ouchi
2003). Since there is no need for concrete vibrations, its use in con-
struction minimises hearing damages on worksites due to the vibration
noises of concrete machines (Meko et al. 2021). It also decreases con-
struction time and ensures enough compaction (Mohammed et al.
2017; Okamura and Ouchi 2003; Ramanathan et al. 2013; Singh and
Singh 2018). Partial replacement with solid waste gives SCC a
double‐pronged advantage. It helps in the reduction of CO2 emissions
due to reduced cement use in construction (Meko and Ighalo, 2021a;
Meko and Ighalo, 2021b). It also helps in the reduction of solid waste
(in cases where they are used as a partial replacement). In this study,
Polyethylene terephthalate (PET) is one of the solid wastes used as a
partial replacement for sand while silica fume as partial replacement
for cement. It is a non‐biodegradable solid that pollutes the physical
environment and also reduces its aesthetic value (Ahmad et al.
2017; Sulyman et al. 2016).

Over the years, neural network based tools have been employed in
the prediction of the properties of concrete (Henigal 2020). As a result,
a relationship between the influencing elements, waste plastic and sil-
ica fume, and the affected parameters, the compressive, splitting ten-
sile strength and impact test, as output and input variables, will be
interesting to develop. To describe the link between the independent
and dependent variables, a variety of prediction procedures can be
used. RSM and ANN are two techniques of depicting inter‐
relationships that are worth mentioning. RSM is a robust statistical
tool highly useful in experimental works to investigate the mathemat-
ical association between input and output variables using a small num-
ber of trials. It works best in cases where numerous independent
variables influence one or more replies.

In the recent review of Ramrakhiani et al. (2019), they observed
that Artificial Neural Network (ANN) models are gradually replacing
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Table 2
Sieve analysis of fine and coarse aggregate.

Size of sieve Sand PET Coarse aggregate

12.5 mm 120 120 110
8.5 mm 120 120 45.8
4.75 mm 94.5 91.3 1.0
2.36 mm 85.6 80.6 0.3
1.18 mm 72.1 60.2 –

600 µm 49.9 15.7 –

300 µm 15.2 12.8 –

15 µm 2.8 0.4 –

Table 3
Chemical and physical quality features of Silica fume and Cement.

Components Cement Silica fume

CaO 62.86 0.99
SiO2 20.58 92.54
Al2O3 4.90 2.32
Fe2O3 4.20 0.57
MgO 2.80 –

SO3 2.30 0.30
K2O 0.60 1.01
Na2O 0.30 0.21
LOI e e
Specific Gravity (kg/m3) 3.09 2.28
Blaine fineness (cm2/g) 3400 200,000

Table 4
Physical properties of powdered PET.

Physical property of PET Results obtained

Color Green
Shape of particle flat
Thickness 0.22 mm
Specific gravity 1.42
Water absorption (24 h) –

Tensile strength 59.8 MPa
Bulk density 385.16 kg/m3

Approx. melting temperature 200–250 °C
Pozzolanic reactivity 135
Fineness 2850
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conventional linear models for the prediction of concrete properties.
ANN models have been used to model systems with fly ash (Azimi‐
Pour et al. 2020; Douma et al., 2017), silica fume (Awoyera et al.
2020; Rinchon 2017), metakaolin and blast furnace slag (Awoyera
et al. 2020) as partial sand replacement. Architectures such as back‐
propagation neural network (BPNN) (Asteris and Kolovos 2019),
genetic programming (GEP) (Awoyera et al. 2020), support vector
machine (SVM) (Azimi‐Pour et al. 2020), multi‐layer perceptron neu-
ral network (MLP‐ANN) (Sahraoui and Bouziani 2020) and ANN with
genetic algorithm (GA‐ANN) (Rinchon 2017) have also been explored.
Properties modelled in these studies includes creep strain (Al‐Rihimy
et al. 2019), compressive strength (Meesaraganda et al., 2019;
Serraye et al. 2021), tensile strength (Awoyera et al. 2020), flexural
strength (Awoyera et al. 2020), chloride concentration resistivity
(Rinchon 2017), and fresh properties (Koneru and Ghorpade 2020;
Sahraoui and Bouziani 2020). Though SCC with PET have been inves-
tigated (Aswatama et al. 2018; Bui et al. 2018; Sojobi et al. 2016),
ANN has not been employed to predict SCC mechanical properties
from combined silica fume and PET partial sand replacement. Further-
more, the current study also compared the suitability and performance
of response surface methodology (RSM) against ANN for the current
application. A novel 3D surface reconstruction technique was
employed for the microstructural analysis of the experimental samples.
In light of these, the novelty of the current study is justified.

The Response Surface Method (RSM) is a collection of mathemati-
cal and statistical tools that is useful and effective for modelling and
evaluating experimental issues (Rantung et al. 2019). Despite its wide-
spread usage in the design of trials and optimization, this strategy has
had limited application in the concrete industry. The response surface
was used by Iqbal et al. (2017) to investigate the effects of the SCC mix
parameter on several fresh and hardened properties responses, includ-
ing the slump flow, filling capacity, V‐funnel flow time, and compres-
sive strength. Ardalan et al. (2017) employed the RSM to enhance
compressive strength while decreasing water sorptivity, water absorp-
tion, and chloride permeability in high‐performance concrete built
with fly ash and metakaolin.

The aim of this study is to utilise Response Surface Methodology
(RSM) and Artificial Neural Networks (ANN) to model the mechanical
properties of self‐compacting concrete (SCC) with silica fume as partial
cement replacement and Polyethylene terephthalate (PET) solid waste
as partial sand replacement. The study also employed a novel 3D
reconstruction technology to investigate the concrete microstructural
properties. This is a first study where ANN and RSM performance
was compared for SCC with simultaneous partial replacement of con-
crete and sand using other materials.
Table 5
Designation of input variables and response.

Designation Data Unit Data band

Factor 1 Plastic % 0 ≤ x ≤ 20
Factor 2 Silica fume % 0 ≤ x ≤ 40
Factor 3 Time days 3 ≤ x ≤ 28
Response 1 Compressive strength N/mm2 10 ≤ y ≤ 32
Response 2 Tensile strength N/mm2 0.8 ≤ y ≤ 2.9
Response 3 Impact strength kN 22 ≤ y ≤ 135
Methodology

Experimental

The materials used for the development of the SCC include Port-
land cement (Dangote brand, grade 42.5 N), granite, river sand, super-
plasticizer (polycarboxylic ether‐based, conplast SP430 to BS‐5075
specification), PET, silica fume and water (EN‐1008 standard).
Table 1
Design of concrete mix.

Mix Cement
(kg)

Sand
(kg)

Granite
(kg)

Silica fume
(kg)

Plastic
(kg)

Super plasticizer
(%)

Water
(kg)

1 Control 28 37 42 – – 2 15
2 PET 5% + SF 10% 25.2 35.15 42 2.8 1.85 2 15
3 PET 10% + SF 20% 22.4 33.30 42 5.6 3.70 2 15
4 PET 15% + SF 30% 19.6 31.45 42 8.4 5.55 2 15
5 PET 20% + SF 40% 16.8 29.60 42 11.2 7.40 2 15
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Conplast SP430 is a chloride free, superplasticising admixture based
on selected sulphonated napthalene polymers. The PET was melted,
cooled and crushed to a fine powder before use. The range of SCC con-
stituents for the mix design in this study was adopted from guidelines
in EFNARC (EFNARC, 2002). The design of the concrete mixes is
shown in Table 1. The material composition is shown in Table 2,
Table 3 and Table 4 for aggregates, cementitious materials and PET
respectively. In the concrete, the PET plastic was varied between 0
and 20% by weight, while the silica fume varied between 0 and
40% simultaneously. The compressive strength (ASTM‐C39) and ten-
sile strength test of the developed SCC were carried out on compres-
sion testing machine (Model YES‐2000, England). The impact
strength of the SCC was also determined (Model YES‐2000, England).
All tests were repeated after 3, 7, 21 and 28 days. The results were
compiled into a dataset that will be used for the modelling study.
The dataset used for the modelling study is available in the Supple-
Table 6
Summary of RSM model accuracy.

Response Type R

Compressive strength Quadratic 0
Tensile strength Quadratic 0
Impact strength Quadratic 0

Fig. 1. (a-d). Response surfaces showing the effect of factors on the

3

mentary Material (Table S1). The microstructural analysis was done
using SEM (SEM, Phenom proX, Phenom‐World BV, The Netherlands)
at an acceleration voltage of 15 kV and magnification of × 320 and
then analysed by ImageJ v1.53 (Ighalo et al. 2021) for 3D
reconstruction.

RSM modelling

RSM is a group of statistical techniques used to investigate and
model functional relationships between input variables (x) and
response of interest (y) (Khuri and Mukhopadhyay 2010). An RSM
polynomial model is given by equation (1) where x is the input vari-
able, y is the output variable, β is a vector of unknown constant coef-
ficients referred to as parameters, ɛ and is a random experimental error
assumed to have a zero mean (Adeniyi et al., 2019). The input vari-
ables (known as factors) and the responses are summarised in Table 5.
2 Adjusted R2 P-value

.9664 0.9544 <0.0001

.9228 0.8953 <0.0001

.9428 0.9218 <0.0001

compressive strength of the SCC (a-c) and the parity plot (d).



Fig. 2. (a-d). Response surfaces showing the effect of factors on the tensile strength of the SCC (a-c) and the parity plot (d).
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RSM modelling was done using historical data design on Design expert
v10.0.1 software (Stat Ease Inc., Minneapolis, MN, USA). Historical
data design (HDD) is of great advantage because it does not restrict
the study to a specific experimental design and it allows the flexibility
of inputting any size of data (Ekpotu et al. 2020; Ighalo et al., 2020a).

y ¼ β0 þ ∑
k

i¼1
βixi þ∑∑

i<j
βijxixj þ ∑

k

i¼1
βiix

2
i þ ɛ ð1Þ
ANN modelling

ANN modelling of the mechanical data was done using the Neural
fitting tool (nftool) in Matlab 9.4 R2018a (Mathworks Inc., Natick,
MA, USA). This was executed using the MLP (multilayer
perceptron)‐based feed‐forward ANN which employs L‐M (Leven-
berge–Marquardt) method to propagation learning algorithm. The
basic expression for the neural network is given in equation (2) where
Yj is the output vector, Xi is the input vector, W1 is the weight vector
to hidden layer from inputs, W2 is the weight vector to output layer
from hidden layer, B1 is the bias vector to hidden layer and B2 is the
bias vector to hidden layer (Pattanayak et al. 2020). The three layers
of the ANN network employed include: the input layer (containing
%plastic, %silica fume, and curing time), a hidden layer and an output
layer (which was either the compressive strength, tensile strength,
impact strength). The input layer collects the information given to it
4

and delivers it to the hidden layer for processing, then, the hidden
layer performs all the data processing and yields the output (Ghosh
et al. 2015). The input data was divided into three categories at ran-
dom: the training samples of 60%, 20% for validation and 20% for
testing. The network was trained by trial‐and‐error using 1–15 nodes
before the proper number of neurons in the hidden layer was obtained
after multiple iterations to minimize errors and get the best network
topography (Betiku et al. 2015; Ighalo et al. 2020c) which is proved
by the decrease in MSE values and the increase in R2 values for the val-
idation results (Igwegbe et al. 2019). As each neuron is related to all
the neurons, these neurons usually communicate by transmitting sig-
nals to each other.

Yj ¼ W2 þ tan sigðW1Xi þ B1Þ þ B2 ð2Þ
Results and discussion

RSM modelling

The summarized results of the variance analysis for the 7 days and
28 days compressive, tensile and impact strength of concrete cube
specimens of size 150 mm using the response surface model are pre-
sented in Table 6. The analysis of variance provides the sum of
squares, degree of freedom, mean squares, F value, and p‐value at
the 5% significance level. It was observed that R2 ≥ 0.92 was achieved
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for all three responses. The adjusted R2 is an adjustment/modification
of the R2 that will not become unnecessarily inflated by the addition of
variables (it means that only the presence of key variables will con-
tribute to the overall physical interpretation of the response that will
increase the adjusted R2 value). It is better for the adjusted R2 that
is within 0.2 of the R2. This observation was the case of this study. Fur-
thermore, the p‐value reveals that the model is statistically significant
at a significance level of p < 0.5.

The performance assessment of the inter‐relationship between the
mix design parameters and the properties of silica fume and plastic
reinforced concrete was done and displayed using parity and 3D plots
of RSM. The plots for all investigated responses are presented in Fig. 1
(a–c). Fig. 1(a‐c) display the parity and 3D plots of dependent variables
drawn as function of two independent variables. From the parity and
3D plots of compressive strength shown in Fig. 1(a‐c), it was observed
that there is no clear interaction between the factor A and B. Reduced
strength was observed with reduced B this could be due to reduced
water intake as a result of the plastic particles. There was lack of bond
between the plastic and the mortar. The effect of the factors is shown
in Fig. 1(a‐c) for compressive strength, Fig. 2(a‐c) for tensile strength
and Fig. 3(a‐c) for impact strength. It was observed that there was a
gradual decrease in the hardened properties of the concrete with
increased partial replacement (for both plastic and silica fume). This
is consistent with the findings of other SCC studies where materials
such as eggshells (Ofuyatan et al. 2020; Yerramala 2014), blast furnace
slag (Guo et al. 2020; Ofuyatan et al. 2020), fly ash (Iqbal et al. 2017;
Fig. 3. (a-d). Response surfaces showing the effect of factors on

5

Rantung et al. 2019) and pumice (Ardalan et al. 2017) were used as
partial cement replacement. Increased curing time also led to
improved hardened properties of the concrete as observed from the
figures. The work done by Cheng and Sun (2006) revealed a poor bond
formation as a result of low strength due to the damage of the surface
texture.

From the parity plots in Fig. 1d for compressive strength, Fig. 2d for
tensile strength and Fig. 3d for impact strength, it was observed that
the predictions lie close to the diagonal this implies that the RSM
model could predict the result adequately, with good distribution of
the data points above and below the diagonal. This shows that the
model does not have over‐prediction or under‐prediction bias. The
major weak‐point of the RSM model is that it is aliased meaning that
the estimation of the influence of a factor affects the factor itself.
The actual and predicted response values clearly shows the closeness
of the actual and predicted responses. Significant deviation from nor-
mality was not observed in the residual plots; the plots visibly shows
that the selected model was suitable in predicting the strength and
interaction of the materials used.

ANN modelling

The feasibility of using ANN in the proportioning of SCC mixes was
conducted. The result of the ANN modelling is summarised in Table 7.
Six different input variables, the percentage of plastic, silica fume
used; the curing time; and strength data for the compressive, tensile
the impact strength of the SCC (a-c) and the parity plot (d).



Table 7
Summary ANN modelling results for the study.

Response Phase Model accuracy

MSE R2

Compressive strength Training 0.0483 0.9989
Validation 1.0917 0.9945
Testing 3.2371 0.9636

Tensile strength Training 0.0069 0.9925
Validation 0.0223 0.9318
Testing 0.0009 0.9784

Impact strength Training 8.5539 0.9953
Validation 82.429 0.9715
Testing 68.251 0.9983
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and impact were selected as the input variables for ANN modelling.
The 28 day strength of the concrete was the only output variable.

Table 7 presents the Mean Squared Error (MSE) of ANN model dur-
ing the training process based on input data. The least MSE in the val-
idation step happened at epoch 16 which has the best validation
performance equal to 82.4291. It is worth mentioning that model
training keeps going as long as the error of the network on the valida-
tion vector is reducing. In addition, the analysis stop point is equal to
22, i.e. 6 error repetitions after the epoch with the best validation per-
formance, i.e. epoch 16. The models were assessed by the mean
squared error (MSE) and the coefficient of determination (R2). The
models captured the variability of the data as evidenced by the good
R2 threshold (R2 > 0.93) for training, testing and validation. However,
the MSE of the impact strength was considerably poor compared to
that of the other two responses. The parity plots for compressive
Fig. 4. (a-c). Parity plots for the ANN modelling for compressiv
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strength, tensile strength and impact strength are shown in Fig. 4(a‐
c) respectively. Based on the even distribution of points around the
diagonals, it can be summarised that the model does not have a bias
to always over‐predict or under‐predict the results. The validation per-
formance of the ANN model at each epoch for compressive strength
and tensile strength is given in the Figure S1‐S3 respectively.
Microstructural analysis of the concrete surface

The 3D microstructure of the concrete surface with increasing par-
tial replacement of cement is shown in Fig. 5(a‐e) at a magnification
of × 500. From the images, the valleys (usually in purple) represents
regions of poor interfacial adhesion between the aggregates in the con-
crete and the cementitious materials (Ofuyatan et al. 2021). These
characteristic valleys can be observed to increase with each micro-
graph of increased partial replacement. This suggests that the hard-
ened properties of the concrete reduce due to a reduction in this
interfacial adhesion. Though the interfacial transition zone (ITZ)
might not be directly apparent from a microstructural image, the sur-
face implications (the outlines of the deep valleys) are a direct impli-
cation of its presence. In summary, the 3D microstructural analysis
reveals that the interfacial adhesion between the aggregates and the
cementitious materials reduced at increased partial replacement lead-
ing to poorer hardened properties. When the concrete constituents
have good interfacial adhesion, an incidental effect on the concrete
surface would not lead to significant deformation. However, poor
interfacial adhesion would result to the dislodging of some adhered
particles by an incidental force thereby compromising the surface
integrity of the concrete.
e strength (a), tensile strength (b) and impact strength (c).



Fig. 5. a. 3D microstructure of the control specimen at 28 days (magnification of × 500) B. 3D microstructure of the specimen containing PET 5% + SF 10% at
28 days (magnification of × 500) 5c. 3D microstructure of the specimen containing PET 10%+ SF 20% at 28 days (magnification of × 500) d. 3D microstructure
of the specimen containing PET 15% + SF 30% at 28 days (magnification of × 500) e. 3D microstructure of the specimen containing PET 20% + SF 40% at
28 days (magnification of × 500).
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Practical implications of the study

The findings of this study have several practical relevance to civil
and environmental engineers. Design models such as these are impor-
tant in preliminary design estimations of product performance
(Adeniyi et al. 2021) based on a target replacement of cement with
other solid wastes. Given the environmental advantages of reduced
cement use, the choice of the extent of partial replacement must be
carefully considered and the need to maintain the regulatory mini-
mum threshold of mechanical performance of the concrete. In cases
like this, predictive models are relevant and useful. Furthermore, pre-
diction models such as this are also relevant in the budgetary consid-
erations, financial feasibility analysis and preliminary costing of civil
engineering project. ANN predictions are fast and less expensive com-
pared to theoretical and/or experimental techniques (Ighalo et al.,
2020b).

The current study utilised a novel 3D reconstruction technology
based on the SEM analysis. This represents a new paradigm in research
in self‐compacting concrete where 3D visualisation of the concrete
microstructure is possible (Schmid et al. 2010) as opposed to the direct
vertical view of the conventional SEM analysis. From an environmen-
tal standpoint, the study bears positive implications for the environ-
ment. Reduced cement usage leads to lesser CO2 emissions (Ighalo
and Adeniyi 2020). Using solid wastes as partial replacement is a
viable waste management technique (Hossain et al. 2017).
Conclusion

In this study, RSM and ANN were used to model the hardened prop-
erties of SCC with silica fume and PET solid waste as partial con-
stituent replacement. Some important conclusions were derived from
the study.

(1) The workability assessed on the fresh properties showed that
the 10% PET + 20% SF attained the same slump as the control
mix which satisfied ERFNAC recommendation.

(2) A decrease in strength was observed as the percentage replace-
ment of the admixture increased.

(3) From the microstructural studies, with minimal replacements, C
– S – H gels were formed, and the rate of hydration was similar
to the reference concrete, as seen with mix 2. However, with
more significant substitutions, the C – S – H gels were reduced
as well as the chemical reaction between particles. The presence
of voids was visible in mix 5, which had the effect of weakening
the concrete.

(4) The use of ANN and RSM models, have shown to be helpful and
efficient models for predicting compressive strength based on
experimental results.

(5) Using the ANN and RSM approaches, we have obtained more
information with fewer trial mixes.

(6) The RSMmodel was fairly accurate (R2 ≥ 0.92) in predicting the
hardened properties of the concrete. The model was statistically
significant (p < 0.5) and did not possess any prediction bias. Its
main weakness was that it was aliased.

(7) The ANN model was able to capture the variability of the data
as evidenced by the good accuracy (R2 > 0.93) at the training,
testing and validation stages.

(8) Parity plots revealed that both the ANN and RSM models do not
have any prediction bias. However, the ANN model is superior
because of its higher accuracy and suitability for the dataset.

(9) The 3D microstructural analysis reveals that the interfacial
adhesion between the aggregates and the cementitious materi-
als reduced at increased partial replacement leading to poor
hardened properties. The model is relevant for project design
and budgetary predictions.
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