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Abstract. In this article, the solution of the linear variant of a Barrier Option Black-Scholes 

Model (BOBSM) is considered via a semi-analytical approach referred to as the Projected 

Differential Transformation Method (PDTM). Similar to the traditional Differential 

Transformation Method, this new approach demonstrates feasible progress and efficiency of 

operation. For simplicity of illustrative, the BOBSM is converted to an equivalent heat-like 

form, and a series-form of the solution (root) is successfully obtained. Hence the PDTM is 

suggested for both pure and functional sciences for strongly nonlinear differential models with 

financial applications. 

Keywords: Option pricing; Black-Scholes equation; Differential model, Barrier option; closed-

form solution 

1.  Introduction 

 

In financial practices, the role of the classical Black-Scholes model (BSM) cannot be 

overemphasized [1]. This is based on some basic assumptions under which this classical 

arbitrage pricing theory is built. Nonetheless, some conditions and constraints tell the choice 

of options to determine the financial transactions. Options trading is a matter of specific 

relevance and concern owing to its role in the financial system [2-5]. Standard option 

contracts are exchanged on options markets, and their rates are commonly published.  

Nonetheless, there is also a need for more tailored option contracts such as exotic options that 

are structured to adapt to more sophisticated approaches for risk reduction. Among other 

financial options, the Barrier option is termed contingent upon hitting some stock price, named the 

barrier, before its expiration [6-9]. The barrier option is either knock-out or knock-in. Here, the barrier 

path is of great interest since a knock-down becomes worthless in value once the stock price reaches 

the barrier at any time prior to the specified expiration. On the other hand, a knock-in option only 

yields a payoff once the barrier is crossed by the stock price.  Barrier options are becoming 

increasingly common, mostly due to the reduced expense of keeping a barrier option as opposed to 

holding a regular call/put option. Still, exotic options are hard to price as payoff functions rely on the 

whole direction of the underlying operation, rather than its valuation at a particular time moment [4, 

10-13]. It is a path-dependent option, that implies that the payoff depends on the path followed by the 
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underlying asset price, which means that the price of the barrier options is extremely sensitive to 

volatility [5-7]. Barrier options are commonly used in risk management by retail investors, banks, and 

businesses, and early exercise versatility offers their holders more American-style rights. Since a 

broad range of exchanged options is of American type, the problem of valuing American options has 

become an important topic of financial economics [5, 8, 12]. 

This paper will consider a barrier option pricing model in the Black-Scholes framework with an 

emphasis on down-and-out call options on a certain barrier term, as follows. 

Suppose at time t T  , with  S t   as the stock price at time , t   such that K   and B  are the strike 

price and barrier option  respectively, then the corresponding payoff of a down-and-out call option is 

defined as:  

   0 ,d

Tf S S K t T


                            (1.1) 

with B  being above  S t . The barrier is remarked to be below the initial stock price; otherwise, the 

option is worthless. The notion of the down-and-out option was nurtured since such goes past the 

known barrier. The option cannot pay –off anything unless it is guaranteed that tS  crosses the barrier 

at some .t T  

2.  The Dynamics of the Barrier Option 

 

Let  S t , ,K  and B  be as defined above for .t T  Then, a barrier option is referred to as a 

traditional option with an additional constraint involving B , such that the following partial Black-

Scholes Model (BSM) is satisfied.   

     

2 21
0

2

, , 0, ,

t S SSM rSM S M rM

M S T S K S






   


    

           (2.1) 

where  
M


 denotes partial derivative operator w.r.t. a subscripted variable,  ,M S t  is the option 

value, 0   , the volatility parameter, ,r  the risk-free interest rate, and  , 0M B t   is the 

extra (additional) condition. For simplicity, we intend to reduce (2.1) to its equivalent heat 

form based on the following change of variables: 

 1ln

.

ww SB S Be

T t

   


 

           (2.2) 

Thus,  

2 2
2

2 2

t

w

ww

M M
M

t

M M S M
M S

w S w S

M M M M
M S S

w w w S S



  
  

 
   

  
   

      
     
     

      (2.3) 

Putting (2.2) and (2.3) in (2.1), with little algebra, we have: 
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     

2 21 1

2 2

,0 , 0, 0.

w ww

w

M r M M rM

M w Be K M

  




  
    
 

   


       (2.4) 

Suppose we further define: 

   , , ,

, 0,

wM w Be v w  

 

 



                                     (2.5) 

then, (2.4) yields the heat-like equation of the form: 

  
 

,

, 0,

,0

, 0.

ww

w w w

w w w

v v

K
e e w

B
v w

K
e e w

B



 

 

 






     
  

 
       

       (2.6) 

Note that the classical BSM for European call option is retrievable from (2.4-2.6) for 1B   

and 0  . 
Financial models and the likes are, in most cases, in the form of ordinary or partial differential 

equations [14-16]. Few of these differential models have known exact solutions. However, obtaining 

the solutions of some of these seems tedious and time-consuming; this is even when the existence of 

the solutions is guaranteed [17-25]. Thus, a lot of numerical approaches have been proposed and 

adopted; notwithstanding, better approaches are anticipated [26-37]. In this regard, the Barrier option 

model built on the classical BSM is reduced to an equivalent heat-like equation, and a fast and 

efficient semi-analytical method is proposed [38]. 

2.1 Remarks on the PDTM 

In this section, the basic concepts and procedures regarding the proposed method (PDTM) are 

presented [38]. 

Let  ,  q x t  defined on a given domain, ,G  be an analytic function,  at a specified point 

 0 0,  x t , such that the Taylor series expansion of  ,q x t , is ascertained. Then, the projected  

differential transform of  ,q x t  and its inverse projected differential transform are defined 

and represented respectively as: 

 
 

    

0

0

0

,1
,  

!

, ,  

l

l

t t

l

l

q x t
Q x l

l t

q x t Q x l t t







 
  

  



  




          (2.7) 

The following properties (P1-P5) and theorems associated with the method of solution are 

noted as follows in Table 1:     
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Table 1: Some Basic Properties of the PDTM 

Property Original function form Projected Transform form 

P1      ,  ,  ,  a bq x t q x t q x t         ,  ,  ,  a bQ x h Q x l Q x l    

P2 
 

 * ,  
,  ,

n

n

q x t
q x t

t






 
     *! ,  ! ,  l z x l l n Q x l n    

P3 
 

 * ,  
,  

q x t
q x t

t






 
     *! ,  1 ! ,  1l Q x l l Q x l    

P4 
   

 * ,  
,  

n

n

q x t
q x t f x

x





    

 * ,  
,  

n

n

Q x l
Q x l f x

x





 

P5      2

*,  ,  ,q x t f x q x t
        * *

0

,  ,  ,  .
l

i

Q x l f x Q x i Q x l i


 
 

 

 

3.  Applications 

 

In this section, the proposed method is applied to the derived model in (2.6) for 0w  , hence, we 

have:  

 

,

,0 , 0.

ww

w w w

v v

K
v w e e w

B



  



  

   
 

                             (3.1) 

As such, taking the PDT of (3.1) gives: 

 

 

   

   1

1
, 1 , ,  0,1,2,

1

,0

ww

ww

w w

PDT v v

V w l V w l l
l

K
V w e e

B


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

 
     

 
      

                      (3.2) 

such that:   

   
0

, ,  .l

l

v w V w l 




           (3.3) 

From (3.2), for 0,1,2,3,l   , the following are respectively obtained: 

 

   

       2 1 2
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, 1 ,
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V w V w e e

B
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 


 
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 

  

   

   4 1 4
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1
            1

2
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






  



 

 
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





                    (3.4) 

Thus, 

 

   

     21 1 2
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, ,
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              1

w

jw ww w j w j
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Be e e e e
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 

  




   



 


      
          

     


          (3.5) 

Hence, for  1,  and lnT t w SB     the option value,  , ,M S t  is obtained.  

We remarked here that (3.5) would serve as a benchmark for comparison using alternative methods for 

further researches.   

4.  Conclusions 

 

This research initiated the formulation of the Projected Differential Transformation Method (PDTM) 

for approximate-analytical approaches to the linear form of the Barrier Option Pricing Model in the 

framework of the classical Black-Scholes equation. The problem has been solved without a variable-

discretizing call. The result obtained suggested that the PDTM was efficient and accurate.  The results 

were presented in a series form with fewer interventions in the computational period. Therefore the 

method is recommended for application in applied sciences for strongly nonlinear differential and 

other associated financial models.  
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