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Abstract This work considers the approximate solution of the Riccati differential equations 

(RDEs). For ease of computation, the iterative methods applied are the Daftardar-Gejji and 

Jafari Method (DJM) and the Picard Iteration Method (PIM). The results obtained via the DJM 

are compared with those from PIM. The comparison shows that both methods are in agreement 

with the corresponding exact form. The Picard approach transforms the differential equation 

into an interconnected form; though, Lipschitz's criterion of consistency but satisfied. 
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1. Introduction  

The differential equation of the form: 

     

 

2

1 2 3 3,    0,

0 ,

x t a a x t a x t a

x 

    




       (1.1) 

is called the Riccati differential equation. 

In equation (1.1), 1 2 3, ,  and a a a  are real constants. The differential equation was derived by the Italian 

Scholar Francesco Riccati in the 17th Century [1]. This particular class of equations are encountered in 

many applied sciences and engineering, and they play a significant role in nonlinear control theory, 

stochastic processes, etc. [2].  The solutions of (1.1) can be obtained by using different effective 

numerical techniques. Recently, several authors have investigated this equation in order to obtain the 

approximate solutions. In [3], the authors used ADM to solve the RDEs and obtained the approximate 

solutions. He’s VIM, HPM, iterated He’s HPM was used by Abbsabandy to solve the RDEs and 

compared his result to that of ADM [4-6]. Tsai and Chen in [7] used LADM and Pade’s 

approximations technique to study this particular type of equation. Their study shows acceptable 

accuracy results. The Legendre Wavelet approach was used by Mohammadi and Hosseini to solve the 

RDEs and compared their results with other existing methods in the literature [8]. Several other 

authors have used other numerical methods to handle this particular equation. See for references [9-

12]. A book written by Murphy contains several methods that can be applied to solve the Riccati 

differential equation [13 and14]. In this work, the Riccati differential equation solution will be 

considered using two iterative methods, namely: Daftardar-Gejji and Jafari (DJ), and Picard Iterative 

(PI) methods. 

For solvability purposes, efficient solution methods are needed for obtaining the solutions of 
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differential equations of real-life situations. Historically, the DJM was introduced by two researchers 

Daftarda-Gejji and Jafari, in 2006 for obtaining the solutions of linear and nonlinear functional 

equations [15]. Different scholars have since used this method for solving differential equations of the 

various forms [16-22]. The main merits of the DJM are not limited to ease of application and reduction 

of computational work. In [24], PIM was used with Legendre Wavelets methods to solve nonlinear 

initial value problems (IVPs). Saeed et al. applied PIM to linearize the system of differential equations 

[24]. Ogundile and Edeki [25], in their recent work, presented PIM to obtain approximate-analytical 

solutions of SDE. Other relevant literature on the Picard iteration method is linked to references [26-

30]. 

2. The Methods of solution 

This section presents the fundamental concept of DJM [15-22] and PIM [23-30] as fast accuracy and 

highly efficient methods. 

 

2.1. Daftar-Gejji-Jafari method (DJM) 

Supposed the following general functional equation is considered: 

   ,x b L x N x                                                                                                             (2.1) 

where b is a given known function, and  N  and  L
 
are the nonlinear and linear operators, 

respectively. Suppose we define [ ]N x  as: 

[ ] [ ] [ ],N x L x N x                                                                                                              (2.2) 

then (2.1) becomes: 

[ ]x b N x                                     (2.3) 

such that the solution, x  of (2.2) takes an infinite series pattern of the form: 

0

0

,

[ ]  

i

i

i

i

x x

N x N x















      



 .

                                                                      (2.4) 

Consiquently, the nonlinear operator N is decomposed as 

 
1

0

0 1 0 0

, 1,  2...
m m

i i i

i i i i

N x N x N x N x m
  

   

      
         

      
                            (2.5)              

Therefore, putting (2.4) and (2.5) into (2.3), we obtain 

 
1

0

0 1 0 0

  1,  2,... ,
m m

i i i

i i i i

x b N x N x N x m
  

   

    
        
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Hence, the recurrence relation is: 
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                                        (2.7) 

such that: 

1 0

.i i

i i

x b x x
 
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                                                                                             (2.8) 
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2.2 Picard Iterative Method (PIM) 

The Picard Iterative method as an integral method is used for differential equations with emphasis on 

the existence and uniqueness of solutions of the linear and nonlinear differential equations; therefore, 

an equation to be handled by this method must satisfy the Lipchitz continuity condition. 

 

2.3 The Lipschitz Continuity Condition 

The function ( , )r a b   is said to satisfy the Lipschitz condition with respect to b   in a region 
*D   in 

the XY-plane, if    a positive constant K  .  

Such that: 

   1 2 1 2,r a b r a b K b b   
                        (2.9) 

whenever  1,a b   and  1,a b   are in  
*D  , then K   is called the Lipschitz condition. 

The Picard Iterative method connected to the differential equation the form   

 

0 0

, ,

( ) ,

x g t x

x t x

 



                                                                                                             (2.10) 

is given below [29-31]:
 

      
0

1 0 , ,

t

m m

t

t x t f s s ds                                        (2.11) 

where   1mx t    ,    mx s s  . 

 

3. Numerical Examples 

Example 3.1 

Consider the Riccati differential equation [32] 

   21x t x t   ,                                                                                                                  (3.1) 

with I.C.  0 0.x     

The exact solution of (3.0) is presented as: 

   * 0 tan .x t                                         (3.2) 

The numerical solutions of (3.0) via the two methods of solution are presented in table and graph 

below. 

 

Table 1: DJM, PIM versus Exact solutions 

t  
6DJM  6PIM  EXACT

 

0.0 0.000000000000000 0.000000000000000 0.000000000000000 

0.1 0.100334672085451 0.100334672085451 0.100334672085451 

0.2 0.202710035508671 0.202710035508470 0.202710035508673 

0.3 0.309336249609116 0.309336249567961 0.309336249609623 

0.4 0.422793218696547 0.422790712339784 0.422793218738162 

0.5 0.546302488509300 0.546302451536160 0.546302489843790 

0.6 0.684136784374701 0.684136340501477 0.684136808341692 
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0.7 0.842288087786640 0.842284292051472 0.842288380463079 

0.8 1.029635819385023 1.029610217610683 1.029638557050364 

0.9 1.260136940795833 1.259991097538113 1.260158217550339 

1.0 1.557261577356836 1.556523840478488 1.557407724654902 

 

 

Table 2: Approximate solutions (DJM and PIM) at 6
th
 term versus exact solutions  

 

4. Results Discussion and Conclusion 

In conclusion, the iterative methods (DJM and the PIM) have been used to solve the Riccati 

differential equations successfully. These two methods converge to the exact solution at the sixth term 

respectively and produced good approximation as shown in Figure and Table 2 respectively; though, 

Picard converts the differential equation to its equivalent in the integral form provided the Lipschitz 

continuity condition is satisfied. By extension, these methods can be applied to other linear and 

nonlinear models of higher-order and degree. The techniques are accurate in comparison with other 

discussed methods. 
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