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Abstract. This paper proposes a model for the analysis of an infectious disease spread using a 

renewed deterministic model of Susceptible-Infected-Recovered (SIR). The SIR is based on 

compartments or partitions. In this case, the contaminated (infected) class is divided into two sub-

compartments: detectable and undetectable. Numerical simulations are carried out to test the 

obtained theoretical results, and presentations follow graphically. 
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1. Introduction 
A mathematical model entails a representation of a physical or a real-life situation using mathematical 

ideas, concepts, expressions, and languages. The most important form of representation is a mathematical 

model of reality. Essentially, everything in the physical or biological universe is subject to analysis by 

mathematical models, whether natural or involving technology and human interference [1-4]. 

Epidemiology includes a systematic study and a review of the circumstances of health and disease 

incidence, trends, and determinants in established populations [5-7]. Mathematical models are among the 

main instruments used in the study of infectious disease dynamics. Some researchers have developed 

mathematical models to explain how diseases are spread within compartments of human or species 

subpopulations. Here, individuals are divided into compartments according to the features and functions of 

the disease being modeled [8]. A lot of researchers have used mathematical methods to explain the 

dynamics of a disease's transmission. In epidemiology, infection incidence force is clearly defined as the 

rate at which individuals are infected per unit when they come into contact with a susceptible person 
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during their infection time. A compartmental form of a model is a conceptual system that replicates how 

individuals communicate within a community in various compartments [9-12]. 

One of the known basic compartmental models is the classical SIR model, and several models are 

modified versions of this classical form [13, 14]. In the SIR model, S denotes the number of individuals 

(people) that are prone to the disease; whenever a susceptible and an infectious individual enters infectious 

contact, then, the susceptible individual contracts the disease and moves into the infectious compartment 

termed I, which denotes the number of infected species. These are people infected and able to infect 

susceptible members. Here, R refers to the number of individuals who are excluded (and immune), healed 

from the disease or deceased for one reason or the other. The number of deaths is assumed to be negligible 

compared with the total population. This compartment can also be deemed "safe" or "recovered." This 

model is fairly predictive for infectious disease transmission and where recovery offers enduring 

tolerance, such as measles, mumps, and rubella [4, 6]. 

 
2. Model formulation and derivation 

In this section, the transmission dynamics are obtained on a compartmental basis, where the population is 

divided into four categories viz: susceptible � �S S t� , those who are neither infected nor immune, 

� �d dI I t� , denotes the population size of infective and detectable individuals,  � �u uI I t� , denotes the 

population size of infective but undetectable individuals, and � �R R t� denotes the population size of 

recovered individuals. It is assumed that there is recruitment to the susceptible class, natural death is 

accounted for at all levels, infective is either detectable or undetectable, while recovery is only from the 

detectable class. 

For parameter description, �  denote the recruitment rate into the susceptible compartment, �  is the 

natural death rate, r  is the recovery rate for individuals in the infected detected class, while 1 2 and cc  are 

the effective contact rates infected and detected and infected but undetected classes, respectively.  

 

 
Figure 1: Model compartmental diagram 

By considering Figure 1 via the application of conservation principle, the following dynamics represent a 

set of a system of differential equations that models the situation, where the prime notation denotes 

derivative with respect to time:  
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subject to the following initial conditions: 

� � � � � � � �� � � �0 0 0 0, , , , , ,d u d uS o I o I o R o S I I R� .                                                   (2) 

The model disease free equilibrium is given as: 

 � �* * * *, , , ,0,0,0M d uDFE S I I R
�

� ��
� � � �

� �
  

Theorem 2.1: The basic variables in the SEIRD model (1.2) are positive at all time, 0.t �  This implies 

that the solution set of the system in (1.2) at any time, 0,t �  maintain non-negativity condition(s). 

3. Gradient Solution and Numerical Simulations 
In this section, values for the model parameters are used for the corresponding numerical simulations, and 

interpretations. Table 1, and Figure 2-5 suffice. However, other numerical approaches can be adopted [15-

18].  

 
Table 1: Model Parameters and Variables  

Variables Meaning  Value Parameters Value 

S   Susceptible  Initial estimate 
1c  0.1,0.2,0.3  

dI   Infected and detected Initial estimate 
2c  0.2,0.3,0.4  

uI  Infected undetected Initial estimate �  0.2  

R  Recovered Initial estimate �  2000  

 r  0.5  
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Figure 2: Shows the simulation result when 1 0.1c �  and 2 0.2c �  

 
 

Figure 3: Shows the simulation result when  1 0.2c �  and 2 0.3c �  
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Figure 4: Shows the simulation result when  1 0.3c �  and 2 0.4c �  

 

Figure 5: Shows the simulation result when  1 0.3c �  and 2 0.4c �  
 

In Table 1, the hypothetical values for the model parameters and variables are presented. Figure 2-5 shows 

the graphical views of the gradient plots of infected individuals with fixed and varied contact rates. Figure 

2, 3, and 4 shows the recovery class when 1c = 0.1 and 2c  0.3, when c1= 0.2 and c2=0.3, and when c1= 

0.3 and c2= 0.3, respectively. 
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The important features of the model is that it allows disease transmission by individuals in the infected 

undetected and detected classes uI  and dI  respectively. From the recovery class it is obvious that when 

the contact rate is increased, the total number of recovery persons also increased. 

4. Conclusion 

In this paper, we have examined a deterministic model of SIR with a nonlinear infection flow terms. The 

proposed model is a renewed version of the classical SIR model which would be of great application with 

respect to disease transmission and compartmental interactions. Infectious classes that were detectable and 

undetectable were considered. This work can be extended to include exposed and vaccinated classes. 

Numerical simulations are hypothetically conducted to verify the theoretically obtained results, and 

graphical presentations follow. 
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