
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Iterative methods for approximate solution of the
Ornstein-Uhlenbeck process with normalised
brownian motion
To cite this article: O. P. Ogundile and S. O. Edeki 2021 J. Phys.: Conf. Ser. 1734 012015

 

View the article online for updates and enhancements.

You may also like
Results of testing an experimental
industrial installation for fuel-bed
gasification using bituminous coal
V E Gubin, A S Zavorin, K B Larionov et
al.

-

Synthesis and Characterization of Coffee
Based-Activated Carbon with Different
Activation Methods
Yuliusman, A. Bernama and A.R. Nafisah

-

Strength of heavy concrete during static-
dynamic deformation
Nataliya Fedorova, Michael Medyankin
and Sergey Fedorov

-

This content was downloaded from IP address 165.73.223.225 on 07/02/2023 at 10:43

https://doi.org/10.1088/1742-6596/1734/1/012015
https://iopscience.iop.org/article/10.1088/1742-6596/1749/1/012033
https://iopscience.iop.org/article/10.1088/1742-6596/1749/1/012033
https://iopscience.iop.org/article/10.1088/1742-6596/1749/1/012033
https://iopscience.iop.org/article/10.1088/1757-899X/742/1/012036
https://iopscience.iop.org/article/10.1088/1757-899X/742/1/012036
https://iopscience.iop.org/article/10.1088/1757-899X/742/1/012036
https://iopscience.iop.org/article/10.1088/1757-899X/1030/1/012046
https://iopscience.iop.org/article/10.1088/1757-899X/1030/1/012046
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssFtHq5hidAyMSgpIHgIHcHwF9qD-wz1tp6VKzNns3SNTmCxhcziSNg9KW7Q_T1856utjE0hBaKMx7wM77CkUS_TLK3nVBH_pFoLo2qkvoHl7ZkIiv6C28OltYchxyeEjMzYpEK05ZTNv3T9-OrHCr_J5Eilf2AOJx1estG63Znzs7wv4LDnUOyQHonX0no--jduzPCTkMXsT28fhFuAk9tQFwTX_I3MKpkH2-nj5VdxS-nFLCugs-JlVRgoLuzu0r4t6Nxg_8W33fI_tG6cdF6jDS-TrVIe04tD-5AEtqiSw&sai=AMfl-YRRBp4HYVrYaGCE-rTG1PhfZZoRmOeSEjVRP-ZMngM39dANwUlQaUtYI4VCjivVtlmXUlP3tSsdIsFxdEY&sig=Cg0ArKJSzJ5p1KKiUijp&fbs_aeid=[gw_fbsaeid]&adurl=https://www.owlstonemedical.com/products/breath-bio%25C3%25A5psy-omni/%3Futm_source%3Djbr%26utm_medium%3Dad-lg%26utm_campaign%3Dproducts-jbr-coversheet-2023-omni%26utm_term%3Djbr


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

International Conference on Recent Trends in Applied Research (ICoRTAR) 2020
Journal of Physics: Conference Series 1734 (2021) 012015

IOP Publishing
doi:10.1088/1742-6596/1734/1/012015

1

 
 
 
 
 
 

Iterative methods for approximate solution of the Ornstein-

Uhlenbeck process with normalised brownian motion 

  

                        O. P. Ogundile
1
 and S. O. Edeki

2* 

                                    1,2
Department of Mathematics, Covenant University Ota, Nigeria 

                                      *
Corresponding Author Email: soedeki@yahoo.com 

Abstract. This work considers the concept of the Normalised Brownian motion for the 

solutions of the Ornstein-Uhlenbeck process using the Daftardar-Jafari Method (DJM) and 

Picard Iterative Method (PIM) as the approximate-analytical methods of solutions. The results 

obtained from DJM are compared with those of the PIM. The obtained results, therefore, show 

the effectiveness of the proposed methods. 

1. Introduction 

Stochastic differential equations (SDEs) are particular types of differential equation possessing a term 

or more that is a stochastic process, whereby the resultant solution gives a random process. In general, 

it has its application in applied sciences and Engineering. In most cases, obtaining their analytical 

solutions appears intricate and challenging [1-4].  In this work, a particular class of SDE known as the 

Ornstein-Ulenbeck process (O-U process), will be considered. The O-U process is a stationary 

Gaussian (stochastic) process with its applications in financial mathematics and other physical 

sciences [5-6]. 

The general Stochastic differential equation can be expressed as:  

     ( ), ( ), ( ), [0,1],dS t a S t t dt b S t t dB t t                     (1.1) 

where ,  and a b  denote the drift and volatility coefficients respectively, and ( )S t  represents the Stock 

price in the financial mathematics domain. ( )B t , is the standard Brownian motion with its differential 

equivalence as ( )dB t , which is the noise term. 

In integral form,  (1.1) can be re-written as: 

   0
0 0

( ) ( ), ( ), .
t t

S t S a S b S dB                                                                             (1.2) 

The first integral in (1.2) is known as the Riemann-Stiltjes, and the second is a stochastic integral 

driven by the Brownian motion  ( )B t . Researchers have used different numerical methods to 

investigate the approximate solutions of related models [7-16]. 

Here, two approximate methods: Daftardar-Gejji Jafari method (DJM) and Picards Iterative method 

(PIM) are employed for the approximate solutions using the Normalised induced Brownian motion 

transform. 

2. Methods of Solution 

Here we consider the notions of DJM, PIM, and the normalized Induced Brownian Motion. 
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2.1 DJM Structure 

To analyse the DJM, we consider the general functional equation [17, 18]: 

   ,h g L h N h                                                                                                             (2.1) 

where g is a given or a known function,  N   and  L  are the nonlinear and linear operators, 

respectively. Suppose we define [ ]M h  as: 

[ ] [ ] [ ],M h L h N h                                                                                                              (2.2) 

so (2.1) becomes: 

 h g M h  .                                                              (2.3) 

By considering the solution, h  of (2.2) with the series form: 

 

0

0

,

 ,

i

i

i

i

h h

M h N h















      





                                                                                                           (2.4) 

the nonlinear operator M can easily be decomposed as 

 
1

0

0 1 0 0

, 1,  2,...
n n

i i i

i i i i

M h M h M h M h n
  

   

      
         

      
                                (2.5)              

Therefore, putting (2.4) and (2.5) into (2.3), we obtain 

 
1

0

0 1 0 0

  , 1,  2,... ,
n n

i i i

i i i i

h g M s M h M h n
  

   

    
        

    
                                        (2.6) 

So, the recurrence relation is: 

0

1 0

1

1

0 0

( )

,  1,  2,...
n n

n i i

i i

h h

s M h

h M h M h n




 











             
 

                                                                      (2.7) 

such that:      

1

0

  .

i

i

i

i

h g h

h










  








  

                                            (2.8)      

The series converges absolutely and uniformly to the solution of (2.1). 

 

2.2 Picard Iterative Method [19, 20] 

Consider the differential equation of this form: 

 

0

, ,

(0) .

s f t s

s s

 



                                                         (2.9) 

First order differential equations fall under this type of equation, and PIM is one of the suitable method 

for handling this type of differential equation. Now, by integrating both sides of equation (2.8), we get 
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0 0

, ,

t t

s d f s d                                                  (2.10) 

therefore, following the basic concept of calculus (2.9) becomes: 

  
0

( ) (0) , ,

t

s t s f s d              

  
0

( ) (0) , .

t

s t s f s d                                                     (2.11)  

Since  s t   is appearing on both sides of equation (2.10) for arbitrary t  , we therefore adopt this 

iterative process by choosing an initial condition  

  00 ,    1,  : s s for n n      

  1 0

0

, .

t

n ns s f s d                         (2.12) 

therefore, the approximation of (2.9) yields: 

   1lim ,   .ns t s t as n 
 

 

We refer the readers to see references [21-24], for other dimensions of applications, numerical or exact 

solution methods for functional differential equations, including SDEs. 

 

2.3 Normalized Brownian Motion [25] 

We will take 0 1,  ,...Z Z  to be mutually and independent random variables, such that the distribution 

are Gaussian and identically independent  with  0,1N . The random process, 

     0

1

2
sin ,   0, , 

2

k

k

Z Z
B t t kt for t

k








                                          (2.13) 

is therefore referred to as normalized Brownian Motion on the interval  0, . 

Then by differentiating (2.12) , it gives: 

 0

1

2
( ) cos .  

2
k

k

Z
dB t Z kt







                                                        (2.14) 

In finite form, (2.13) is expressed as: 

 
5

0

1

2
( ) cos ,   

2
k

k

Z
dB t Z kt

 

                     (2.15) 

then replacing the normalized Brownian Motion in (1.1) with (2.14), gives:: 

 

 

5
0

1

0

2
( ) ( , ) ( , ) cos , 

2

S 0 =S ,

k

k

Z
dS t a S t dt b S t Z kt

 


  






                                       (2.16) 

where 5L    and kZ   are randomly generated random variables. 

3.  Numerical Example 

Consider the Stochastic Differential Equation: 
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,

(0) 1,

t t tdS aS dt bdW

S

  



                                                                                (3.1) 

where , 0a b  , then choose 1, 1.a b    

The linear SDE (3.1) can be expressed in the integral form as: 

0

0 0

t t

t uS S S du dWu                                                                                                       (3.2) 

here, the second integral is the Ito integral. This type of system is called the Ornstein-Uhlenbeck (O-U) 

process [26-29].  

 

Solution (DJM): 

In integral form, (4.1) becomes: 

0 0
1

t t

t u uS a S du b dW    .                                                                                                 (3.3) 

 Therefore, with the following definitions,  

 
0 0

t t

t u uM S S du dW    ,                                                                                   (3.4) 

 0

1

2
cos

2
u k

k

Z
dW Z kt







   ,                                                                               (3.5) 

 

and  

   0

0 0
1

2
cos

2

t t

t u k

k

Z
M S S du Z kt







 
     

 
  ,                                                     (3.6) 

we obtain the following iteration via DJM : 

0 1,S    

 

   

1 0

0
0 0

0
0

0 0
1

( )

   

2
    = cos ,

2

t t

u

t t

k

k

S M S

S du dW du

Z
S du Z kt du









  

  
     

  

 

   

   

         

      

2 0 1 0

0 1 0
0 0 0 0

0
0 1 1

0 0
1

     

2
     cos ,

2

t t t t

u u

t t

k

k

S M S S M S

S S du dW du S du dW du
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Solution (PIM): 

Next, we re-express (3.1) in an integral form as in (2.11): 

  1 0
0

,
t

n nS S f u S u du                                                                                                 (3.7) 

0 1S    

 

 

1 0
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n n uS S S dW du     
 

Table 1: Error analysis for the O-U Process
 t  

6 ( )DJMZ t  
6 ( )PIMZ t  

DJM PIMZ Z  

0.0 1.000000000000000 1.000000000000000 0.000E+00 

0.1 1.094638480760513 1.094638563724062 8.296E-08 

0.2 1.179085738282314 1.179088391665922 2.653E-06 

0.3 1.250846853088319 1.250866976984742 2.012E-05 

0.4 1.303968602180530 1.304053197396319 8.460E-05 

0.5 1.329414276295206 1.329671348303800 2.571E-04 

0.6 1.317032687467557 1.317668074502840 6.354E-04 

0.7 1.258651282423057 1.260011018982764 1.360E-03 

0.8 1.151443473767513 1.154058021873473 2.612E-03 

0.9 1.000562230460032 1.005187751214804 4.626e-03 

1.0 8.201461236883663 8.277972780380032 7.651E-03 
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Fig 1: Graph of the considered problem 

 

 

4. Conclusion 

The induced normalized Brownian motion approach for approximate solution of the Ornstein-

Uhlenbeck process has been successfully considered in the present work. The solutions were obtained 

easily by the proposed methods: DJM and PIM, even with less computing time. Therefore, it is noted 

for effectiveness and consequently suggested for other well-known stochastic models. 
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