Journal of Physics: Conference Series

PAPER « OPEN ACCESS You may also like

- Results of testing an experimental

Iterative methods for approximate solution of the incsit st o e
qasification using bituminous coal

Ornstein-Uhlenbeck process with normalised VE Gubin, AS Zavorin, K B Larionov et

al.

bl'OWﬂIan mOtIOn - Synthesis and Characterization of Coffee
Based-Activated Carbon with Different
Activation Methods

To cite this article: O. P. Ogundile and S. O. Edeki 2021 J. Phys.: Conf. Ser. 1734 012015 Yuliusman, A. Bernama and A.R. Nafisah

- Strength of heavy concrete during static-
dynamic deformation
Nataliya Fedorova, Michael Medyankin
and Sergey Fedorov

View the article online for updates and enhancements.

& @ 244 Electrochemical Society Meeting

4
October 8 - 12, 2023 ® Cothenburg, Sweden

50 symposia in electrochemistry & solid
state science

Read the call for
papers &

Abstract submission deadline: submit your abstract!
April 7, 2023

This content was downloaded from IP address 165.73.223.225 on 07/02/2023 at 10:43


https://doi.org/10.1088/1742-6596/1734/1/012015
https://iopscience.iop.org/article/10.1088/1742-6596/1749/1/012033
https://iopscience.iop.org/article/10.1088/1742-6596/1749/1/012033
https://iopscience.iop.org/article/10.1088/1742-6596/1749/1/012033
https://iopscience.iop.org/article/10.1088/1757-899X/742/1/012036
https://iopscience.iop.org/article/10.1088/1757-899X/742/1/012036
https://iopscience.iop.org/article/10.1088/1757-899X/742/1/012036
https://iopscience.iop.org/article/10.1088/1757-899X/1030/1/012046
https://iopscience.iop.org/article/10.1088/1757-899X/1030/1/012046
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssFtHq5hidAyMSgpIHgIHcHwF9qD-wz1tp6VKzNns3SNTmCxhcziSNg9KW7Q_T1856utjE0hBaKMx7wM77CkUS_TLK3nVBH_pFoLo2qkvoHl7ZkIiv6C28OltYchxyeEjMzYpEK05ZTNv3T9-OrHCr_J5Eilf2AOJx1estG63Znzs7wv4LDnUOyQHonX0no--jduzPCTkMXsT28fhFuAk9tQFwTX_I3MKpkH2-nj5VdxS-nFLCugs-JlVRgoLuzu0r4t6Nxg_8W33fI_tG6cdF6jDS-TrVIe04tD-5AEtqiSw&sai=AMfl-YRRBp4HYVrYaGCE-rTG1PhfZZoRmOeSEjVRP-ZMngM39dANwUlQaUtYI4VCjivVtlmXUlP3tSsdIsFxdEY&sig=Cg0ArKJSzJ5p1KKiUijp&fbs_aeid=[gw_fbsaeid]&adurl=https://www.owlstonemedical.com/products/breath-bio%25C3%25A5psy-omni/%3Futm_source%3Djbr%26utm_medium%3Dad-lg%26utm_campaign%3Dproducts-jbr-coversheet-2023-omni%26utm_term%3Djbr

International Conference on Recent Trends in Applied Research (ICORTAR) 2020 IOP Publishing
Journal of Physics: Conference Series 1734(2021) 012015  doi:10.1088/1742-6596/1734/1/012015

Iterative methods for approximate solution of the Ornstein-
Uhlenbeck process with normalised brownian motion

O. P. Ogundile! and S. O. Edeki?®"
L2Department of Mathematics, Covenant University Ota, Nigeria
Corresponding Author Email: soedeki@yahoo.com

Abstract. This work considers the concept of the Normalised Brownian motion for the
solutions of the Ornstein-Uhlenbeck process using the Daftardar-Jafari Method (DJM) and
Picard Iterative Method (PIM) as the approximate-analytical methods of solutions. The results
obtained from DJM are compared with those of the PIM. The obtained results, therefore, show
the effectiveness of the proposed methods.

1. Introduction
Stochastic differential equations (SDES) are particular types of differential equation possessing a term
or more that is a stochastic process, whereby the resultant solution gives a random process. In general,
it has its application in applied sciences and Engineering. In most cases, obtaining their analytical
solutions appears intricate and challenging [1-4]. In this work, a particular class of SDE known as the
Ornstein-Ulenbeck process (O-U process), will be considered. The O-U process is a stationary
Gaussian (stochastic) process with its applications in financial mathematics and other physical
sciences [5-6].
The general Stochastic differential equation can be expressed as:
dS(t)=a(S(t),t)dt+b(S(t),t)dB(t),t [0,1], (1.1)
where a, and b denote the drift and volatility coefficients respectively, and S(t) represents the Stock
price in the financial mathematics domain. B(t), is the standard Brownian motion with its differential
equivalence as dB(t), which is the noise term.
In integral form, (1.1) can be re-written as:

S(t) =S, +j;a(5(r),r)+j;b(3(f),r)dBT. (1.2)

The first integral in (1.2) is known as the Riemann-Stiltjes, and the second is a stochastic integral
driven by the Brownian motion B(t). Researchers have used different numerical methods to
investigate the approximate solutions of related models [7-16].

Here, two approximate methods: Daftardar-Gejji Jafari method (DJM) and Picards Iterative method
(PIM) are employed for the approximate solutions using the Normalised induced Brownian motion
transform.

2. Methods of Solution
Here we consider the notions of DJM, PIM, and the normalized Induced Brownian Motion.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1



International Conference on Recent Trends in Applied Research (ICORTAR) 2020 IOP Publishing
Journal of Physics: Conference Series 1734(2021) 012015  doi:10.1088/1742-6596/1734/1/012015

2.1 DJIM Structure
To analyse the DJM, we consider the general functional equation [17, 18]:

h=g+L(h)+N[h], (2.1)
where ¢ is a given or a known function, N [] and L[] are the nonlinear and linear operators,
respectively. Suppose we define M[h] as:

M[h] = L[h]+ N[h], (2.2)
S0 (2.1) becomes:
h=g+MIh]. (23)

By considering the solution, h of (2.2) with the series form:

h:ihi,
M[h]= {Zh,},

the nonlinear operator M can easily be decomposed as

S e

Therefore, putting (2.4) and (2.5) into (2.3), we obtain

Zh =g+M][s Z{ (ZhJ (Z;hﬂ ,n=12.., (2.6)

So, the recurrence relation is:

2.4)

h, =h
s, =M (h,) @7

A

= (2.8)

~3h,

i=0

such that:

The series converges absolutely and uniformly to the solution of (2.1).

2.2 Picard Iterative Method [19, 20]
Consider the differential equation of this form:

s'=f(t,s),
{S(O) =s,. @9)

First order differential equations fall under this type of equation, and PIM is one of the suitable method
for handling this type of differential equation. Now, by integrating both sides of equation (2.8), we get
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I s'( I (v))z, (2.10)

therefore, foIIowmg the basic concept of calculus (2.9) becomes:

s(t)—s(O):'t[f 7,S8(7

s(t) = s(0)+£ f(z.s(7))dr. (2.11)

Since S(t) is appearing on both sides of equation (2.10) for arbitrary t , we therefore adopt this
iterative process by choosing an initial condition
s(0)=s,, forn>1, neZ"

t
=5, + [ F(z,5,(r))dr. (2.12)
therefore, the approximation of (2.9) yields:

s(t)=lims_,(t), asn— .

We refer the readers to see references [21-24], for other dimensions of applications, numerical or exact
solution methods for functional differential equations, including SDEs.

2.3 Normalized Brownian Motion [25]
We will take Z;, Z,,... to be mutually and independent random variables, such that the distribution

are Gaussian and identically independent with N (0,1). The random process,

srn (kt), for te[0, 7], (2.13)

is therefore referred to as normalrzed Brownian Motion on the interval [0, r].
Then by differentiating (2. 12) it gives:

dB(t) =

Z c0S kt (2.14)
In finite form, (2. 13) is expressed as:
dB(t) = +Z z cos(kt), (2.15)

then replacmg the normallzed Brownian Motion in (1 1) with (2.14), gives::

Z Z cos(kt),
(2.16)

5(0)=S,,

where L =5 and Z, are randomly generated random variables.

3. Numerical Example
Consider the Stochastic Differential Equation:
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dS, =—aS,dt +bdW,,
(3.1)
S(0) =1,
where a,b >0, then choose a=1,b=1.
The linear SDE (3.1) can be expressed in the integral form as:
t t
S, =S, —[S,du+| dwu (3.2)

0 0
here, the second integral is the Ito integral. This type of system is called the Ornstein-Uhlenbeck (O-U)
process [26-29].

Solution (DJM):
In integral form, (4.1) becomes:

t t
S, =1-af S,du+b[ dw,. (3.3)
Therefore, with the following definitions,
M(st)=—jtsudu+jtdwu, (3.4)
,_ Z oS kt (3.5)

and

\/72 cos(kt)j (3.6)

jsmj[

we obtain the following iteration via DIJM :
S, =1,
S, =M(S,)

= Sydu+ [ (dw, )du
——_[ S )du+j£

+i\/zz coS kt Dd
S,=M (S, +S,)-M(S,)

—{[{(5,+5,)au —j;(dwu)du}—{ﬁ(so)d“ + (0w, i)

R A S
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Sy +S5,+S,)-M (S, +S,)

{ (S, +5,+$, )du —j;(dwu)du}+{j;(80 +5, )du —I;(dwu)du}

{ (s +Sl+82)du_£[(\/zzo7 :1 %chos(kt)]]du}
+{j;(so+zl)du—j;(( Z z cos (kt Ddu},

N(Sy+S,+S,+S;+S, +S5)—-N(Sy +S,+S, +S;+S,)
{ (S, +Sl+Sz+SS+S4+SS)du—I;(qu)du}

{j So+S,+S, +S;,+S, )du - j(dwu)du}
{ S +Sl+82+83+84+85)du—£{(

ki 27, cos(kt Dd }
z cos (kt jdu},

0

+{t5+5+5+5+s) j(

6

s=>s,.
i=0

Solution (PIM):
Next, we re-express (3.1) in an integral form as in (2.11):

t
Spa=So+[ f(usS
S, =1

5,=1-; soolu+j(dwu Jdu

- i +I( (z cos(kt)Jd
:\f z cos(kt)]d

(3.7)

5,=1-, sldu+j(dwu Jdu

=1- I du+I[\/ZZO_7z kZ.:;\/%chos(kt)jdu.



International Conference on Recent Trends in Applied Research (ICoRTAR) 2020

Journal of Physics: Conference Series

1
S, =1-=
4 2

t
=1_£

t

S =1-]

0

(83)du+_:[(dwu)du,

(83)du+ﬁ\/zzo_ﬂ+i

k=1

(S4)du+j(qu )du,

- 1—@(54)d“+£[\/2207+g

t

S, =1-]

0

t

(Ss)du+ [ (dw, )du,

1734(2021) 012015

\EZK cos(kt)Jdu.

Z, cos(kt)}du.

= 1—I(Ss)du +E|t).£\/22°_” +g\/§zk cos(kt)}du.

Sy =Sy -+ [ ((S,) AW, )au.

Table 1: Error analysis for the O-U Process

t ZGDJM ) Z™ (t) |ZDJM ~Zow |
0.0 | 1.000000000000000 | 1.000000000000000 | 0.000E+00
0.1 | 1.094638480760513 | 1.094638563724062 | 8.296E-08
0.2 | 1.179085738282314 | 1.179088391665922 | 2.653E-06
0.3 | 1.250846853088319 | 1.250866976984742 | 2.012E-05
04 | 1.303968602180530 | 1.304053197396319 | 8.460E-05
05 | 1.329414276295206 | 1.329671348303800 | 2.571E-04
0.6 | 1.317032687467557 | 1.317668074502840 | 6.354E-04
0.7 | 1.258651282423057 | 1.260011018982764 | 1.360E-03
0.8 | 1.151443473767513 | 1.154058021873473 | 2.612E-03
0.9 | 1.000562230460032 | 1.005187751214804 | 4.626e-03
1.0 | 8.201461236883663 | 8.277972780380032 | 7.651E-03
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Fig 1: Graph of the considered problem

4. Conclusion

The induced normalized Brownian motion approach for approximate solution of the Ornstein-
Uhlenbeck process has been successfully considered in the present work. The solutions were obtained
easily by the proposed methods: DJM and PIM, even with less computing time. Therefore, it is noted
for effectiveness and consequently suggested for other well-known stochastic models.
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