University Links: Home Page | Site Map
Covenant University Repository

Myristic acid based imidazoline derivative as effective corrosion inhibitor for steel in 15% HCl medium

Solomon, Moses M. and Umoren, Saviour A. and Quraishi, Mumtaz A. and Salman, Mohammad (2019) Myristic acid based imidazoline derivative as effective corrosion inhibitor for steel in 15% HCl medium. Journal of Colloid and Interface Science. pp. 47-60.

[img] PDF
Download (4MB)

Abstract

There is a high demand of effective and eco-friendly corrosion inhibitor for industrial applications. In an attempt to prepare a benign and effective corrosion inhibitor for acidizing purpose, an imidazoline derivative, N-(2-(2-tridecyl-4,5-dihydro-1H-imidazol-1-yl)ethyl)tetradecanamide (NTETD) was synthesized from myristic acid and diethyleneamine. The characterization of the newly synthesized compound was done using 1H NMR, FTIR, and elemental analysis techniques. NTETD was examined as a corrosion inhibitor for low carbon steel in 15% HCl solution using weight loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), linear polarization (LPR), scanning electron microscope (SEM), energy dispersive spectroscopy (EDAX), atomic force spectroscopy (AFM), and X-ray photoelectron spectroscopy (XPS) techniques. It was found that, the optimum concentration of NTETD is 300 mg/L. With this concentration, inhibition efficiency above 93% is achievable. Results from PDP show that, NTETD acted as a mixed type corrosion inhibitor but with principal effect on cathodic corrosion half reactions. The calculated value of the adsorption-desorption equilibrium constant (1.015 � 103) reveals a strongThere is a high demand of effective and eco-friendly corrosion inhibitor for industrial applications. In an attempt to prepare a benign and effective corrosion inhibitor for acidizing purpose, an imidazoline derivative, N-(2-(2-tridecyl-4,5-dihydro-1H-imidazol-1-yl)ethyl)tetradecanamide (NTETD) was synthesized from myristic acid and diethyleneamine. The characterization of the newly synthesized compound was done using 1H NMR, FTIR, and elemental analysis techniques. NTETD was examined as a corrosion inhibitor for low carbon steel in 15% HCl solution using weight loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), linear polarization (LPR), scanning electron microscope (SEM), energy dispersive spectroscopy (EDAX), atomic force spectroscopy (AFM), and X-ray photoelectron spectroscopy (XPS) techniques. It was found that, the optimum concentration of NTETD is 300 mg/L. With this concentration, inhibition efficiency above 93% is achievable. Results from PDP show that, NTETD acted as a mixed type corrosion inhibitor but with principal effect on cathodic corrosion half reactions. The calculated value of the adsorption-desorption equilibrium constant (1.015 � 103) reveals a strong bonding between NTETD molecules and the steel surface. The EDAX, FTIR, and XPS results confirm the adsorption of NTETD molecules on the steel surface. SEM and AFM results agree with experimental findings that NTETD is effective in corrosion mitigation of steel in 15% HCl solution. The possible corrosion inhibition mechanism by NTETD has been proposed. bonding between NTETD molecules and the steel surface. The EDAX, FTIR, and XPS results confirm the adsorption of NTETD molecules on the steel surface. SEM and AFM results agree with experimental findings that NTETD is effective in corrosion mitigation of steel in 15% HCl solution. The possible corrosion inhibition mechanism by NTETD has been proposed.

Item Type: Article
Uncontrolled Keywords: Synthesis Imidazoline Acid corrosion Corrosion inhibition Steel Performanc
Subjects: Q Science > QD Chemistry
Divisions: Faculty of Engineering, Science and Mathematics > School of Chemistry
Depositing User: nwokealisi
Date Deposited: 22 Mar 2023 15:03
Last Modified: 22 Mar 2023 15:03
URI: http://eprints.covenantuniversity.edu.ng/id/eprint/16719

Actions (login required)

View Item View Item