CLASSIFICATION OF CASSAVA LEAF DISEASES USING DEEP LEARNING MODELS

SALAMI, FAITH IFEDOLA 19PCK01992

MARCH, 2023

CLASSIFICATION OF CASSAVA LEAF DISEASES USING DEEP LEARNING MODELS

BY

SALAMI FAITH IFEDOLA (19PCK01992) B.Eng. Electrical Electronics Engineering, Landmark University, Kwara State

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF ENGINEERING (M.Eng.) DEGREE IN INFORMATION AND COMMUNICATION ENGINEERING IN THE DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY, OTA, OGUN STATE

MARCH. 2023

ACCEPTANCE

This is to affirm that this dissertation has been accepted in partial fulfillment of the requirements for the award of a Master of Engineering in Information and Communication Engineering from the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, SALAMI, FAITH IFEDOLA (19PCK01992), declare that this dissertation is a representation of my work and is written and implemented by me under the supervision of Dr. Oluwadamilola I. Oshin of the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Nigeria. I affirm that the dissertation has not been submitted elsewhere, in whole or in part, for granting any degree. This dissertation acknowledges all sources of data and scholarly information used.

SALAMI, FAITH IFEDOLA

Signature and Date

v

CERTIFICATION

We certify that the dissertation titled "CLASSIFICATION OF CASSAVA LEAF DISEASES USING DEEP LEARNING MODELS" is an original research work carried out by SALAMI, FAITH IFEDOLA (19PCK01992) meets the requirement and regulations governing the award of Master of Engineering (M.Eng.) degree in Information and Communication Engineering from the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, and is approved for its contribution to knowledge and literary presentation.

Dr Oluwadamilola I. Oshin Supervisor

Prof. Emmanuel Adetiba Head of Department

Dr. Oluwumi Adetan External Examiner

Prof. Akan B. Williams Dean, School of Postgraduate Studies Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This research work is dedicated first and foremost to God Almighty, the custodian of all wisdom, knowledge, and understanding, for His grace and favour throughout this research. Then to my family for their endless support and love.

ACKNOWLEDGEMENTS

My profound gratitude goes firstly to God Almighty for granting me the willpower to pursue this study and for imparting the wisdom, strength, support, and knowledge to do so, most pertinent of which is life itself.

My sincere appreciation goes to the Chancellor, of Covenant University, Dr. David O. Oyedepo, who deserves a great deal of gratitude for creating this outstanding institution of higher learning, making the necessary sacrifices to make it world-class, and for having the vision to develop the next generation of leaders in their various fields. I would also like to appreciate, the Vice Chancellor, Prof. Abiodun H. Adebayo, and the Dean School of Post Graduate School, Prof. Akan B. Williams for creating an environment that made this possible.

I express my sincere appreciation to the Head of the Department of Electrical Information Engineering, Prof. E. Adetiba, I want to sincerely thank my supervisor, Dr. Oluwadamilola Oshin, for all the helpful advice, comments, and ideas she provided during the research process also my sincere gratitude goes out to Dr. Kennedy, the postgraduate coordinator for the department of Electrical and Information Engineering, for showing concern for our well-being and for continually directing us. Also, a profound gratitude goes to the Electrical and Information Engineering department's postgraduate board members.

I want to express my sincere gratitude for the contributions made by my classmates and colleagues during the bumps and hurdles I had while conducting my research and, to the executives and members of the Advanced Signal Processing and Machine Intelligence Research (ASPMIR) group thank you all for your support and understanding.

Last but not least, I would like to thank my family, especially my parents, Mr. & Mrs. Bayo Salami, who gave me life in the first place. I appreciate them for their assistance, advice, support in supporting my research program, and the choice to invest in me.

TABLE OF CONTENTS

CONTENTS	PAGES
TITLE PAGE	ii
ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	v
DEDICATION	vi
ACKNOWLEDGEMENTS	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	X
LIST OF TABLES	xiii
LIST OF ABBREVIATIONS AND SYMBOLS	xiiii
ABSTRACT	xiv
CHAPTER ONE: INTRODUCTION	1
1.1. Background to the Research	1
1.2. Statement of the Problem	5
1.3. Aim and Objectives of the Research	6
1.3.1. Aim	6
1.3.2. Objectives	6
1.4. Scope of the Research	6
1.5. Justification for the Research	6
1.6. Organization of the Dissertation	7
CHAPTER TWO: LITERATURE REVIEW	8
2.1. Preamble	8
2.2. Theoretical Background	8
2.2.1. Cassava and its Importance	8
2.2.2. Cassava Diseases	8
2.2.3. Deep Learning	13
2.2.4. Convolutional Neural Network	16
2.2.5. Variation of CNNs	19
2.2.6. State-of-the-art CNNs for Leaf Disease Identification	21
2.3. Review of Related Works	27
2.3.1. Image Processing for Leaf Pattern Recognition	28
2.3.2. Feature extraction	29
2.3.3. Plant Leaf Classification Using CNN	29
2.3.4. Cassava Leaf Disease Identification	30
2.4. Gaps in Existing Literature	33
2.5. Chapter Summary	35
CHAPTER THREE: METHODOLOGY	36
3.1. Preamble	36
3.2. System Architecture	36
3.3. Dataset Source and Description	37
3.4. Data Pre-processing	41
3.5. Design of the DL Model	41
3.5.1. Cassava Leaf Detection using ResNet50 CNN Architecture	41

3.5.2. Cassava Leaf Disease Classification Model Design	45	
3.6. Model Training Configuration	49	
3.7. Evaluation Metrics	50	
3.8. Chapter Summary	52	
CHAPTER FOUR: RESULTS AND DISCUSSION	53	
4.1. Preamble	53	
4.2. Result for Cassava Leaf Detection (Performance of Model)	53	
4.3. Result for Cassava Leaf Disease Classification (Performance of Model)	55	
4.3.1. Training Graphs	56	
4.3.2. Confusion Matrix	57	
4.4. Comparison of the different convolutional neural network	59	
4.5. Discussion	59	
4.6. Chapter Summary	61	
CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS	62	
5.1. Summary	62	
5.2. Conclusion	62	
5.3. Research Contributions	63	
5.4. Recommendations	63	
REFERENCES	64	
APPENDIX		

LIST OF FIGURES

FIGU	RES TITLE OF FIGURES	PAGES
1.1	Simple CNN Architecture	4
2.1	Cassava Mosaic Disease	11
2.2	Cassava Green Mite	11
2.3	Cassava Brown Streak Disease	12
2.4	Cassava Bacteria Blight	12
2.5	A taxonomy of DL Architecture	14
2.6	CNN Architecture showing different layers	18
2.7	LeNet-5 CNN model	22
2.8	AlexNet CNN model	23
2.9	Network In-Network	24
2.10	Network in Network showing the convolutional and pooling layers	24
2.11	ZFNet model	25
2.12	VGGNet model	25
2.13	Inception module or GoogleNet	26
3.1	The Architecture of the study	36
3.2	Sample of the OBA cassava leaves dataset	38
3.3	Sample of the data in Makerere University AI Lab Data	39
3.4	Sample of the Penn State University Library Data	40
3.5	RestNet34 Model Architecture	42
3.6	ResNet50 Model Architecture	42
3.7	Identity mapping	43
3.8	Cassava leaf detection model implementation	44
3.9	Flowchart for Cassava leaf detection model development process	44
3.10	Flowchart for Cassava leaf disease classification process	45
3.11	MobileNet-v2 model Architecture	46
3.12	VGG16 model Architecture	47
3.13	Inception-ResNet-v2 Architecture	48
3.14	ReLU activation function	48
4.1	Cassava leaves indicating the model confidence	53
4.2	A graph showing loss curve during training	54
4.3a	Accuracy and loss graph for the mobilenet-v2 trained on dataset	56

4.3b	Accuracy and loss graph for the VGG16 trained on dataset	56
4.3c	Accuracy and loss graph for the Inception-ResNet-V2 trained on the	57
	dataset	
4.4a	Confusion matrix for MobileNet-v2	57
4.4b	Confusion matrix for VGG16	58
4.4c	Confusion matrix for Inception-ResNet-v2	58

LIST OF TABLES

TABL	ES TITLE OF TABLES	PAGES
2.1	Categories of cassava disease	9
2.2	Related works	33
3.1	Characteristics of the OBA Cassava Leaves dataset	38
3.2	Characteristics of the dataset from Kaggle: Makerere University AI Lab	38
3.3	Characteristics of the dataset from Scholar Sphere: Penn State Libraries	39
3.4	The dataset used in this study with the number of instances	40
3.5	Dataset Breakdown showing Training, Validation, and Testing	40
3.6	CNN Training and Parameters Tuning	49
3.7	Training Configuration used in Cassava leaf diseases classification	49
3.8	GPU specifications	50
4.1	Cassava Leaf Detection Training Configuration	54
4.2	Cassava Leaf Diseases Training and validation Results	55
4.3	Accuracy, Precision, Recall, and F1 score result	55
4.4	Comparative performance analysis of the CNN	59
4.5	Benchmarking the proposed model alongside models from literature	60

LIST OF ABBREVIATIONS AND SYMBOLS

*	Convolution
Σ	Summation
ADAM	Adaptive Moment Estimation
AI	Artificial Intelligence
BLS	Brown Leaf Spot
CBB	Cassava Bacterial Blight
CBSD	Cassava Brown Steak Disease
CGM	Cassava Green Mottle
CMD	Cassava Mosaic Disease
CNN	Convolutional Neural Networks
DL	Deep Learning
DN	Deep Neural Network
FFT	Fast Fourier Transform
FN	False Negative
FP	False Positive
GMD	Cassava Green Mite Damage
GPIO	General purpose input/output
GPU	Graphical Processing Unit
ILSVRC	ImageNet Large Scale Visual RecognitionChallenge
ML	Machine Learning
R-CNN	Region-based Convolutional Neural Network
ReLU	Rectified Linear Unit
ResNet	Residual Network
RMD	Red Mite Damage
RPN	Region Proposal Network
RPN	Region Proposal Network
SDG	Sustainable Development Goal
SGD	Stochastic Gradient Descent
TN	True Negative
TP	True Positive
VGG	Visual Geometry Group

ABSTRACT

Agricultural production, both qualitative and quantitative, yields economic benefits, which can be realized through crop monitoring, disease detection, and prevention. The cassava plant is renowned for being a rich source of carbohydrates, yet it is susceptible to a number of diseases that threaten food security in sub-Saharan Africa. Traditional methods of identifying plant diseases involve manual inspection of the plants which becomes impractical with a vast expanse of farmlands; thereby, necessitating the need for automation. Disease detection through image classification and recognition is known to be the best and most cost-effective method for early detection and prevention of diseases to prevent further damage to a plant. However, some researchers concentrated on identifying just one form of cassava leaf disease while some classified just two forms of cassava leaf disease. Also, numerous methods that were proposed in the literature were trained and tested using the Makerere University AI Lab Kaggle dataset or Scholar sphere dataset. In this study however, three datasets were combined - Makerere University AI Lab dataset from Kaggle, Scholar Sphere Penn State University libraries dataset, and Oba-Ile Akure (OBA) cassava leaves dataset. Three convolutional neural network models were trained to classify cassava leaf diseases and healthy plants. The four types of diseases are Cassava Bacterial Blight (CBB), Cassava Brown Streak Disease (CBSD), Cassava Green Mottle (CGM), and Cassava Mosaic Disease (CMD). Pre-trained ResNet50 model was used on the OBA cassava leaves dataset for cassava leaf detection, which yielded a precision of 97%. Classification of cassava leaf diseases was done using MobileNetV2, VGG16, and Inception-ResNet-v2 models yielding accuracies of 88.47%, 96.58%, and 96.58% respectively. In addition, VGG16 yielded a precision of 96.58%, a recall of 94.8%, and F1 of 96.6% thereby outperforming other models used. The result obtained in this work presents an excellent way for classifying cassava leaf diseases quickly thereby helping farmers on the field to take actions quickly, consequently improving food security.

Keywords: Deep learning, Convolution Neural Network, Cassava leaf disease classification, Inception-ResNet-v2, MobileNet-v2, VGG16