HYBRID DYNAMIC LOAD BALANCING ALGORITHM FOR CLOUD PERFORMANCE IMPROVEMENT

OBIAZI, OGHORCHUKWUYEM ORIEKOSE (20PCJ02084)

JANUARY, 2023

HYBRID DYNAMIC LOAD BALANCING ALGORITHM FOR CLOUD PERFORMANCE IMPROVEMENT

BY

OBIAZI, OGHORCHUKWUYEM ORIEKOSE (20PCJ02084) B.Eng Computer Engineering, University of Benin, Benin

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE **REQUIREMENTS FOR THE AWARD OF MASTER OF ENGINEERING** (M.Eng.) DEGREE IN COMPUTER ENGINEERING IN THE DEPARTMENT OF ELECTRICAL AND **INFORMATION** ENGINEERING, COLLEGE OF ENGINEERING, COVENANT **UNIVERSITY, OTA, OGUN STATE**

JANUARY, 2023

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Master of Engineering in Computer Engineering in the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, OBIAZI, OGHORCHUKWUYEM ORIEKOSE (20PCJ02084) declare that this dissertation is a representation of my work and is written and implemented by me under the supervision of Dr. Adewale, Adeyinka A. of the Department of Electrical and Information Engineering, Covenant University. I attest that this dissertation has in no way been submitted either wholly or partially to any other university or institution of higher learning for the award of a masters' degree. All information cited from published and unpublished literature has been duly referenced.

OBIAZI, OGHORCHUKWUYEM ORIEKOSE

12/01/2023 **Signature and Date**

CERTIFICATION

This is to certify that this dissertation titled "**HYBRID DYNAMIC LOAD BALANCING ALGORITHM FOR CLOUD PERFORMANCE IMPROVEMENT**" is an original research work carried out by **OBIAZI, OGHORCHUKWUYEM ORIEKOSE** meets the requirements and regulations governing the award of Master of Engineering (M.Eng) degree in Computer Engineering from the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, and is approved for its contributions to knowledge and literary presentation.

Dr. Adewale Adeyinka A. (Supervisor)

Prof. Emmanuel Adetiba (Head of Department)

Prof. Jonathan Gana Kolo (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) 30/01/2023 Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This dissertation is dedicated to God. His consuming love, favour, and grace were especially evident throughout this research. To my parents, Engr. Prof. And Dr. Mrs. Obiazi, Thank you for everything. For the encouragement, the love, the support, the advice. Thank you for going above and beyond the standard definition of parenthood. To my husband Peter Idoko Alexander, Thanks for being my strength throughout this research.

ACKNOWLEDGEMENTS

I want to thank God for his divine direction and the mental and physical fortitude He granted me over the course of writing this research dissertation.

My deepest gratitude is extended to Dr. David O. Oyedepo, Chancellor of Covenant University, whose comments have served as a continual reminder that anything is doable and attainable if you set your mind to it. A special thanks to Covenant University's Vice-Chancellor, Professor Abiodun H. Adebayo, Dean of the School of Postgraduate Studies, Professor Akan Williams, the Dean of the College of Engineering, Prof David O. Olukanni as well as the Head of the Electrical and Information Engineering Department, Professor Emmanuel Adetiba, for their unwavering efforts in realizing the university's goal of ranking among the top ten universities worldwide by the year 2022. God the Almighty be with you always in blessing and favour.

My sincere gratitude to Dr. Adewale Adeyinka A., my wonderful supervisor, for his generosity, support, guidance, and counsel throughout this research project. I owe him a great deal for his advice on the dissertation and for providing helpful guidance during different phases of my work. I am thankful for the constant cloud computing and AI resources he graciously shared with me. My academic thinking, problem-solving skills, and technical writing have all improved thanks to him, and they will be instrumental in my future career and research. My deep appreciation goes to the postgraduate Coordinator for the department of Electrical and Information Engineering, Dr. Kennedy Okokpujie. Thank you for your deep interest in the welfare of the students and how you constantly try to guide us. I do not have enough words to say thank you. Additionally, a big thank you to the entire academic staff of the electrical and information engineering department. May the Almighty pay you all back for your contributions to my life.

My sincere thanks go to my parents, Engr. Prof. & Dr. Obiazi, who have always been there for me, prayed for me, supported me in every way they could, and provided me with their wise counsel. Words cannot adequately express my gratitude to you.

Finally, I want to thank my friends and colleagues, Mrs. Tola Omotoye, Mr. Kennedy Ekong, Mr. Andrew Omiloli, and Mr. Emmanuel Mbaya, for their support and contributions throughout my postgraduate studies. To my friends, Ann Anyanwu and Eniola Akinwunmi, Thank you for the support throughout the duration of this project.

TABLE OF CONTENT

TABLE OF (LIST OF FIG LIST OF TA	ION TION ON EDGEMENTS CONTENT GURES	iii iv v vi vii viii xi xii xii xv
CHAPTER C	DNE	1
INTRODU	CTION	1
1.1 Int	roduction	1
1.2 Ba	ckground of Study	2
1.2.1	Cloud Computing Overview	2
1.2.2	Virtual machines	5
1.2.3	Load Balancing	6
1.3 Sta	atement of the Problem	8
1.4 Ai	m and Objectives	9
1.4.1	Aim	9
1.4.2	Objectives	9
1.5 Sc	ope of Study	10
1.6 Lii	mitation of Study	10
1.7 Jus	stification for Study	10
1.8 Di	ssertation Organization	11
CHAPTER T	TWO	12
LITERAT	URE REVIEW	12
2.1 Pro	eamble	12
2.2 Cle	oud Computing	12
2.2.1	Cloud Computing Service Models	14
2.2.2	Cloud Deployment Models	14
2.3 Vi	rtualization in Cloud Computing	17
2.3.1	Approaches to Virtualization in Cloud Computing	17
2.3.2	Virtual Machines	18

2.4	Lo	ad Balancing	19
2.4	4.1	Load Balancing Metrics	21
2.5	Lo	ad Balancing Classifications	23
2.5	5.1	Static Load Balancing Algorithm	23
2.5	5.2	Dynamic Load Balancing Algorithm	24
2.5	5.3	Challenges Identified in Cloud Load balancing	26
2.6	Re	view of Previous Work Done	26
2.0	5.1	Round-Robin Load Balancing Algorithm	26
2.0	5.2	Weighted Round-Robin Load Balancing Algorithm	28
2.0	5.3	Min-Min Load Balancing Algorithm	30
2.0	5.4	First Come First Serve Load Balancing Algorithm	31
2.0	5.5	Shortest Job First Load Balancing Algorithm	32
2.0	5.6	Ant Colony Optimization	33
2.0	5.7	Honey Bee Foraging Load Balancing algorithm	35
2.0	5.8	Q-Learning	37
2.7	Cr	itique of Previous work	39
2.7	7.1	Q-learning Algorithm	40
2.7	7.2	Honeybee Foraging LBA	43
2.8	Su	mmary of Some Related Works	46
2.9	Ch	apter Summary	53
CHAPT	ER T	THREE	54
METH	IOD	OLOGY	54
3.1	Pre	eamble	54
3.2	Cle	oud Computing Environment	54
3.2	2.1	Cloudlets	56
3.2	2.2	Virtual Machines (VMs)	56
3.2	2.3	Data Center	57
3.3	Cle	oudSim Framework	58

5.5		50
3.3.	1 Scheduling in CloudSim	60
3.3.	2 Cloudlet scheduling	60
3.3.	.3 Cloudlet Scheduler Space Shared	60
3.4	Novelty of research	60
3.5	Problem Formulation	61

3.6Design of a hybrid Load balancing algorithm63

3.7	Im	plementation Resources	68
3.8	Me	thod of Evaluation	70
3.9	Eva	aluation experiments	71
3.9.	.1	Experiment one	71
3.9.	.2	Experiment two	71
3.9.	.3	Experiment three	72
3.9.	.4	Experiment Specifications.	72
3.10 Chapter Summary 7		74	

CHAPTER FOUR

75

RESULTS AND DISCUSSION		
4.1 Preamble	75	
4.2 Performance metrics of the algorithm with varying tasks	75	
4.2.1 Results and analysis for experiment one	77	
4.3 Performance metrics of the algorithm with varying VMs	77	
4.3.1 Results and analysis for experiment two	79	
4.4 Performance metrics of the algorithm with constant tasks and VMs	80	
4.4.1 Results and analysis for experiment 3	82	
4.5 Discussion	82	
4.6 Chapter Summary	83	

84

CONCLUSION AND RECOMMENDATION		84
5.1	Summary	84
5.2	Conclusion	84
5.3	Contribution to knowledge	85
5.4	Strengths and Weaknesses of the HBFQL algorithm	85
5.4	.1 Strengths of algorithm	85
5.4	.2 Weakness of the algorithm	85
5.5	Recommendation	86

REFERENCES	87
APPENDIX	94

LIST OF FIGURES

FIGURES	LIST OF FIGURES	PAGES
Figure 1.1: Cloue	d Computing Overview	3
Figure 1.2 Cloud	l Deployment Models	4
Figure 1.3: Virtu	al Machines (Masdari et al., 2016)	6
Figure 1.4: Load	Balancing in Cloud Computing (Afzal & Kavitha, 2019)	8
Figure 2.1: Cloud	d Service Models (Mishra et al., 2020)	16
Figure 2.2: Cloud	d Deployment Models	16
Figure 2.3: Virtu	al Machine (Han et al., 2016)	19
Figure 2.4: Load	Balancing Model (Jafarnejad Ghomi et al., 2017)	21
Figure 2.5: Roun	d Robin algorithm	28
Figure 2.6: Weig	thed Round Robin	29
Figure 2.7: Ant C	Colony Optimization LBA (Shafiq et al., 2021)	34
Figure 3.1: Load	balancing overview	55
Figure 3.2: The c	cloud sim framework (Sankaran et al., 2021)	59
Figure 3.3: Q-lea	arning algorithm block diagram	63
Figure 3.4: HBF	algorithm block diagram	64
Figure 3.6: Prop	osed HBFQL algorithm block diagram	65
Figure 3.5: Arch	itectural model for HBFQL algorithm	67
Figure 3.7: HBF	QL Algorithm Flowchart	68
Figure 4.1: Thro	ughput result for experiment one	75
Figure 4.2: Make	espan from experiment one	76
Figure 4.3: Runt	ime results for experiment one	76
Figure 4.4: Thro	ughput for experiment two	78
Figure 4.5: Make	espan from experiment two	78
Figure 4.6: Runt	ime of different algorithms in experiment two	79
Figure 4.7: Thro	ughput in experiment three	80
Figure 4.8: Expe	riment three makespan	81
Figure 4.9: Algo	rithm runtime in experiment three	81

LIST OF TABLES

TABLES	LIST OF TABLES	PAGES
Table 2.1 Chara	cteristics of cloud computing	13
Table 2.2: Com	parison between Static and Dynamic Load Balancing Algorithms	25
Table 2.3: Sum	mary of Some Related Works.	46
Table 3.1: Clou	dSim system requirements	59
Table 3.2: Spec	ifications of system used	69
Table 3.3: Java algorithm	files in CloudSim modified to implement the developed load balan	cing 69
Table 3.4: Algo	rithms used for evaluation	70
Table 3.5: Simu	lated Data Centre specification	72
Table 3.6: Simu	lated VM specification	73
Table 3.7: Clou	dlet specification	73
Table A1: Exp ((1) Throughput of HBFQL compared with SJF and ACO	94
Table A2: Exp	(1) Makespan of HBFQL compared with SJF and ACO	94
Table A3: Exp ((1) Runtime of HBFQL compared with SJF and ACO	95
Table A4: Exp ((2) Throughput of HBFQL compared with SJF and ACO	95
Table A5: Exp ((2) Makespan of HBFQL compared with SJF and ACO	96
Table A6: Exp ((3) Runtime of HBFQL compared with SJF and ACO	96
Table A7: Exp ((3) Throughput of HBFQL compared with SJF and ACO	97
Table A8: Exp ((3) Makespan of HBFQL compared with SJF and ACO	97
Table A9: Exp ((3) Runtime of HBFQL compared with SJF and ACO	97

LIST OF ABBREVIATIONS

Ant Colony Optimization (ACO) Application Specific Integrated Circuits (ASICs) Artificial intelligence (AI) Client Service Side (CSS) Cloud Service Provider (CSP) Data Centre (DC) Deep Q-Learning Task Scheduling (DQTS) First Come First Serve (FCFS) Genetic Algorithm (GA) Honey Bee Foraging (HBF) Information and communication technology (ICT) Infrastructure-as-a-Service (IAAS) Load Balancing as a Service (LBaaS) Machine learning (ML) Max-Min Scheduling Algorithm (MMSIA) Million Instructions Per Second (MIPS) Millions of Instructions (MI) Opportunistic Load Balancing (OLB) Physical Machine (PM) Platform As a Service (PAAS) Q-learning based task scheduling framework for energy-efficient cloud computing (QEEC) Quality of Service (QoS) Round Robin (RR)

Service Level Agreements (SLAs)

Shortest Job First - Extreme Learning Machine (SJF-ELM)

Shortest Job First (SJF)

Software As a Service (SAAS).

Virtual Machine (VM)

Virtual Passive Optical Network (VPON)

Virtual Private Networks (VPN)

Weighted Round Robin (WRR)

ABSTRACT

Cloud computing is a modern robust approach, enabling individuals and businesses to buy the services they need per their demands over the internet. It offers a wide range of amenities such as easy access to online applications and services, storage, deployment platforms, and much more. Load balancing is a crucial component of cloud computing, and it prevents the overburdening of nodes while others are idle or underutilized. Maintaining the Quality of Service (QoS) parameters can be difficult for cloud providers when equal workload distribution across servers is a challenge. An effective Load Balancing (LB) approach should enhance and provide a high level of customer satisfaction by effectively utilizing Virtual Machines across servers. Even though load balancing algorithms (LBA) have been the subject of much research, efforts to decrease runtime, makespan, and boost throughput have not yielded satisfactory results. Through the hybridization of a dynamic load balancing algorithm and a machine learning algorithm, this research intends to decrease the runtime of load balancing activities, decrease makespan, and boost task throughput in a cloud computing environment. This study combines the Q-learning algorithm with the Honeybee Foraging Load Balancing Algorithm (HBF-LBA). The proposed Honeybee Foraging Q-Learning algorithm (HBFQL) was implemented in the CloudSim simulation environment. The suggested solution successfully decreased runtime by 13.1% and makespan by 8.95% while enhancing throughput by 8.37% during routing operations compared to the Shortest Job First (SJF) algorithm. Compared with the Ant Colony Optimization (ACO), the proposed algorithm reduced runtime by 14.57% and makespan by 13.71% while increasing throughput by 3.43%. This research improved task execution speed by continually monitoring the virtual machine usage history to route tasks to the best available virtual machine and ensure effective task distribution.

Keywords: Cloud Computing, Load balancing, Virtual Machines, Honeybee Foraging, Qlearning