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Abstract 

The novel coronavirus disease (COVID-19) pandemic outbreak is the most 
startling public health crises with attendant global socio-economic burden 
ever experienced in the twenty-first century. The level of devastation by this 
outbreak is such that highly impacted countries will take years to recover. 
Studies have shown that timely detection based on accelerated sample testing 
and accurate diagnosis are crucial steps to reducing or preventing the spread 
of any pandemic outbreak. In this opinionated review, the impacts of metal 
organic frameworks (MOFs) as a biosensor in a pandemic outbreak is 
investigated with reference to COVID-19. Biosensing technologies have been 
proven to be very effective in clinical analyses, especially in assessment of 
severe infectious diseases. Polymerase chain reactions (PCR, RT-PCR, CRISPR) - 
based test methods predominantly used for SARS-COV-2 diagnoses have 
serious limitations and the health scientists and researchers are urged to come 
up with a more robust and versatile system for solving diagnostic problem 
associated with the current and future pandemic outbreaks. MOFs, an 



emerging crystalline material with unique characteristics will serve as 
promising biosensing materials in a pandemic outbreak such as the one we 
are in. We hereby highlight the characteristics of MOFs and their sensing 
applications, potentials as biosensors in a pandemic outbreak and draw the 
attention of researchers to a new vista of research that needs immediate 
action. 
Introduction 

As at 6.03 pm CEST, 10 March, 2021, there have been 118,684,343 COVID-19 
cases, including 2,633,281 deaths confirmed globally by WHO, ECDC, NCDC 
and John Hopkins University.120 Since the first case of COVID-19 was 
detected in China’s Hubei province in late 2019, stringent measures such as 
lockdowns, travel bans, border closure etc. have been imposed in order to 
control or stop the spread of the outbreak, yet the global spread of the virus 
has continued to record significant increase with attendant global socio-
economic burden.31,88 In fact, reports from WHO and John Hopkins 
University reveals that the second wave of the outbreak is more devastating 
thus has left people in great fear.93 
Sample testing is an essential first step to responding to any pandemic 
outbreak.31,45 Diagnosis plays a decisive role in making prompt decisions on 
detection, contact tracing, isolation, management and treatment of infected 
persons.45 However, in the ongoing COVID-19 outbreak, most countries are 
unable to meet up with the massive diagnostic testing order given by 
WHO.79,83,86 This has resulted in a continuous spread due to community 
transmission.79,86 
As suggested by WHO, the general benchmark for adequate testing for a 
positive rate is around 3–12% per 1000 persons.23 South Korea, Uruguay, 
Germany and Australia recorded a positive rate of 1% hence being considered 
as countries with lowest COVID-19 related deaths in the world.24,37 South 
Korea was able to achieve the feat through their intensive testing programs 
occasioned by “drive-through” and “phone booths” tests.81 On the other 
hand, countries like Mexico and Nigeria have positive rates of 20–50% (a case 
is found for every few tests conducted), indicating the unlikelihood of testing 
widely enough to find all cases.37 No wonder the number of new confirmed 
cases keep increasing daily.120 



Apart from the disparity in country’s political and policy frameworks which 
may hinder the control of the continuous spread of the pandemic, the 
biosensing technologies (technologies behind testing and diagnosis) are 
important factors to consider. A biosensor is a device used for the detection of 
biological and biochemical agents; employing a biologically derived or a 
biomimetic recognition element while either undergoing a biochemical 
reaction (for example, enzyme-based biosensors) or binding the target 
molecule in a highly specific way. Studies have shown that biosensing devices, 
materials or technologies for testing infectious diseases or at time of 
pandemic outbreak must rigorously satisfy requirements of accessibility and 
affordability, rapidity, high sensitivity and selectivity, robustness, flexibility and 
simplicity in usage, ability to be mass produced etc.15,81 
The present trend in the daily reports on the confirmed cases of the COVID-19 
globally may be a pointer to the fact that the biosensing technologies 
currently in used for SARS-COV-2 testing are not satisfactory. It is pertinent to 
review the type of assays, strength and limitations of the commonly used 
biosensing methods since the pandemic outbreak and explore the potentials 
of other versatile biosensing materials and technologies such as metal organic 
frameworks (MOFs) for possibility of development and utilization in solving 
diagnostic problem associated with the current and future pandemic 
outbreaks. 
Metal Organic Frameworks (MOFs) and Their 
Characteristics 

Metal Organic Frameworks (MOFs) are advanced structures that are highly 
ordered, porous and customizable. They grow in a crystal form and are 
extremely flexible, especially when combined with nanoparticles for additional 
functionality or attributes.70,137 MOFs are made of metal clusters coordinated 
with organic linkers to generate a large Langmuir surface area and small-to-
medium-sized pores.54 MOFs are defined as porous structures constructed 
from the coordinative bonding between metal ions and organic ligands or 
bridging ligands.138 The linkers or bridging ligands consist of carboxylates, or 
anions, such as phosphonate, sulfonate, and heterocyclic compounds while 
the inorganic units are the metal ions or clusters called secondary building 
units (SBUs).138 The coordination number, geometry of the metal ions and 



the nature of the functional groups determine the geometry of MOFs. Based 
on this we have octahedron with six points of extension, trigonal prism with 
five points, square paddle-wheel (four points), and triangle with three points. 
Some commonly used metals for synthesis of MOFs include La, Zn, Cr, Cu, In 
Co, Fe and Ag while some common organic linkers or ligands include 1,4-
benzenedicarboxylate or terephthalate moiety (H2bdc), Benzene-1,3,5-
tricarboxylate moiety (H3btc), 4,4′-biphenyldicarboxylate (H2bpdc), 1,4-
bis(imidazol-1-ylmethyl)benzene (Bix), 1,3,5-benzenetriphosphoric acid, 1,5-
naphthalenedisulfonic acid, 4,4-bipyridine, 2,5-dihydroxybenzene-1,4-
dicarboxylic acid (H4dhbdc), 2,6-naphthalenedicarboxylic acid (H2ndc), 
adamantane tetracarboxylic acid (H4atc), 4,4′,4″-benzene-1,3,5-tryyl-benzoic 
acid (H3btb).138 Figure 1 shows the typical skeletal structure of MOF and some 
examples of ligand structures. 
Figure 1 



 
Typical Structure of MOF and Some examples of organic linkers of ligands. 
Adapted from Sharmin and Zafar.137 © 2016 The Author(s). 
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MOFs are often synthesized using solvothermal, ionothermal, diffusion, 
microwave, ultrasound-assisted and template-directed syntheses 



methods.33,65,128,143 Figure 2 shows the different synthesis methods for 
MOFs. MOFs may be classified based on the type of metals and guest species 
into five categories, viz. transition metal MOFs, rare earth metal (REM) MOFs, 
composite structure MOFs, heterometallic MOFs, and S-block metal 
MOFs.103 Most MOFs are simply named after the institutions from where they 
were produced. Examples include MIL-101 [Cr3O(OH, F, H2O)3(1,4-bdc)3] and 
other MIL-series named after Materials Institute Lavoisier and commonly used 
for drug delivery,48 HKUST-1 [Cu2(H2O)2(CO2)4] named after Hong Kong 
University of Science and used for adsorption and storage,67 UiO-66-
NH2 named after University of Oslo and used for biosensing 121 and an 
isoreticular MOF IRMOF-9 [Zn4O(bpdc)3] used for adsorption and storage.95 In 
comparison to other high-class materials such as graphenes, carbon 
nonatubes, gold nonatunes etc., MOFS are emerging class of porous 
inorganic-organic high profile hybrid compounds which have attracted much 
attention in recent time due to its stunning properties and wider 
applications.75 Figure 3 shows comparison of MOFs with other materials in 
terms of properties. 
Figure 2 



 
Schematic of commonly used approaches for high-throughput synthesis of 
MOFs. Reproduced with permission from Kukkar et al. 50. © 2018 Elsevier 
B.V. 
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Figure 3 



 
Stunning Properties of MOF Compared to other high class materials. 
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MOFs as Biosensors 

There are different sensing platforms, viz. luminescence, surface plasmon 
resonance, electrochemical, impedance, fluorescence imaging (magnetic 
resonance imaging MRI), interferometry and 
solvatochromism.18,49,69,97,98,142 Recently, MOFs have been explored as 
Biological and biochemical sensors.11,36 Hao and Yan36 developed a 
lanthanide-functionalized MOF as a fluorescent probe for hippuric acid in 
urine which was considered as the biological indicators of toluene exposure. 
The fabricated sensor, according to the authors has several attractive features, 
including high sensitivity, excellent selectivity, fast response time (~ 1 min), 
broad linear range (0.05–8.0 mg/mL), and good reversibility and 
regeneration.36 The sensor was successfully applied to determination of 
hippuric acid in human urines with recoveries in the range of 93.5–102.9%. The 
high porosity, tuneable chemical composition, large surface area, high 
crystallinity, and potential for post synthetic modification for molecular 
recognition have made MOFs promising candidates for biosensing 



application.80 Besides, the inherent luminescence of many MOFs have made it 
useful in sensing platforms.97,98 Some MOFs and their biosensing 
applications are summarized in Table 1. 
Table 1 Some MOFs and their biosensing applications/detection limits 
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MOFs as Biosensing Materials in Pandemic Outbreaks 

Viruses are often the culprit in epidermic and pandemic outbreaks. They are 
infectious agents, mostly in nanoscale capable of causing various 
diseases.82 MOFs have been used as biosensors during epidermic and 
pandemic outbreaks. 

Sensing of Human Immunodeficiency Virus 
The retrovirus is a RNA virus whereby its DNA is integrated into its host 
chromosomal DNA.8,82 Detection at the early stage of infection may be 
difficult due to the rare proviral DNA expression in the infected host.99 The 
Human Immunodeficiency Virus (HIV), which belongs to the genus Lentivirus 
within the family of Retroviridae and subfamily Orthoretrovirinae99 is a human 
retrovirus. Based on the genetic characteristics and differences in the viral 
antigens, there are two types of HIV: HIV-1 and HIV-2.99,100 The HIV-1 type is 
believed to have evolved from non-human primate immunodeficiency viruses 
from the Central African chimpanzees (SIVcpz)30,32 while the HIV-2 type is 
linked to the West African sooty mangabeys (SIVsm) as the origin.100 HIV 
infection results in acquired immunodeficiency syndrome (AIDS), a disease 
that is associated with the depletion of the CD4+T cell of the host.8 According 
to the WHO, at the end of 2019, an estimated 38.0 million people are living 
with HIV and about 33 million deaths have resulted from AIDS-related 
sicknesses.118 Because early diagnosis and treatment of HIV can improve 
survival and reduce morbidity, the Centers for Disease Control and Prevention 
have recommended routine testing.4 Examples of such routine test are the 
western blot and enzyme-linked immunosorbent assay (ELISA) 
assay.82 Nevertheless, because of reaction of samples with one or more of the 
antigens, these methods suffer from some false positive and negative 
outcomes.82 Researchers have taken advantage of large specific surface area, 



high porosity, fluorescence quenching, high loading efficiency, easy 
functionalization, and tunable pore properties of MOFs to deploy them in 
biosensing applications including the biosensing of HIV. 
Yang et al.130 applied [Cu3(Cmdcp)2(dps)4.(H2O)4(SO4)]n for the detection of 
human immunodeficiency virus-1 double-stranded DNA (HIV-1 ds-DNA). The 
3-dimentional structure of the MOF enhanced the distinction between the ds-
DNA and ss-DNA molecules. The intrinsic quenching properties of the 
unsaturated Cu(II) metal ion coordination centre and the conjugated π-
electron system of the aromatic groups on both linkers enabled electrostatic 
and hydrogen bonding via π-stacking interactions of the probe DNAs with the 
MOF, leading to photoinduced electron transfer (PET) fluorescence quenching. 
There was also a strong interaction between the probe DNA and the target 
DNA sequence. The non-target DNA sequences were between 50 and 86% 
less fluorescence than the target sequence in the dsDNA assay due to the 
diminished effect of its concentration. The probe recorded a high selectivity 
and 196pM detection limit for the viral dsDNA.130 Notably, the interaction of 
the MOF [Cu3(Cmdcp)2(dps)4·(H2O)4(SO4)]n with the complimentary sequences 
of HIV ds-DNA: carboxyfluorescein FAM-labeled probe ss-DNA, 5′-FAM-
TTCTTCTTTTTTCT-3′ (P-DNA-1) and SUDV RNA: 5-FAM-
TTAAAAAGTTTGTCCTCATC-3 (P-DNA-2) showed that the fluorescence 
intensity of the complimentary sequences of both HIV ds-DNA and SUDV RNA 
decreased upon the addition of the MOF. The quenching efficiency (QE%) of 
both HIV ds-DNA and SUDV RNA sequences were 65 and 76% respectively, 
indicating that the MOF efficiently quenched the fluorescence of both P-DNA-
1 and P-DNR-2 sequences. The fluorescence spectra of both HIV-1 ds-DNA 
and SUDV RNA complementary sequences are presented in Fig. 4. 
Figure 4 



 
Fluorescence spectra of P-DNA-1 (a, 50 nM) and P-DNA-2 (b, 50 nM) 
incubated with MOF [Cu3(Cmdcp)2(dps)4.(H2O)4(SO4)]n of varying 
concentrations at room temperature. Insets: plots of fluorescence intensity at 
518 nm versus the concentrations of MOF [Cu3(Cmdcp)2(dps)4.(H2O)4(SO4)]n. 
Reproduced with permission from Yang et al.129. © 2015 American Chemical 
Society. 
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Zhu et al.144 reported the successful application of a 2-D transition metal 
MOF Cu(H2dtoa) [i.e. N,N′-bis(2-hydroxyethyl)dithiooxamidatocopper(ii)] for 
detection of HIV-1 U5 long terminal repeat DNA sequence with detection 
limits of 3nM, high sensitivity and selectivity. The mechanism of action was 
enhanced by the intrinsic quenching properties of the metal ion Cu2+, 
coordination centre and conjugated π-electron system of the dithiooxamide 
linkers. These properties led to the non-covalent binding of the 6-
carboxyfluorescein or FAM single stranded DNA (ssDNA) probe via π-stacking 
interactions with the MOF, which quenched its fluorescence in a process called 
photo induced electron transfer (PET).80,144 There occurred a turn-on sensing 
of the viral gene when the target DNA was added due to the release of the 
probe from the MOF and the fluorescence restoration.80 The probe-MOF 
exhibits a linear increase in the range of 10–100 nM and the sensor system 
was believed to be highly sensitive and selective. The Fluorescence spectra of 
the FAM-labeled DNA–Cu(H2dtoa) in the presence of different concentrations 
of target DNA is shown in Fig. 5a. Similarly, Fig. 5b depicts the fluorescence 



spectra of the FAM labeled probe DNA 2–Cu(H2dtoa) in the presence of 
different concentrations of thrombin. 
Figure 5 

 
(a) Fluorescence spectra of the FAM-labeled DNA–Cu(H2dtoa) in the presence 
of different concentrations of target DNA. Inset: plot of fluorescence intensity 
vs. concentrations of target DNA. (b) Fluorescence spectra of the FAM labeled 
probe DNA 2–Cu(H2dtoa) in the presence of different concentrations of 
thrombin. Inset: plot of fluorescence intensity vs. logarithm of concentrations 
of thrombin. The concentration of dye-labeled probe DNA 1and DNA 2 is 50 
nM. Reproduced with permission from Zhu et al.143 (© Royal Society of 
Chemistry 2013) and Miller et al.80 (© 2016 The Authors). 
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Zhao et al.140 isolated six water-stable zinc(II) zwitterionic carboxylate 
compounds with 1D chain, 2D networks and 3D MOFs structures through the 
coordination reaction of {Na3[Na9(Cbdc-p)6(H2O)18]}n with Zn(NO3)2·6H2O. 
Among the isolated compounds, the 2D sheet, {[Zn(Cbdcp)(bpe)1/2]·2H2O}n 
compound was found to efficiently quenched the fluorescence of P-DNA. The 
authors had selected a FAM-labeled P-DNA 50-FAM-TTCTTCTTTTTTCT-30 as 
complementary sequences for HIV ds-DNA and noticed that the fluorescence 
intensity of P-DNA decreased upon the addition of {[Zn(Cbdcp)(bpe)1/2].2H2O}n 
compound. The quenching efficiency (QE%) was 73% with the saturation 
concentration calculated as 10mM. It was proposed that the compound 
formed a noncovalent complex P-DNA@2 system with its functional aromatic 



rings, the carboxylic acid groups, the positively charged pyridinium and 
Zn2+ cation centers and 2D plane structure (Fig. 6). 
Figure 6 

 
Proposed mechanism for the detection of target HIV ds-DNA sequences based 
on a fluorescent biosensor formed from compound 2 and fluorophore-labeled 
probe ss-DNA. Reproduced with permission from Zhao et al.139. © 2016 
Published by Elsevier B.V. 
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Sensing of Ebola Virus (Sudan Virus) RNA Sequence 
Ebola virus disease (EVD), formerly known as Ebola haemorrhagic fever is 
a viral hemorrhagic fever of humans and other primates that first appeared in 
1976 in two simultaneous outbreaks.44 EVD is caused by Ebola viruses (EBOV), 
single-strand RNA viruses of the family Filoviridae.78 There are about five 
species of EBOV, namely Zaire, Bundibugyo, Sudan, Reston and Tai Forest. 
Although the fatality rate varies from specie to specie of EVD, it is in the range 
of 50–90%.44,104 The chronology of previous Ebola virus disease outbreaks 
and the actual fatality rate can be found in the WHO recent reports.119 EBOV 
infects its host cell by attaching to the receptors through the GP glycoprotein 
and getting endocytosed in host vesicles.44 The C-type lectins DCSIGN and 
DC-SIGNR is pivotal in the process as they bind to Ebola glycoproteins.44 The 
entry pathway of EBOV into host cell, the binding to cell-surface receptors, the 
slashing of the viral GP1 protein into N-terminal fragment Ebola within the 
endosome, and the digestion of cathepsin B into GP2 are illustrated in Fig. 7. 
The laboratory diagnosis of EBOV includes polymerase chain reaction, 
enzyme-linked immunosorbent assay (ELISA), antigen ELISA, 



immunohistochemistry, fluorescence assay, electron microscopy, indirect 
immunofluorescence assay (IFA), immuno-blot (western blot), biosensors SPR, 
QCM, optical, and DNA-based fluorescence nanobarcodes 
methodology.19,44,104 
Figure 7 

 
Illustration of the entry pathway of Ebola Virus into host cell 44. The process 
begins with the EBOV getting attached to the cell surface receptors and 
internalizing in the endosome.44,78,104,118 In the endosome, the endosomal 
proteases (cathepsin B and cathepsin L) fragment the viral GP1 protein into N-
terminal 44,77,103. Cathepsin B thereafter digests it into GP2 that helps in the 



fusion of the viral envelope and the endosomal membrane.44,78,104 The viral 
genome is then release into the cytoplasm.44,78,104 Upon release, the 
proteolysis of GP1 is inhibited by CA07444,78,104 paving way for the 
progression of the infection. The figure was reproduced with permission from 
Kaushik et al.44 © 2015 Elsevier B.V. 

Full size image  
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