DETERMINATION OF AEROSOL SCATTERING ATTENUATION ON TERRESTRIAL FREE-SPACE OPTICAL COMMUNICATION IN SELECTED LOCATIONS IN NIGERIA

AYO-AKANBI, OLAOLUWA ADEDAPO 20PCE02314

MARCH, 2023

DETERMINATION OF AEROSOL SCATTERING ATTENUATION ON TERRESTRIAL FREE-SPACE OPTICAL COMMUNICATION IN SELECTED LOCATIONS IN NIGERIA

BY

AYO-AKANBI OLAOLUWA ADEDAPO (20PCE02314) B.Sc Physics and Solar Energy, Bowen University, Iwo

SUBMITTED TO Α DISSERTATION THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE **REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.Sc)** INDUSTRIAL PHYSICS (ATMOSPHERIC AND COMMUNICATION PHYSICS DEPARTMENT, COVENANT PHYSICS) IN THE UNIVERSITY, OTA, OGUN STATE, NIGERIA

ACCEPTANCE

This is to attest that this research work is accepted in partial fulfillment of the requirements for the award of the degree of Master of Science (M.Sc) in Industrial Physics (Atmospheric and Communication Physics) in the Department of Physics, College of Science and Technology, Covenant University, Ota, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, AYO-AKANBI, OLAOLUWA ADEDAPO (MATRIC NO: 20PCE02314) declare that this research was carried out by me under the supervision of Dr. Olusayo A. Akinwunmi of the Department of Physics, College of Science and Technology, Covenant University, Ota, Nigeria. I attest that this dissertation has not been presented wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation are duly acknowledged.

AYO-AKANBI, OLAOLUWA ADEDAPO

Signature and Date

iv

CERTIFICATION

We certify that this project titled "DETERMINATION OF AEROSOL SCATTERING ATTENUATION ON TERRESTRIAL FREE-SPACE OPTICAL COMMUNICATION IN SELECTED LOCATIONS IN NIGERIA" is an original research work carried out by AYO-AKANBI, OLAOLUWA ADEDAPO (20PCE02314) in the Department of Physics, College of Science and Technology, Covenant University, Ota, Nigeria under the supervision of DR. SAYO A. AKINWUMI. We have examined and found this work acceptable as part of the requirements for the award of the degree of Master of Science in Industrial Physics (Atmospheric and Communication Physics).

Dr. Sayo A. Akinwumi (Supervisor)

Prof. Mojisola R. Usikalu (Head, Physics Department)

Dr. Elijah O. Falayi (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) **Signature and Date**

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This research is dedicated to God. I am grateful to Him for his assistance throughout this program.

ACKNOWLEDGEMENTS

I thank God for giving me life, strength, and the impetus to begin and continue my studies. I appreciate the Chancellor of Covenant University, Bishop David Oyedepo, and the entire Board of Regents. I appreciate the Vice-Chancellor and the entire Covenant University Management team. I am grateful to Professor Akan B. Williams, Dean of the School of Postgraduate Studies, Dr. Emmanuel O. Amoo, Sub-dean of the School of Postgraduate Studies, and Professor Timothy A. Anake, Dean of the College of Science and Technology for their selfless efforts. I would like to express my heartfelt gratitude and appreciation to my Head of Department, Professor T. V. Omotosho, for their constructive criticisms, contributions, enthusiastic encouragements, reassurances of faith, and useful and timely suggestions throughout the successful completion of my studies.

I am extremely grateful to my supervisor, Dr. Sayo A. Akinwunmi, without whose expertise, kindness, advice, and unwavering support I would not have been able to complete this research work. I am grateful to Professor T. V. Omotosho, Professor M. L. Akinyemi, Dr. Maxwell Omeje, Dr. T. A. Adagunodo, Dr. O. O. Olawale, Dr. K. D. Oyeyemi, Mr Arijaje Theophilus, Mr Araka, Mr Segun Ayanbisi, and Ms Peace Falusi for their assistance and encouragement throughout the program. I also want to thank all of the members of the Department of Physics, faculty, staff, and students who have influenced me and contributed to the success of my studies in various ways. My heartfelt gratitude also goes to my parents, siblings and friends who have contributed financially to this academic program. None of this would have begun or continued without their encouragement and support.

TABLE OF CONTENTS

CONTENT	PAGES
COVER PAGE	
TITLE PAGE	i
ACCEPTANCE	ii
DECLARATION	iii
CERTIFICATION	iv
DEDICATION	V .
ACKNOWLEDGEMENTS TABLE OF CONTENTS	vi vii
LIST OF TABLES	vii xi
LIST OF FIGURES	xii
ABSTRACT	xiii
CHAPTER ONE: INTRODUCTION	
1.1 Background of study	1
1.2 Statement of Problem	3
1.3 Research Questions	3
1.4 Aim and objectives	4
1.5 Justification of study	4
1.6 Scope of study	5

1.6 Scope of study

CHAPTER TWO: LITERATURE REVIEW

2.1 Theoretical Framework	6
2.1.1 Optical Sources and Detectors	9
2.1.2 Features of Optical Wireless Communication	10
2.1.3 Areas of Utilization	11
2.2 Transmission Parameters	12
2.2.1 Geometrical Attenuation	12
2.2.2 Atmospheric Attenuation	13
2.3 Signal-to-Noise Ratio (Snr)	15
2.4 Atmospheric Turbulence Channel	16
2.5 Atmospheric Conditions and Mitigation Techniques	19
2.6 Communication System Performance	19

	2.6.1 Bit Error Rate	19
	2.6.2 Link Margin	21
	2.6.3 Outage Probability	23
	2.6.4 Probability of Fade	24
2.7	Related Literature	24

CHAPTER THREE: METHODOLOGY

3.1 Materials	29
3.2 Location of Study	29
3.3 Data Acquisition in Study Location	31
3.4 Method of Data Analysis	32
3.5 Characteristics of Atmospheric Parameters	34
3.5.1 Visibility Distribution	34
3.5.2 Humidity	35
3.5.3 Air Temperature	35

CHAPTER FOUR: RESULT AND DISCUSSION

4.1	Monthly Variation Average Visibility, Temperature and Relative Humidity	
	Over the Study Area	38
4.2	Monthly Variation Average Values of Visibility Over the Study Area	43
4.3	Statistical Analysis of Visibility Computation Over the Study Area	49
4.4	Estimated Specific Attenuation Over the Study Area	51
4.5	Cumulative Distribution of Aerosol Scattering Over the Study Area	55
4.6	Comparison Between Aerosol Scattering Attenuation and Visibility	
	Over the Study Area.	57
4.7	Seasonal Variation of Attenuation Due to Aerosol Scattering	
	Over the Study Area	61
4.8	Statistical Analysis of Attenuation Computation Over the Study Area	66

CHAPTER FIVE

REFERENCES	72
5.3 Recommendations	71
5.2 Contribution to knowledge	70
5.1 Conclusion	70

LIST OF TABLES

TABLES	LIST OF TABLES	PAGES
2.1	Effect of weather conditions and mitigation techniques	23
3.1	Characteristics of study location	32
3.2	Minimum required visibility under various climatic conditions	36
3.3	Optical bandwidth transmission windows	37
3.4	Standard temperature measures	37
4.1	Statistical Analysis of Visibility Computation Over the Study Area	50
4.2	Statistical Analysis of Attenuation Computation Over the Study Area	n 69

LIST OF FIGURES

FIGU	RES LIST OF FIGURES	PAGES
2.1	Block Diagram of free space optics link	9
2.2	Atmospheric effects on FSO system	13
2.3	Atmospheric channel with turbulent eddies	17
2.4	General High-Altitude Platform (HAP)	26
3.1	Map of Nigeria showing study locations	31
4.1	Variation of monthly averages for visibility, temperature, and relative	
	humidity in Enugu	40
4.2	Variation of monthly averages for visibility, temperature, and relative	
	humidity in Lagos	40
4.3	Variation of monthly averages for visibility, temperature, and relative	
	humidity in Port Harcourt	41
4.4	Variation of monthly averages for visibility, temperature, and relative	
	humidity in Abuja	41
4.5	Variation of monthly averages for visibility, temperature, and relative	
	humidity in Kano	42
4.6	Variation of monthly averages for visibility, temperature, and relative	
	humidity in Maiduguri	42
4.7	Monthly variation of average visibility value for the entire study period for	
	Enugu	45
4.8	Monthly variation of average visibility value for the entire study period for	
	Lagos	46
4.9	Monthly variation of average visibility value for the entire study period for	
	Port Harcourt	46
4.10	Monthly variation of average visibility value for the entire study period for	
	Abuja	47
4.11	Monthly variation of average visibility value for the entire study period for	
	Kano	47
4.12	Monthly variation of average visibility value for the entire study period for	

	Maiduguri	48
4.13	Comparison of the monthly average visibility values of the study location	
	for the entire study period	48
4.14	Seasonal variation of average visibility values of the study location for the	
	entire study period (2000-2021)	49
4.15	Average estimated Attenuation coefficient (dBkm ⁻¹) at 850 nm and 1550 nm	
	at Enugu	52
4.16	Average estimated Attenuation coefficient (dBkm ⁻¹) at 850 nm and 1550 nm	
	at Lagos	53
4.17	Average estimated Attenuation coefficient (dBkm ⁻¹) at 850 nm and 1550 nm	
	at Port Harcourt	53
4.18	Average estimated Attenuation coefficient (dBkm ⁻¹) at 850 nm and 1550 nm	
	at Abuja	54
4.19	Average estimated Attenuation coefficient (dBkm ⁻¹) at 850 nm and 1550 nm	
	at Kano	54
4.20	Average estimated Attenuation coefficient (dBkm ⁻¹) at 850 nm and 1550 nm	
	at Maiduguri	55
4.21	Cumulative distribution of Aerosol scattering attenuation at 550 nm for selected	
	locations	56
4.22	Cumulative distribution of Aerosol scattering attenuation at 1550 nm for selected	
	Locations	56
4.23	Estimated specific attenuation against visibility at Enugu	58
4.24	Estimated specific attenuation against visibility at Lagos	59
4.25	Estimated specific attenuation against visibility at Port Harcourt	59
4.26	Estimated specific attenuation against visibility at Abuja	60
4.27	Estimated specific attenuation against visibility at Kano	60
4.28	Estimated specific attenuation against visibility at Maiduguri	61
4.29	Seasonal variation of attenuation for the entire study period at Enugu	63
4.30	Seasonal variation of attenuation for the entire study period at Lagos	64
4.31	Seasonal variation of attenuation for the entire study period at Port Harcourt	64
4.32	Seasonal variation of attenuation for the entire study period at Abuja	65

4.33	Seasonal variation of attenuation for the entire study period at Kano	65
4.34	Seasonal variation of attenuation for the entire study period at Maiduguri	66

ABSTRACT

Free-Space Optics (FSO) is a new technology that allows the transmission of data through the propagation of light in free space. However, it is limited by various atmospheric parameters such as aerosol, temperature and humidity which has significant impact on its design, and attenuates the propagated signals which affects the performance and may lead to unavailability network for wireless communication. The impacts of these atmospheric parameters (visibility, temperature, and relative humidity) on the performance of terrestrial free space optical communication are investigated in this study using the Kim and Ijaz model. The study also looks into the seasonal influence on free space optical communication performance in response to high bandwidth communication demand in selected locations across Nigeria's six geopolitical zones, including Enugu, Lagos, Port Harcourt, Abuja, Kano, and Maiduguri. This study makes use of re-analysed data from the Visual Crossing (VC) archives spanning twenty-one (21) years (2000-2021). The visibility, temperature, and relative humidity of selected locations across Nigeria's six geopolitical zones were collected to determine the aerosol scattering attenuation on terrestrial free space optical communication for the FSO system design. The results show that attenuation values are higher (about 2.87 and 1.84 dBkm⁻¹ for 850 and 1550 nm respectively in Kano) in the late dry season (DJF) and lower (about 0.88 and 0.41 dBkm⁻¹ for 850 and 1550 nm respectively in Maiduguri) in the late wet season (JJA). During the study period, average visibility shows a decreasing trend during the dry season and an increasing trend during the wet season at all location. Furthermore, as the value of temperature increases, the value of relative humidity decreases. The wavelength of 1550 nm corresponding to a frequency of 193 THz, has the lowest aerosol scattering attenuation in all of the selected locations both in the dry and wet seasons. The findings of this study can be used to determine the suitable location where communication engineers can instal free space optical communication link for optimal performance.

Keywords: Optical wireless communication, Attenuation, Weather condition, Scintillation, Aerosol scattering, Meteorological data.