DEVELOPMENT OF A MACHINE LEARNING BASED FAULT DETECTION MODEL FOR RECEIVED SIGNAL LEVEL IN TELECOMMUNICATION ENTERPRISE INFRASTRUCTURE

NWOKOLO, OZULONYE INNOCENT (20PCK02095)

APRIL 2023

DEVELOPMENT OF A MACHINE LEARNING BASED FAULT DETECTION MODEL FOR RECEIVED SIGNAL LEVEL IN TELECOMMUNICATION ENTERPRISE INFRASTRUCTURE

BY

NWOKOLO, INNOCENT OZULONYE (20PCK02095) B.Eng. Electrical and Electronics Engineering, Bells University of Technology, Ogun State.

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF ENGINEERING (M.Eng.) DEGREE IN INFORMATION AND COMMUNICATION ENGINEERING IN THE DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY, OTA, OGUN STATE

APRIL 2023

ACCEPTANCE

This is to attest that this dissertation has been accepted in partial fulfilment of the requirements for the award of the degree of Master of Engineering in Information and Communication Engineering in the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, NWOKOLO, INNOCENT OZULONYE (20PCK02095) declare that this dissertation is a representation of my work and is written and implemented by me under the supervision of Dr. Kennedy O. Okokpujie of the Department of Electrical and Information Engineering, Covenant University, Ota, Nigeria. I attest that this dissertation has in no way been submitted either wholly or partially to any other university or institution of higher learning for the award of a masters' degree. All information cited from published and unpublished literature has been duly referenced.

NWOKOLO, INNOCENT OZULONYE

Signature and Date

CERTIFICATION

This is to certify that the research work "DEVELOPMENT OF A MACHINE LEARNING BASED FAULT DETECTION MODEL FOR RECEIVED SIGNAL LEVEL IN TELECOMMUNICATION ENTERPRISE INFRASTRUCTURE" is an original research work carried out by NWOKOLO, INNOCENT OZULONYE (20PCK02095), meets the requirements and regulations governing the award of Master of Engineering (M.Eng.) degree in Information and Communication Engineering from the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, and is approved for its contribution to knowledge and literary presentation.

Dr. Kennedy O. Okokpujie (Supervisor)

Prof. Emmanuel Adetiba (Head of Department)

Dr. Oluwunmi Adetan (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) **Signature and Date**

Signature and Date

Signature and Date

Signature and Date

DEDICATION

I dedicate this dissertation to God almighty for giving me knowledge and understanding throughout this research. His grace was sufficiently available for me.

ACKNOWLEDGMENTS

My heartfelt appreciation goes to the Almighty God for his immeasurable Grace and strength to begin and complete this program.

I would also like to thank the Chancellor of Covenant University, Dr. David Oyedepo for this great vision. Thank you, Sir, for the supportive structures and enabling environment, and I pray that God replenishes you with His abundance. I also want to extend my appreciation to the Vice Chancellor, Prof. Abiodun H., Adebayo, the Dean School of Postgraduate Studies, Prof. Akan B. Williams, the Dean College of Engineering, Professor David O. Olukanni, the Head of the Department Electrical and Information Engineering, Prof. Emmanuel Adetiba and all my course lecturers.

In addition, I would like to express my sincere gratitude to my supervisor, Dr. Kennedy O. Okokpujie, for the knowledge, time and efforts he provided throughout the course of this project. His useful advice and suggestions were really helpful. May God bless and give him more grace and wisdom for a higher position.

I would also like to thank my spouse, Mrs. Kendra Nwokolo, for her support in keeping the home front while I embarked on this program. Her understanding and patience during this time has been invaluable and I pray Almighty God to reward her immensely. I also want to thank my parents, Mr. and Mrs. Nwokolo for impacting me with godly training and also for their foundational investment in my educational pursuits.

Finally, I would also appreciate my siblings and friends who played a significant role in helping me to accomplish this dissertation. I pray that God blesses you for the moral and financial supports in helping me to accomplish this project.

TABLE OF CONTENTS

ACCEPTANCE	iii
DECLARATION CERTIFICATION DEDICATION ACKNOWLEDGMENTS LIST OF FIGURES LIST OF TABLES	iv v vi vii xii xii
ABSTRACT	XV
CHAPTER ONE: INTRODUCTION	1
1.1 Background to the Study	1
1.2 Statement of the Problem	2
1.3 Aim and Objectives	3
1.4 Scope of Study	3
1.5 Justification of the Research	4
1.6 Motivation for the Research	4
1.7 Organization of the Dissertation	5
CHAPTER TWO: LITERATURE REVIEW	6
2.1 Preamble	6
2.2 Fault Analysis in a Telecommunications Network	6
2.3 Maintenance Strategies	9
2.3.1 Reactive Maintenance	9
2.3.2 Preventive Maintenance	10
2.3.3 Total Productive Maintenance (TPM)	11
2.3.4 Reliability Centered Maintenance (RCM)	11
2.3.5 Predictive Maintenance	12
2.4 Machine Learning	14
2.4.1 Machine Learning Model for Signal Strength Prediction	18
2.5 Overview of Machine Learning Techniques	21

2.5.1 Extreme Gradient Boosted Trees (XGBoost)	22
2.5.2 Model and Parameters	23
2.5.3 Logistic Regression (LR)	23
2.5.4 Support Vector Machine	24
2.5.5 Decision Tree (DT)	25
2.5.6 Random Forest	26
2.5.7 Naïve Bayes' Theorem	27
2.5.8 K-Nearest Neighbor (K-NN)	27
2.5.9 Artificial Neural Networks (ANNs)	28
2.6 Frameworks for Building Machine Learning Systems	29
2.7 Computational Intelligence	33
2.8 Data Analytic Landscape	34
2.9 Data Analytic Process	35
2.10 Related Works	35
2.11 Gaps in the Literature	42
2.12 Chapter Summary	42
CHAPTER THREE: MATERIAL AND METHODS	43
3.1 Preamble	43
3.2 Objectives and Methods Mapping of the Study	43
3.3 Cross-industry Standard Process for Data Mining	44
3.4 Conceptual Framework	44
3.5 Business Understanding	45
3.5.1 Telecommunication Enterprise Network	46
3.5.2 Anomaly Detection	46
3.5.3 Signal Quality Analysis	47
3.6 Experimental Setup	48
3.7 Data Generation Approach	49

3.7.1 Analytical Model	49
3.7.2 Software Simulators	49
3.7.3 Emulator	51
3.7.4 Data Generation	51
3.7.5 Pathloss 5.0	52
3.7.6 Data Validation	53
3.7.7 Data Understanding	56
3.7.8 Data Preprocessing	57
3.7.9 Feature Selection and Extraction	57
3.8 Model Selection	59
3.8.1 K-Nearest Neighbor (KNN) Regression	59
3.8.2 K-Nearest Neighbor Training Pseudocode	60
3.8.3 Random Forest Regression	61
3.8.4 Random Forest Training Pseudocode	61
3.8.5 Gradient Boosting Regression (GRB)	62
3.8.6 Gradient Tree Boosting Training Pseudocode	63
3.8.7 Hyperparameter Tuning	63
3.8.8 Model Development	64
3.8.9 Performance Evaluation Metrics	65
3.10 Chapter Summary	66
CHAPTER FOUR: RESULTS AND DISCUSSION	67
4.1 Preamble	67
4.2 Acquired Dataset	67
4.6 Model Comparison	69
4.6.1 Heatmaps Using the Testing and Validation Dataset	70
4.6.2 Density Plots	72
4.6.3 Histogram and KDE Plot	75
4.6.4 The Industry Relevance of the Research, Result and Work	78
4.7 Chapter Summary	79

CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS	80
5.1 Preamble	80
5.2 Conclusion	80
5.3 Research Contributions	80
5.4 Recommendations	81
REFERENCES	82
APPENDIX A	98
APPENDIX B	

LIST OF FIGURES

FIGURES	LIST OF FIGURES	PAGES
Figure 2. 1: 1	Fault Analysis in a Telecommunications Network.	8
Figure 2. 2:	Overview of Maintenance Strategies	9
Figure 2. 3: 1	Predictive maintenance with BI	14
Figure 2. 4: 1	Predictive maintenance process	17
Figure 2. 5:	Classifications within Machine Learning Techniques	18
Figure 2. 6: 1	Diagram of machine learning models used for radio propagation	19
Figure 2. 7: 7	The flowchart of the input specification of an ML model	20
Figure 2. 8: '	Three Stage Philosophy of Supervised Machine Learning Techniques	21
Figure 2. 9: 2	XGBoost algorithm tree.	23
Figure 2. 10:	: Support vector machine	25
Figure 2. 11:	Random Forest algorithm workflow	27
Figure 2. 12:	: Sample Neural Network Architecture	29
Figure 2. 13:	The KDD processes	31
Figure 2. 14:	: Six phases of CRISP-DM framework.	32
Figure 2. 15:	: Summary of the data mining frameworks	33
Figure 2. 16:	: The data analysis process	35
Figure 3. 1:E	Block diagram of the CRISP-DM workflow	44
Figure 3. 2:0	Conceptual Framework	45
Figure 3. 3:]	Enterprise wireless point to multipoint network	46
Figure 3. 4:]	RSL vs distance Graph	48
Figure 3. 5:N	Aicrowave Link Design Process	50
Figure 3. 6:]	Pathloss 5.0 Generated data	53
Figure 3. 7: 1	Feature selection flowchart	57
Figure 3. 8: 1	Model development setup	65
Figure 4.1:	Heatmap for testing dataset	71
Figure 4. 2: 1	Heatmap for validated dataset	72
Figure 4. 3: 1	Density plot of GBR	73
Figure 4. 4: 1	Density plot of RFR	74

Figure 4. 5: Density plot of KNN	75
Figure 4. 6: Hist plot for GBR	76
Figure 4. 7: Hist plot for RFR	77
Figure 4. 8: Hist plot for KNN	78

LIST OF TABLES

TABLES LIST OF TABLES PAGES Table 2 1: Related Work 37 Table 3. 1: Objectives and Methods Mapping of the Study 43 Table 3.2: Material and Software Applications 48 Table 3. 3:TX / RX parameters for simulating (Training Datasets) 52 Table 3. 4: TX / RX parameters for simulating (Testing Datasets) 52 Table 3. 5: Sample generated training dataset 55 Table 3. 6: Sample generated test dataset 56 Table 3. 7: Input Features 58 Table 4. 1: Generated Raw Data 68 Table 4. 2: Model Performance metrics using the testing dataset 69 Table 4. 3: Model Performance metrics using the validation dataset 70

ABSTRACT

Wireless telecommunication infrastructure can fail without notice for maintenance action. However, these failures may not always result in a complete downtime, but rather degraded performance that can be difficult to pinpoint without specialized tools. Received signal level (RSL) is an important metrics of the quality of a wireless connection and can be used to determine the strength of the signal from the transmitting to the receiving device. It is important to regularly monitor the RSL to ensure that the network is operating at peak performance and to proactively address any issues that may arise. This research aims to develop a machine learning based fault detection model for received signal level in telecommunication enterprise infrastructure. The research methodology involves the modeling of an enterprise point to multipoint wireless communication network using pathloss 5.0 software. Data was extracted from the vector images of the simulated wireless network containing the free space pathloss, transmit power output, transmit antenna gain, transmitter loss, miscellaneous loss and receiver loss. The dataset obtained was then used to train the gradient boosting regression (GBR), random forest regression (RFR) and K-Nearest Neighbor (KNN) regression model. The algorithm compares a threshold value with the received signal levels (RSL) of new and unseen dataset and then trigger a "Fault" or "No-fault" condition. A Fault condition signifies a deviation in the received signal level which then prompt the field support team to perform maintenance on the wireless link. Whereas a No-Fault condition signifies that the RSL is within the accepted range, hence no maintenance is required on the wireless link. In order to choose an optimal machine learning model to achieve the objectives of this project, the performance evaluation metrics of mean absolute error (MAE), mean square error (MSE), R-squared and Root mean square error (RMSE) were compared and experimental results shows that the RFR model is better than the GBR and KNN with 'MAE': 0.007101, 'MSE': 0.000610, 'R-squared': 0.999992, and 'RMSE': 0.024697. By leveraging on the developed machine learning-based fault detection models, service providers can quickly optimize network performance, reduce downtime and increase customer satisfaction.

Keywords: Machine learning, Enterprise Wireless, Telecommunication, Received Signal Levels (RSL)