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Abstract
Forward modeling of direct current (DC) resistivity is very important for the inversion of the resistivity data to obtain the true 
resistivity of the subsurface. In this study, we demonstrated finite-element forward modeling of DC resistivity method with 
point electric source using COMSOL Multiphysics. We employed the AC/DC module in COMSOL which often provides 
comparatively easy implementation of models and permits exterior boundaries to be placed at infinity, a boundary condition 
often experienced in most geophysical problems. The validity and effectiveness of the results of numerical simulation using 
COMSOL Multiphysics were evaluated by comparing the output of the numerical simulations with the calculated analytic 
solutions. The result reveals that the numerical simulation is in agreement with the analytic solution. This study shows that 
COMSOL Multiphysics can be used to simulate the distribution of electrical potentials of point source in 3D space in real 
life and the information from this study can be used for further studies, such as DC resistivity inversions.
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List of symbols
ρa  Apparent resistivity
∆V  Difference in electrical potential
σ  Electrical conductivity
n  Normal to the surface
σ2  Anomaly conductivity
V  Electrical potential
E  Error analysis
G  Geometrical factor
I  Current injected
Io  Current intensity
σ1  Electric background conductivity
Vana  Analytical potential
r  Radius
x, y and z  Points

Introduction

The geophysical surveys involving the use of DC resistivity 
methods are used to evaluate the electrical resistivity distri-
bution in the subsurface usually by taking measurements on 
the ground surface. The measurements of the electrical resis-
tivity could in turn be used to determine the true resistivity 
of the subsurface. The DC resistivity techniques have been 
used over the years in groundwater exploration (Gautam and 
Biswas 2016; Oyeyemi et al. 2018a, b), engineering investi-
gations (Oladunjoye et al. 2017; Oyeyemi et al. 2017, 2020), 
mineral exploration (Zhang et al. 2015; Sanuade et al. 2018), 
and environmental studies (Rosales et al. 2012; Akinola 
et al. 2018; Olaojo et al. 2018; Olaseeni et al. 2018). How-
ever, to obtain the electrical resistivity image that would be 
a representation of the subsurface, the electric potential data 
that are measured on the field must be inverted, and forward 
modeling is an important step for any inversion algorithms 
to be used (Gao et al. 2020).

Forward modeling is very important in electrical pros-
pecting method to understand the subsurface distribution 
of structures and anomalies (Wang et al. 2011; Butler and 
Sinha 2012; Song et al. 2017; Udosen and George 2018; Gao 
et al. 2020). Forward modeling is necessary in geophysics, 
as it allows model parameters to be adjustable so as to fit 
observations. This process is part of routine that is usually 
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carried out during inversion and physical intuition can be 
developed due to the variation of model parameters (Butler 
and Sinha, 2012). The approach of forward modeling in elec-
trical resistivity method can generally be used to solve distri-
bution of electrical field potentials in any given geoelectric 
model and field source distributions (Gao et al. 2020). This 
step is very essential for the inversion and interpretation of 
data in electrical resistivity methods.

The numerical modeling and simulation of DC resis-
tivity can be used to simulate the distribution of electrical 
potentials of point source in 3D space in real life (Wang 
et al. 2012). There are basically three methods that can be 
used to solve the distribution of electrical field potentials: 
analytic, numerical and physical simulation methods (Wang 
et al. 2011; Udosen and George 2018). Analytic method is 
the most commonly used method and its results are often 
significant. However, analytic solutions can only be used 
to calculate the electric potential distribution within regu-
lar geometries. The physical simulation is often employed 
to inspect the effectiveness of the results of analytic and 
numerical methods. The numerical methods that are usually 
employed for electrical method of prospecting are finite dif-
ference (Dey and Morrison 1979; Zhao and Yedlin 1996), 
finite element (Rucker et al. 2006; Ren and Tang 2010; Wang 
et al. 2011), finite volume (Pidlisecky and Knight 2008) and 
integral-equation-based models (Ma 2002). Forward mod-
eling of resistivity method involves solving Laplace’s equa-
tion where the source terms represent the current electrodes 
as well as appropriate boundary conditions.

The COMSOL Multiphysics (COMSOL Multiphysics 
Users’ Guide 2017) is a general FE modeling environment 
software which permits users to build complex numerical 
models using different geometries and multiple governing 
equations quickly using a graphical user interface (GUI). 
The software has several modules including heat transfer, 
electromagnetic, AC/DC, acoustics, earth science, chemical 
engineering and structural mechanics modules (Cardiff and 
Kitanidis 2008; COMSOL Multiphysics Users’ Guide 2017).

The most commonly encountered boundary condition in 
many geophysical problems is the modeling of boundaries 
at infinite separation from the model domains. However, the 
AC/DC module of COMSOL Multiphysics has the ability to 
model these boundaries (Butler and Sinha 2012). Therefore, 
this study shows forward modeling of DC resistivity method 
using COMSOL Multiphysics with a point electric source. 
This study also demonstrates the efficacy of the infinite 
boundaries in COMSOL Multiphysics. This was achieved 
by comparing the output of the COMSOL Multiphysics with 
the results of analytic method.

Several studies have used COMSOL Multiphysics for 
the forward modeling of geophysical methods. For exam-
ple. Butler and Sinha (2012) presented forward models of 
gravity, magnetic, resistivity and induced polarization (IP) 

geophysical techniques using the finite-element (FE) mod-
eling in COMSOL Multiphysics. In their study, they com-
pared the results of the FE with solutions from the analytical 
method and the results show that both FE and analytical 
solutions agreed reasonably well. Duquennoi et al. (2011) 
simulated the injection of leachates with the use of COM-
SOL Multiphysics and they obtained the distribution of the 
effective saturation in the subsurface. Wang et al. (2011) 
also employed COMSOL Multiphysics to understand the 
effectiveness of forward modeling in DC resistivity method 
using point electric source as an example. They compared 
the output of the FE modeling with the analytical solutions 
and the results show that the two techniques were in agree-
ment. Park et al. (2010) used COMSOL Multiphysics to 
develop a 3D FE modeling of controlled-source electromag-
netic (CSEM) data and they evaluated the effectiveness of 
their FE modeling using many examples of CSEM marine 
data. In addition, Kalavagunta and Weller (2005) employed 
COMSOL Multiphysics to estimate the geometrical fac-
tors for resistivity experiments that were performed in the 
laboratory. Braun et al. (2005) also employed COMSOL to 
model the propagation of electromagnetic waves in conduct-
ing media with application to magnetic resonance sounding. 
These studies and many have demonstrated the effectiveness 
of COMSOL Multiphysics for the numerical simulations of 
geophysical methods.

We present the procedures involved in the numerical 
modeling of DC resistivity method, including error and sen-
sitivity analysis. Subsequently, we will compare the result 
of the numerical simulations with the results of analytical 
method.

Methodology

Resistivity method

The resistivity method involves the injection of electric 
current into the ground between one pair of electrodes and 
measurement of the electric potentials between another elec-
trode pair. Given a particular geometry of an electrode, an 
‘‘apparent resistivity,’’ ρa, in ohm metre (Ωm), of the geom-
etry can be calculated using Eq. 1 (Telford et al. 1990):

where ΔV is the difference in the electric potential between 
the potential electrodes in volts, I is the current injected into 
the ground which is measured in amperes (A), and G is the 
geometrical factor of the array. ρa is the resistivity that an 
infinite half-space of constant resistivity must possess to 
generate similar measured ΔV for a given current injected 
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into the ground. If there is a change in ρa due to a change 
in the lateral array position or as a result of the change in 
the spacing of array, there would also be a vertical or lat-
eral change in the resistivity of the subsurface (Telford et al. 
1990).

An AC/DC conductive-media module in COMSOL Mul-
tiphysics software, used in this study, solves Eq. 2 to calcu-
late the electrical potentials (Wang et al. 2012):

where σ (x, y, z) is the electrical conductivity (reciprocal of 
the resistivity), (x, y, z) is the electrical potential and f is a 
parameter that is related to the point source.

In a DC resistivity survey that involves the use of sym-
metrical four electrode configurations, two current electrodes 
will be used for the injection of current into the ground while 
two electrodes are used as potential electrodes for the meas-
urement of the resulting potential difference. The intensity 
of current of the two current sources is equal but opposite 
in direction; therefore, f in Eq. 2 is given as:

where Io represent the current intensity, while (x1, y1, z1) and 
(x2, y2, z2) are the locations of the positive current source, 
and negative current source, respectively.

However, away from the source, Eq.  2 reduces to 
Laplace’s equation as given by Eq. 4:

Resistivity model using COMSOL Multiphysics

COMSOL Multiphysics is a FE analysis, solver and simula-
tion software that has found applications in numerous engi-
neering and physics studies. The software is often used for 
coupled phenomena, or Multiphysics which is widely used 
in many science and engineering studies (Li et al. 2012). 
COMSOL Multiphysics allows users to enter coupled sys-
tems of partial differential equations in addition to the con-
ventional physics-based user interfaces. The partial differ-
ential equations can either be entered directly or using the 
so-called weak form.

In this study, an electrically homogeneous half-space 
is modeled as a 3D point source with the dimension of 
0.5 m × 0.5 m × 0.5 m as shown in Fig. 1. The remaining 
parts of the top surface boundaries were made electrically 
insulating, that is, ∇V ⋅ � = 0 ; where n is the normal to 
the surface (Wang et al. 2012). The background electrical 
conductivity (σ1) of the model is set to σ1 = 0.01 S/m (cor-
responding to a resistivity of 100 Ωm) while the anomaly 
conductivity, σ2 is set to be 0.1 S/m (corresponding to a 

(2)�V = f

(3)
f = I

o
[�(x − x

1
)(y − y

1
)(z − z

1
) − �(x − x

2
)(y − y

2
)(z − z

2
)

(4)∇2V = 0

resistivity of 10 Ωm; Fig. 2). An electric current, I, of 
0.1 A was injected into the subsurface through the point 
source.

The point current source was injected at the top of the 
block (Fig. 1). Dirichlet boundary conditions were defined 
on all faces except at the top face where Neumann bound-
ary conditions were set (Chave and Jones 2012; Schaa et al. 
2016). The procedure employed for the forward modeling 
in COMSOL is shown in Fig.  3. Generally, COMSOL 
Multiphysics has three sections: pre-process, solution and 
post-process (COMSOL Multiphysics Users’ Guide 2017). 
Pre-processing involves finite-element model and parameters 
setting, while the solution process involves the generation of 
mesh and solving of equations. The post-processing involves 
visualization and analysis of results.

The mesh generated around the electrodes for the 3D 
resistivity model is shown in Fig. 4. The complete mesh 
consists of 100,938 domain elements, 4694 boundary ele-
ments, and 216 edge elements with degrees of freedom of 
139,262, and the solution time was 11 s.

Fig. 1  3D geoelectrical modeling as a block

Fig. 2  Sketch of two-layer geoelectric section used for the model 
building
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Sensitivity and error analysis

To examine the accuracy of the numerical forward mod-
eling, we compared the electric potentials computed from 
the numerical modeling with that of the analytic solutions. 
The analytic expression (Vana) for an infinite half-space 
of constant conductivity (σ), and one current source of 
strength, I, at points x, y and z is calculated using Eq. 5:

where r is calculated as given in Eq. 6:

(5)V
ana

=
I

2��r

Error analysis was then performed using Eq. 7:

Results and discussion

By applying COMSOL Multiphysics to the resistivity model 
shown in Fig. 1 for the 3D forward modeling numerical 
simulation, the distribution of electric potentials obtained 
is shown in Fig. 5. It was observed that the potentials (in 
volts, V) are uniformly distributed in the subsurface as seen 
in Fig. 5. The values of electrical potentials close to the 
source vary considerably while at the boundary, the poten-
tials are 0. However, as the current travels to the subsurface, 
the amount of potentials decreased (Fig. 5). The error analy-
sis in Fig. 6 shows that there are relatively small percentage 
errors near the source point (0–10%), while the percentage 
errors became very large near the boundaries (70–90%).

To reduce the percentage errors near the boundaries, we 
imposed mixed-boundary conditions (Dey and Morrison 
1979; Li and Spitzer 2002) on the 3D resistivity model in 
Fig. 1. After imposing the mixed-boundary conditions, it 
was observed that the percentage errors near the bounda-
ries were reduced substantially, but the percentage errors 
near the source point are still very large. To further reduce 
the percentage errors near the source point, a finer mesh 
(Fig. 7) was used for the 3D resistivity model (Pain et al. 
2002; Rucker et al. 2006). The results of the 3D electric 
potential in volts (V) and its relative errors in percentage 

(6)r =
√
x2 + y2 + (z − 0.5)2

(7)E(%) =
||V − V

ana
||

V
ana

× 100

Fig. 3  Chart of COMSOL Mul-
tiphysics analysis of geophysi-
cal field

Fig. 4  Mesh generated around the electrodes from the 3D resistivity 
model
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after error reduction are shown in Figs. 8 and 9, respectively. 
The potential at the source ranges from 0 to 1.5 V while 
at the boundary, the potentials are between 0 and 1 V. We 
observed that the errors at the source and near the bounda-
ries have reduced to about 0–10%.

Sensitivity analysis

To demonstrate the accuracy of the numerical modeling, 
we compared its output with the calculated analytical 
solution. The result of the sensitivity analysis is shown 
in Fig. 10. The electrical potentials from numerical simu-
lation and the analytic solution are almost the same as 

observed in the figure. This means that both methods are 
in agreement and this demonstrates the effectiveness of 
COMSOL for numerical modeling and simulations of elec-
trical potentials in the subsurface.

We estimated the error analysis of this comparison 
using Eq. 7, and the result is displayed in Fig. 11. The 
error analysis shows the difference between the numerical 
modeling and the analytic solutions. The figure reveals that 
the difference between the two methods is almost 0% at 
nearly all the locations except near the point source where 
the error is about 8%. However, at the point source, the 
error is about 40%. The high percentage of errors close 
to the point source is acceptable because the potential 

Fig. 5  Electric field distribution of 3D geoelectric model

Fig. 6  Error analysis

Fig. 7  Finer mesh generated around the electrodes to reduce errors 
near the point source

Fig. 8  3D potentials using finer mesh



122 Modeling Earth Systems and Environment (2021) 7:117–123

1 3

electrodes are not often located close to the point source 
(Wang et al. 2012).

Conclusion

The results of numerical simulation using COMSOL Mul-
tiphysics show the reliability and effectiveness of investi-
gating the DC resistivity method forward modeling. One 
of the very interesting features of COMSOL is that it is a 
powerful tool for numerical computation and has the ability 

to visualize features that are in post-processing stage, which 
makes forward calculations simple and more informative. 
Therefore, COMSOL Multiphysics can be used to simulate 
several DC method forward modeling problems. The ability 
to ensure boundaries can be placed at infinity using infinite 
elements in COMSOL is very important in modeling geo-
physical problems. This study is an initial approach that can 
be used to enhance the interpretation of electrical resistivity 
data and can provide information for further studies, such as 
DC resistivity inversions and sensitivity analyses.
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