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Abstract

Spread of genetically diverse Staphylococcus aureus characterized with multi-antibiotic

resistance and regulated by high level agr functionalities in several communities in south-

west Nigeria was investigated and evaluated for infection control. Staphylococcus aureus

pathotypes recovered from 256 cases including purulent pus from skin infections, soft tissue

aspirates, wounds, otorrhea, eye, throat and endocervical infections were assayed for bio-

film and antibiogram. Further genotyped with micro-array, mapped for geospatial distribution

and evaluated for clonal diversity and functional accessory gene regulators (agr). Significant

Staphylococci infection among the ages (OR:0.021, CI:0.545–1.914) and female gender

with prevalence rate of MSSA (53.0%) and MRSA (1.5%) (OR:1.021, CI:0.374–1.785) were

observed. More than 52.5% resistance rates to tetracycline and amoxicillin with significant

median resistance were observed in all the infection cases (p = 0.001). Resistance rate of

78.8% at MIC50 32μg/ml and MIC90 128μg/ml to amoxicillin-clavulanate, and more than

40% resistance to ceftazidime, ciprofloxacin and tetracycline of MIC90 and MIC50 at 32 μg/

ml were observed. Strains with multi-antibiotic resistance index above 0.83, high beta-lacta-

mase and strong biofilm clustered into separate phylo-group. Heterogeneous t442 (wound

and pus), t657 (wound), t091 (ear) and t657 (ear and wound) revealed high phylogenetic

diversity. Only 4.6% pvl+ MSSA-CC1 agrI, pvl+ MSSA-CC5 (13.6%) and pvl+ MRSA-CC7

agrII (4.6%), expressed enterotoxin, leukocidins, proteases and resistance gene determi-

nants. Livestock clonal types clustered with identified community-associated strains. Clonal

dissemination of resistant pvl+ MSSA-CC1 and MRSA-CC5 encoding agr were predominant

in several peri-urban communities where adequate geno-surveillance, population-target

antimicrobial stewardship, extensive community structured infection control programs are

needed to prevent further focal dissemination.
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Introduction

Staphylococcal infection remains a major health challenge in several countries, with huge

resultant adverse effect ranging to life-threatening diseases such as pneumonia, bacteremia to

high mortality cases [1]. Several clonal complexes have been reported from different regions of

the globe [2]. Various spa types kept evolving with diverse genomic recombination, phyloge-

netic clones, and repeated nucleotide mutations, giving rise to fatal virulent strains [3]. In addi-

tion, there is a capability of numerous clonal strains of Staphylococcus aureus to adapt by its

specificity for colonization through production of poly-N-acetylglucosamine to produce bio-

film needed to evade immune response and antibiotic activity [4].

Severity of staphylococci infection correlates with virulence expression which is regulated

through the functionality of accessory gene regulators (agr), which encodes a two-component

signal transduction system that could down-regulate surface proteins metabolism and up-reg-

ulate secreted proteins during in vitro growth [5], favoring the transcription of several secreted

virulence factors (particularly enterotoxins, hemolysins and Toxic shock syndrome toxin-1)

[6]. Functional agr groups were reported to enhance persistent staphylococci bacteraemia and

soft tissue tropism with low antibiotic susceptibility to penicillin, cephalosporin and vancomy-

cin [7,8]. Similar clonal spread of MRSA (methicillin-resistant Staphylococcus aureus) and

MSSA (methicillin-susceptible Staphylococcus aureus) is becoming pandemic in several com-

munities in Africa, mostly Nigeria where animal husbandry, behavioural responses and

declined demographic factors enhance continuous dissemination of staphylococcal infection

with high degree of antibiotic resistance [9]. The misuse and unregulated prescription of peni-

cillin derivatives in high and uncontrollable proportion for treating several extra-intestinal

infections such as abscess, ear infections, subcutaneous tissue inflammation, nasal discharges

particularly in children and post-surgical wound culminated in a high rate of resistance and

continuous development of methicillin-resistance strains [10,11].

Heterogenous spa types identified among several MSSA and MRSA carriers and infected

subjects [12] require clonal diversity and staphylococcal infection surveillance, tracking and

strains genotyping [13,14]. Moreover, evolution of various spa types has kept driving dynamics

spread of staphylococcal infection that were demonstrated in various infection outbreaks,

localized epidemics and community-acquired infections. Mapping the spread and dissemina-

tion ofmecA gene among spa types is highly needed for reliable genomic tracking, localization

and control of staphylococcal infection in several local communities with high-level dissemi-

nation and distribution of resistant spa types probably acquired from livestock [12].

In this study, we investigated the antibiotic resistance distribution and prevalence of agr
groups of phylo-diverse S. aureus strains characterized by various spa repeats and assessed the

potential association between different agr group functionalities, clonal diversity and staphylo-

cocci infection controls.

Methods

Isolates collection

Non-repetitive clinical samples totaling 256 including purulent pus (n = 58), skin aspirates and

effusions (n = 34), wounds (n = 55), otorrhea (n = 36), eye infection (n = 14), throat (n = 35)

and endocervical (n = 24), collected between June 2017 and August 2018 from overall 12,654

outpatients. This included patients from neighbouring states attending three major health

facilities which serve as referral clinics in southwest Nigeria. Ethical permission for the study

was granted by the Federal Medical Centre Abeokuta Health Research Ethics Committees with

protocol approval: FMCA/470/HREC/09/2017; NHREC/08/10-2015 with permission from
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other health facilities but data on their gender, age, disease conditions and subjects’ location of

residence were not fully retrieved. Each sample were cultured for Staphylococci strains and

phenotypically characterized on Baird-Parker agar and Mannitol salt agars, Gram stained for

cellular morphology, tested for catalase and coagulase production as previously discussed [15].

Phenotypical beta-lactamase detection and antibiogram

Beta-lactamase production was assayed with modified starch-acidometric method [16] and

Minimum inhibitory concentrations (MICs) for each antibiotic class against the strain was

determined using micro-broth dilution assay [17] with 12 panel antibiotics consisting of tetra-

cycline (TE), ceftazidime (CAZ), ciprofloxacin (CIP), gentamycin (GEN), amoxycillin-clavula-

nic acid (AMC), cefuroxime (CRO), ofloxacin (OFX), sulfamethoxazole (SXT), erythromycin

(E), fosfomycin (FOX), vancomycin (VA) and Linezolid (LZD). Phenotypic resistance was

interpreted according to CLSI guidelines [18]. Phenotypic screening for methicillin resistance

was further determined by assessment of Staphylococcal growth on Mannitol salt agar and

Mannitol salt agar supplemented with 4μg/ml Oxacillin as previously described [19]. Multi-

antibiotic resistance index (MARI) was determined for each isolates.

Biofilm detection

Phenotypic assessment of biofilm production was done in micro-broth bioassay [20]. Briefly,

overnight pure colonies were suspended in 200μl Brain Heart infusion (BHI) broth supple-

mented with 0.25% glucose and incubated at 37C for 24 hours. After incubation, the growth

medium was aspirated away and the wells were washed thrice with Phosphate Buffer Saline

(PBS). The wells were stained with 0.5% w/v Crystal Violet for 5 minutes and gently rinsed.

Ethanol (70%) was added to dissolve the Crystal Violet and absorbance of the stained biofilm

solution was measured with UV Spectrophotometer against absorbance of non-biofilm pro-

ducing Staphylococcus aureus.

mecA and pvl genotyping

For detection of pathogenic MRSA, isolates were genotyped formecA and pvl as described by

Acevedo et al [21]. Briefly, DNA template was extracted using simple boiling method [22] and

amplification was performed in separate reaction volume of 20 μl containing 0.8 μl of 10uM

each primer ofmec5 (AAAATCGATGGTAAAGGTTGGC) andmec6 (AGTTCTGCAGTACCG
GATTTGC) and pvl gene with primers pvl-F (AATGAAATGTTTTTAGGCTCAAGACA) and pvl-
R (TGGATAACACTGGCATTTTGTGA) with DNA template (1μl) and water (18 μl) for each

reaction following previous described multiplex protocol [21]. Amplification reaction was car-

ried out at initial denaturation of 94˚C for 5 min, and followed by 30 cycles of denaturation

94˚C for 45 s, annealing 60˚C for 60 s, elongation 72˚C for 1 min and final elongation 72˚C for

5 min. Amplicon of 10 μl of each reaction was electrophoresed on 2% agarose TBE gel at 100V

along with the marker. Bands of each PCR products were analyzed regarding their presence

and size by using the positive control and the marker as references. MARI (multi-antibiotic

resistance index) was determined by dividing the number of resisted antibiotics with total

number of antibiotics used to which the organism was subjected. Relatedness of the MARI pat-

tern, degree of biofilm production, beta-lactamase production and mecA detection among the

identified strains from various sources were evaluated with dendrogram analysis constructed

with DendroUPGMA algorithm.
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Genotyping and clonal diversity of spa types

Extracted genomic DNA obtained from overnight culture, was typed for S. aureus protein A

(spa gene). PCR assay was performed in constituted reaction mixture of 2x MyTaq HS Mix

(10μL), containing spa primers; spa1095F (5’-AGACGATCCTCCGGTGAGC-3’), spa1517R (5’-

GCTTTTGCAATGTCATTTACTG-3’) of 5μL each and 1μL template DNA through 30 cycles of

denaturation at 94˚C for 30 seconds, annealing at 60˚C for 30seconds and elongation at 72˚C

for 30 seconds, with final extension at 72˚C for 5minutes [23,24]. DNA of S. aureusDSM

1104L strain served as a positive and distilled water as negative control. Quality of amplicon

products was examined on electrophoresed agarose gel and positive strains were purified with

GFX PCR DNA and Gel Band Purification Kit (GE Healthcare). Purified PCR products were

sequenced with forward primer spa1095F using BigDye 3.1 terminator sequencing and ana-

lyzed on ABI Genetic Analyzer 3500Dx (Applied Biosystems, CA, USA). Categorisation of spa
types was carried out with Based Upon Repeat Pattern (BURP) algorithm of the Ridom Staph

Type software version 1.4 (RidomGmbH, Sedanstr, Germany) to cluster all spa types in the

database according to spa clonal complexes [25]. Clonal diversity of Nigerian spa types with

other meta-spa sequences were analysed with MEGA software (version 6.0).

Virulence and resistance genotyping

Encoded S. aureus strains withmecA and pvl were further genotyped with StaphyType DNA

microarray (Alere Technologies GmbH, Jena, Germany) for other virulence genes. Approxi-

mately 170 distinct genes and their allelic variants were targeted for PCR amplification and

hybridization on Microtiter strip-mounted DNA microarrays following manufacturer’s

instruction and the image of the array was recorded and analysed using a designated reader

and software (Arraymate, Iconoclust, Alere Technologies) [26].

Geospatial analysis

Geographical coordinates of individual subjects with staphylococcal infection were identified

and recorded with differential global positioning system (GIS) and interpolated for analysis in

ArcGIS 10.5.1 programme with respect to land division according to boundary marks in

southwest Nigeria [27].

Data analysis

To identify variables and risk factors that could influence staphylococcal infection rate among

dependent variables (age, gender and clinical samples), univariate logistic regression analyses

was performed to calculate the odds ratio and corresponding 95% confidence intervals. Resis-

tant rates was analysed with radar plots while Median and 75th percentile resistance were eval-

uated with Boxplot analysis. Significance of resistance level of staphylococci strains was

determined with chi-square and staphylococcal infectivity was calculated with multiple com-

parison using Kruskal-wallis test.

Results

Risk factor for staphylococcal infection and phenotypic resistance pattern

Staphylococcal infection was significant among the ages (p<0.05, OR[CI] = 0.021[0.545–

1.914]) while higher prevalence rate of MSSA (53.0%) and MRSA (3.0%) infection were

recorded among female and male subjects respectively. MSSA (37.9%) and MRSA (1.5%)

infection rates were significant in wound infection as other clinical conditions presented by
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the subjects (p<0.05) while MSSA (42.2%) were observed in other conditions (eye, throat and

endocervical infection) as shown in Table 1 and S1 Table.

More than 52.5% resistant rates to tetracycline, sulphamethaxazole, gentamycin and amoxi-

cillin were recorded among S. aureus from different sources as shown in Fig 1. The Box plot

further reveal the overall antibiotic resistance rates of staphylococcal strains in different clinical

conditions with significant estimated median resistance in all the presenting clinical disease

conditions (p = 0.001) excluding susceptible strains isolated from eye, throat and endocervical

samples but strains from aspirates and otitis had close median resistance rates (p = 0.056).

Highest percentile (75th) and median resistance were observed in wound strains than others.

Overall resistance rate of 78.8% to AMC at MIC90 (128μg/ml) was recorded for strains

obtained from aspirates, while strains recovered from pus, ear and wound infections showed

more than 30% resistance at MIC50 (8–16μg/ml). S. aureus strains (59.3%) recovered from pus

and aspirate were resistant to CRO at MIC90 (64μg/ml) and MIC50 (8μg/ml), respectively.

More than 40% of S. aureus strains obtained from aspirate had high resistance to TET (MIC90

and MIC50 at 64μg/ml), while strains recovered from pus were resistant to GN (MIC90 and

MIC50 at 128μg/ml and 16μg//ml), respectively (Table 2).

Resistance relatedness of extra-intestinal S. aureus strains

Only three S. aureus strains recovered from aspirate, otitis media and wound expressedmecA
gene (Fig 2), several strains clustered into group C with similar MARI of more than 0.50, char-

acterized with biofilm and high beta-lactamase production. More than 0.83 MARI were

observed among the strains that clustered into group A with high number of strains producing

beta-lactamase and strong biofilm, but only one strain of MARI 0.92 clustered to Group D. In

all, only 23/66 strains were biofilm producer but differed in level of production.

Clonal diversity of identified spa types

Heterogeneous spa types from extra-intestinal staphylococci strains clustered meta-spa types

into six separate clades, of which spa t442 (from wound and pus), t657 (wound), t091 (otitis

media) and t657 (otitis media and wound) clustered into clade F1 with other spa types from

blood stream and soft tissue infection (red rectangular). High phylogenetic relatedness of spa
sequences of livestock-associated S. aureus strains (bovine milk-MH675788.1, MG821315.1

and MH675814.1) clustered with the human strains (Fig 3).

Table 1. Univariate analysis of staphylococcal infections.

Characteristic MSSA n(%) MRSA n(%) OR(CI) P value

Age (yrs) (Median age: 36.5) 63(24.6) 3(1.2) 0.021(0.545–1.914) 0.004

Gender

Female 35(53.0) 1(1.5) 1.021(0.374–1.785) 0.013

Male 31(47.0) 2(3.0)

Clinical samples

Otitis media 16(24.2) 1(1.5)

Wound infection 25(37.9) 1(1.5)

Purulent pus 12(18.2) 0(0.0) 0.434(0.569–4.183) 0.039

Aspirate effusions 13(19.7) 1(1.5)

�Other infections 108(42.2)) 0(0.0)

(P<0.05 significant

�other infection include eye infection, throat and endocervical collections, n, number;%, percentage rate).

https://doi.org/10.1371/journal.pone.0247013.t001
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Encoded agr and focal dissemination

Clonal strains pvl+ MSSA-CC1 (4.6%) obtained from wound samples, of spa t1839, majorly

encoded exfoliative toxin (etD, etB), proteases (aur, slpA sspB, sspE, sspP) and resistant deter-

minants; bla (beta lactamase repressor (inhibitor) and beta-lactamase regulatory protein); fosB
(Metallothiol transferase); sdrM (tet efflux protein) and Q2YUB3 (Multidrug resistance trans-

porter) (Table 3), expressed agrI functionality. Obviously, 13.6% pvl+ MSSA belonging to

clonal lineage CC5 from pus, wound and abscess harboured numerous heterogeneous spa
types with functional agrII encoding enterotoxin sea, sec, sed, sej, sel, ser), leukocidins

(LukF-PV, lukD, lukE) and proteases (aur, slpA sspB, sspE, sspP). In addition, agrII was also

Fig 1. Radar plot of antibiotic resistance profile of Staphylococus aureus strains obtained from different infections

and Box plot showing median distribution of antibiotic resistance pattern.

https://doi.org/10.1371/journal.pone.0247013.g001
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recorded in 4.6% pvl+MRSA-CC7 strains of spa t091 characterized with LukF-PV, lukD, lukE,

proteases and aphA3, (3,5-aminoglycoside phosphotransferase encoding neomycin/ kanamy-

cin resistance); sat (Streptothricine-acetyltransferase); tetK (Tetracycline resistance markers);

msr (A) (Macrolide efflux); andmph(C), (lysylphosphatidyl-glycerol synthetase). Most MSSA

strains were observed to be prevalent at urban communities showing focal dissemination to

other nearest suburbs while identified MRSA was observed to be spreading together with

other MSSA strains (Fig 4).

Discussion

Continuous spread of staphylococcal infection in several communities is now becoming a

threat to the populace and mostly the children. Methicillin susceptible S. aureus infections are

now commonly observed among the children with high risk of sores, blood stream and scalded

skin infections which are recorded due to low immunity, poor hygiene and possible transmis-

sion from staphylococci-carrier mothers [28]. Occupation and routine activities of many

young adults and men (in population median age 36.5 years) could be considered a pre-dispos-

ing risk factor. Data relating subject occupation with staphylococcal infection was not available

but high record of MRSA and MSSA detection in wound largely suggest stemming increase

and spread of community-acquired staphylococcal infections [29]. Nosocomial staphylococcal

infection could not be ruled out as hospital infection control could be compromised due to

low hygiene and staff carriage of multi-antibiotic resistance staphylococci strains [30]. A signif-

icant low susceptibility was observed among the strains collection to ceftazidime, ciprofloxa-

cin, amoxycillin-clavulanic acid and cefuroxime. Particularly strains from wound, ear, pus and

aspirates showed a reflection of prolonged use and misuse of antibiotics in the treatment of

staphylococcal infections. Continuous evolution and selective pressure of antibiotic resistance

cannot be ruled out as a driven factor for the prevalence of resistant pathotypes across various

population groups as evident with more than 40% resistance to tetracycline. Similar high level

Table 2. Phenotypic resistant of S. aureus strains from various infection sources to antibiotics.

Antibiotics Agents Range Break point of resistance Wound (n = 26) Ear (n = 18) Pus (n = 13) Aspirate (n = 9) Percentage of resistance (%)

MIC (μg/ml)

MIC50 MIC90 MIC50 MIC90 MIC50 MIC90 MIC50 MIC90

TE 0.25–128 16 8 32 4 64 4 64 8 64 43.0

CAZ 0.1–64 4 4 64 4 32 16 64 2 32 36.5

CIP 0.12–16 4 4 16 1 64 2 64 1 32 38.9

GEN 0.03–2.0 1 2 16 1 64 2 128 16 64 40.2

AMC 0.25–64 16 2 32 2 32 1 32 8 128 78.8

CRO 0.1–64 4 8 32 2 32 2 64 4 64 59.3

OFX 0.12–64 4 4 16 1 64 1 32 8 32 35.6

SXT 0.5–128 32 4 32 16 128 16 128 16 64 41.7

E 0.5–64 32 1 16 4 16 4 64 16 128 34.0

FOX 0.1–64 4 2 16 2 32 8 128 8 64 46.5

LZD 0.1–64 2 1 16 1 32 4 64 2 32 34.2

VA 0.1–64 4 1 8 4 32 16 32 8 4 30.1

Notes: N, number of isolates; N, Number of samples; TE, Tetracycline; CAZ, Ceftazidime; CIP, Ciprofloxacin; GEN, Gentamycin; AMC, Amoxycillin-clavulanic acid;

CRO, Cefuroxime; OFX, Ofloxacin; SXT, sulfamethoxazole; E, Erythromycin; FOX, fosfomycin; LZD, Linezolid; VA, Vancomycin, MIC; Minimum inhibitory

concentration.

https://doi.org/10.1371/journal.pone.0247013.t002
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tetracycline and sulfamethoxazole resistance were already recorded in African S. aureus and

animals strains [31,32].

The ability to treat multi-antibiotic resistant staphylococci strain characterized with biofilm

is a challenging situation [33] and detection of different phylo-related strains expressing high

level resistance with potential to produce both biofilm and beta-lactamase enzymes put the

populace at great risk [34]. Antibiotic resistance relatedness of several MSSA showing observ-

able in-vitro biofilm production reflects acute systemic infection severity and pathology that

could progress to high morbidity [35,36], making MSSA-biofilm producing strains in soft tis-

sue and skin infections difficult to treat [37]. High biofilm production in deep layer secretions

Fig 2. Antibiotic resistance relatedness of the recovered Staphylococci strains with high multi-antibiotic resistance index (MARI),

biofilm and beta-lactamase production and mecA genotype.

https://doi.org/10.1371/journal.pone.0247013.g002
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in cases of septic wound, tissue abscess and purulent pus exudates could reduce drug penetra-

tion, inflammatory response and impairment of cellular immune activity [38]. In addition,

strains with high MARI, beta-lactamase and high biofilm production are considered important

pathotypes that needed to be designated for surveillance and assessment among diverse

Fig 3. Neighbor-joining tree showing the phylo-diversity of Staphylococci characterized by heterogeneous spa
types.

https://doi.org/10.1371/journal.pone.0247013.g003
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population at different localities. It is highly imperative to have periodic surveillance for these

clusters with related resistance profile toward prevention of local sporadic outbreak and con-

trol of antibiotic misuse. However, unregulated prescription and abuse of antibiotics in several

Table 3. Functional agr, clonal types and gene determinants in MSSA and MRSA pvl positive strains.

Agr
types

Strains

(%)

Sources Clonal Complex spa types Virulence determinants Antibiotic resistance genes

agrI MSSA

(4.6)

wound CC1(ST772,

ST573)

t1839 sea, lukD, lukE, sak, chp, scn, etD, etB,

aur, slpA sspA, sspB,sspP
Q2YUB3, fosB, sdrM, bla, dfrG,

tetK
agrII MSSA

(13.6)

Pus, wounds,

abscess

CC5(ST5, ST73,

ST492, ST1447)

t002, t010, t053, t067, t088, t179,

t214, t242, t442, t509, t688, t1062,

t1265, t6709

Sea, sec, sed, sej, sel, ser, LukF-PV,

lukD, lukE, scn, aur, splA sspA, sspB,

sspP

fosB,msr (A), bla mph(C),aphA3,

sat,fosB, sdrM, Q7A4X2

agrII MRSA

(4.6)

wound CC7(ST789) t091 lukD, lukE, sak, scn, aur, splA, slpE,

sspA, sspB,sspP
bla, fosB,aacA-aphD, aphA3,sat,
tetK,sdrM, ccrC, aacA-aphD,

aphA3,

Note: Enterotoxin genes (sea, sec, sed, sej, sel, ser); Leukocidins (LukF-PV, lukD, lukE); exfoliative toxin (etD, etB); Proteases(aur, slpA), bla (beta lactamase repressor

(inhibitor) and beta-lactamase regulatory protein); fosB (Metallothiol transferase); aacA-aphD (Bifunctional enzyme Aac/Aph; gentamicin, tobramycin resistance);

aphA3, (3,5-aminoglycoside phosphotransferase, neo-/ kanamycin resistance); sat (Streptothricine-acetyltransferase); tetK (Tetracycline resistance markers); sdrM
(Multidrug efflux protein, tetEfflux);msr (A) (Macrolide efflux);mph(C) (Probable lysylphosphatidyl-glycerol synthetase); Q7A4X2 (Putative protein); Q2YUB3
(Multidrug resistance transporter).

https://doi.org/10.1371/journal.pone.0247013.t003

Fig 4. Geospatial mapping and focal dissemination of multi-antibiotic resistance Staphylococcus aureus pathotypes characterized with heterogenous spa genes

distributed in various communities divided according to boundary marks in southwest Nigeria.

https://doi.org/10.1371/journal.pone.0247013.g004
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local communities in southwest Nigeria largely contribute to increase circulating resistant

phylo-groups. Relative increase of resistant MRSA isolates to penicillin derivatives has been

found to be associated with encodedmecA gene and beta-lactamase production which is a

major factor to be considered towards achievable control of MRSA spread [39].

In addition, identification of heterogeneous spa types in extra-intestinal infections clearly

showed high phylo-diverse spa strains clustering into various different clades. In spite of this

strain-diversity, profound relatedness with other meta-spa types suggests high level dissemina-

tion of similar clonal groups [40]. This is a clear evidence of involvement of spa types in single

or multiple staphylococcal infections having high substantial impact through localization and

distribution in soft tissue for adaptation, colonization and pathogenesis thereby initiating

severe infection [41,42].

Identified phylo-diverse MSSA from Nigerian communities indicates active transfer of

clonal strains to other locations [43]. Detection of heterogeneous spa sequences from various

skin and soft-tissue infections (wound, abscess and pus), is an evidence of genetic recombina-

tion of spa repeats from livestock-associated staphylococci particularly bovine milk [44]. This

further establish animal to human transfer which is observed in most communities where ani-

mal husbandry is usually practice within and around the households. Consumption of unpas-

teurised bovine milk, poor milk wastes disposal and frequent human contact with udder

during animal milking are observable predisposing risk factors to be considered as major

sources and spread of diverse spa strains [44]. It is also important to note that reported multi-

antibiotic resistant MRSA identities in this study could perpetuate severity with little or no

therapeutic options. Scratches, pecking and bite on human skin by poultry, cattle and other

livestock cannot be ruled out as major contributor to animal clonal strains found among this

populace. It is imperative to investigate mechanism of animal transfer of spa types to human

and high prevalence of these associated livestock spa types. It is also necessary to evaluate the

emerging animal clonal spa types vis-a-vis animal husbandry and antibiotic residue in milk in

order to safeguard the populace and drastically reduce dissemination and risk of contracting

antibiotic resistant strains. Findings on animal related MRSA and MSSA spa types in humans,

illustrates livestock involvement in continuous spread and distribution of Staphylococcal

pathotypes in many communities. To control the prevalent, milk hygiene and animal waste

management would enhance reduction in spread and skin infectivity particularly among

children.

Resistant S. aureus encoding functional agr is known to have well-characterised operons

controlling and regulating exfoliative toxin and protease genes in pvl+MSSA-CC1 strains

which are in wound infections [45,46], would require continuous and strategic interventional

approaches, door-to-door awareness program and routine MRSA and MSSA surveillance as

important strategies for effective reduction of severe complications, morbidity, and occasional

mortality. Predominant agrI and agrII in MSSA and occurrence of agrII in pvl+MRSA-CC7

clonally differ from agrIII that were reported in Tunisia [47,48]. Expression of functional agrII
in resistant pvl+ MSSA-CC5 and pvl+ MRSA-CC7 clones in pus, wound and abscess would

further intensify invasiveness through action of enterotoxin genes (particularly sea, sec, sed,

and sej), leukocidins (LukF-PV, lukD/lukE) and proteases (aur, slpA sspB, sspE, sspP). Further-

more, bloodstream, skin and soft-tissue infections would be more severe in agr controlled

staphylococcal diseases and could result in longer hospital stay, increase debilities and thera-

peutic failure. In rural and semi-urban settings with poor health facilities and hygiene aware-

ness, dissemination of these resistant clonal pathotypes would exacerbate infection burden,

mostly among the vulnerable elderly. Major limitations to the study were inadequate provision

of demographic data, low retrieval of residence locations of the recruited subjects and their

level of closeness to livestock around the households.
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Conclusion

Control of skin and soft tissue staphylococcal infections predominantly caused and spread by

agr encoded pvl+MSSA-CC1 and pvl+MRSA-CC5 strains characterised with very high antibi-

otic resistance would require aggressive implementations of antibiotic stewardship, public

health regulation, hygiene practice and extensive community health care intervention coupled

with well-structured strategic infection control programs. Periodic geno-surveillance and

investigation of multi-antibiotic resistant zoonotic MSSA and MRSA needed to be imple-

mented concurrently with formulated health policy to prevent imminent outbreak of these

clonal pathotypes.
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