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Abstract: - This research study is aimed at developing variable step reduction block solver (VSRBS) for stiff 
ODEs. This step reduction block solver will embrace the technic of variable step-variable order to determine suited 
variable step size. The trigonometrically fitted method will represent the basis function approximation to be utilized 
together with the method of interpolation and collocation to derive (VSRBS). VSRBS comes with advantages to 
overcome the barrier of stability requirement pose by definition 4. Some selected modelled examples of stiff ODEs 
will solved and compared with existing methods to establish the efficiency and accuracy. 
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1 Introduction 
Every technique for estimating the analytical solution 
to initial-value problems possesses error terms that 
require a higher differential of the analytical solution 
of the equation. Suppose the differential will be fairly 
bounded, then this technique will possess a 
predictable error bound that will be utilized to 
estimate the accuracy of the approximation. Still, 
assume the differential increases as the steps 

increase; the error will be maintained in relative 
control and provided that the solution also increase in 
magnitude. Problems often spring up, still, if the 
magnitude of the differential increases but the 
analytical solution does not. In this position, the error 
will increase so high that it controls the 
computations. Initial-value problems for which this is 
probably to appear are referred to as stiff equations 
and are often common, especially in the areas of 
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oscillations, chemical responses and electric circuits 
[6].  

Stiff differential equations will be qualified as 
those whose analytic solution holds a term of the 
class 𝑒−𝑐𝑥, where 𝑐 is a high positive constant 
coefficient. Thus, it forms part of the analytic 
solution called the transient result. Mostly, the 
essential part of the analytic solution is called the 
stiff-state result. The transient part of a stiff equation 
will quickly decay to nothing as 𝑥 increases, because 
the 𝑛𝑡ℎ differential of this term holds magnitude 
𝑐𝑛𝑒−𝑐𝑥, the differential will not decay as rapidly. As 
a matter of fact, because the differential in the error 
term is calculated not at 𝑥, simply at a number 
between nothing and 𝑥, the differential terms will 
increase as 𝑥 increases and very quickly surely. By 
good fortune, stiff equations in general can be 
anticipated from the real life problem from which the 
equation is derived and, with caution, the error can be 
maintained below control. See [6] for more info 

Definition 1:  Consider the form of stiff 
equations of  
𝑦′ = 𝐴𝑦 + ∅(𝑥), 𝑦(𝛼) = 𝑦0 (1) 
where 𝑦, ∅ ∈ 𝑅 and 𝐴 is an 𝑚 × 𝑚 rectangular array 
of rows and columns with eigenvalues 𝜆𝑥 ∈ ℂ, 𝑥 =

1,2, … , 𝑛 (presume distinct) and matching 
eigenvectors 𝑐𝑥 ∈ ℂ, 𝑥 = 1,2, … , 𝑛. In general, the 
solution to (1) assumes the class 
𝑦(𝑥) = ∑ 𝑣𝑥 exp(𝜆𝑥𝑥) 𝑐𝑥 + ∅(𝑥)𝑛

𝑥=1  (2) 
where the 𝑣𝑥 is any constant coefficients and ∅(𝑥) is 
a particular integral. See [12-13] for more  

The above introduction will be supported 
with the following definitions. 

Definition 2: The initial-value problem (1) 
is said to be stiff whenever every of its eigenvalues 
possesses negative real form and the stiffness ratio is 
large. The stiffness ratio 𝑆 > 1 and 𝑟𝑒𝜆𝑖 < 0, 𝑖 =

1(1)𝑛. See [8, 12-13] for more info. 
Definition 3: The initial-value problem (1) 

is said to be stiff vibrating whenever the eigenvalues 

(𝜆𝑖 = 𝑎𝑖 + 𝑗𝑏𝑖, 𝑖 = 1(1)𝑛) of the Jacobian 𝐽 = (
𝜕𝑓

𝜕𝑦
) 

satisfies the following conditions: 
𝑎𝑖 < 0, 𝑖 = 1(1)𝑛, 

max
1≤𝑖≤𝑛

|𝑎𝑖| > min
1≤𝑖≤𝑛

|𝑎𝑖|, 
or whenever the stiffness ratio meets  

𝑆 = max
𝑖,𝑗

|
𝑎𝑖

𝑎𝑗
| > 1 

and   |𝑎𝑖| < |𝑎𝑗|  (3) 
for at least a single pair of 𝑖 𝑖𝑛 1 ≤ 𝑖 ≤ 𝑛. See [8] for 
more info. 

Definition 4: Stiffness appears whenever 
stability demands, rather than those of accuracy 
restraint the step length. See [8, 12-13] for more info. 

Theorem 1: Suppose 𝑧: 𝑅 → 𝑅 is 
continuously 2𝜋 −periodic. Then for whatever 𝜀 > 0 
there will be a trigonometric polynomial 𝑃(𝑢) =
∑ 𝑐𝑗

𝑘
𝑗=−𝑛 𝑒𝑖𝑗𝑢 such that for entirely 𝑢, |𝑧(𝑢) −

𝑃(𝑢)| < 𝜀.  Equally essential, whenever any such 𝑓 
there must subsist a sequentially polynomial of 𝑃𝑛 →
𝑧 in a sequential order on 𝑅. See [4] for more items. 
 

Authors have suggested that computing stiff and 
extremely vibrating initial-value problems generally 
demands the acceptance of several computational 
methods. Among them includes; [1] integrated the 
stiff ODEs using block backward differentiation 
formulas of order six. The method is derived via the 
expansion of linear multistep method and executed 
with fixed step size. MATLAB solver ode15s is used 
to achieve the computational result with better 
accuracy. Suitable step and convergence of the result 
is not established. [[3] formulated the new numerical 
method for solving stiff initial value problems. The 
derivation of the method is done with linear operator 
and implemented with fixed step size.  Stiff problems 
solved have vibrating and oscillating solutions. 
Solving the method is done with fixed step size to 
determine the maximum errors. [9] proposed the 
diagonally implicit block backward differentiation 
formula (𝜌 − 𝐷𝐼𝐵𝐵𝐷𝐹) which relies on the best 
choice of the parameter 𝜌 that has optimum stability 
attributes resulting to more precise results. Although, 
(𝜌 − 𝐷𝐼𝐵𝐵𝐷𝐹) is self-initiating but utilize the 
uniform step size to carry out the implementation 
process. Convergence of the result is done with 
uniform step size. [10] suggested the derivation of 
diagonally implicit block backward differentiation 
formulas for solving stiff Initial value problems. The 
derivation and implementation are carried out using 
Lagrange polynomial and fixed step size. [10] 
consider the linear and nonlinear stiff problems 
whose analytical solutions are exponential in nature 
with fixed step size. [11] implemented the BBDF−𝛼 
for solving stiff ordinary differential equations with 
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oscillating solutions. This method is derived using 
Lagrange polynomial and solves stiff problems with 
oscillating solutions and uses fixed step size to 
implement the method.   [14] developed an accurate 
block solver for stiff initial value problems. Linear 
difference operator is used to derive the method. 
Variable step size and tolerance contributes 
immensely to the successful implementation of the 
method. Problems solved have oscillating and 
vibrating solutions.  [24] proposed the numerical 
algorithm for solving stiff ordinary differential 
equations. An efficient scheme in selecting the step 
size and order has been introduced and implemented 
throughout the numerical calculation. Test problem 
considered has analytical solution with exponentially 
and trigonometrically fitted in nature. Lagrange 
polynomial is used as basis function approximation. 
Variable step size and tolerance level were both 
utilized to establish the convergence of the result.  
[25] implemented fully implicit block method with 
four-point for computing ODEs. The derivation of 
the method is done with Lagrange polynomial and 
problems solved have oscillating/vibrating solutions. 
Variable step size implementation and tolerance level 
were used as well. The BBDF has strong nature of 
region of absolute stability that is considered as a 
better method to proffer solutions to stiff problems. 
This study will suggest variable step reduction block 
solver for stiff ODEs for the purpose of introducing 
variable step-variable order and finding suitable 
variable step size to provide a better solution to 
trigonometrically exact solution. Trigonometrically 
fitted methods used as basis function approximation 
agrees with the oscillatory or vibration solutions to 
ensure stability of the results achieved. VSRBS have 
the capacity to determine for every loop a suited 
variable step to overcome the stability demand of 
definition 4. Again, VSRBS is introduced to ensure 
better efficiency and accuracy. See [12-13]. 

The motivation of this study originates from [12-
13] to yield better efficiency and precision via the 
introduction of variable step-variable order-variable 
step size. Secondly, VSRBS is proposed to bypass 
the obstacle pose by backward differentiation 
formula   to adopt region of absolute stability as the 
criteria for better result. Thus, this study will 
implement variable step-variable order and finding a 
suitable variable step size. Again, trigonometrically 
fitted method will be utilized as the basis function 
approximation to suit the trigonometrically exact 
solution or oscillating and vibrating solutions whose 

solutions are trigonometrically in nature. This idea of 
using trigonometrically fitted method supersedes the 
use of Lagrange polynomial and other basis function 
utilized by other researchers. See [1, 11, 14, 25] for 
details.  

 
 

2 Formulation of Variable Step 

Reduction Block Solver 
The variable step reduction block solver formulation 
will employ the concept of variable step and variable 
order strategy. This involves the combination of 
block predictor method and block corrector method. 
The block predictor corrector method takes 𝑦𝑛−1 as 
point of interpolation and 𝑓𝑛−1, 𝑓𝑛−2, 𝑓𝑛−3, 𝑓𝑛−4 as 
points of collocation while the block corrector 
method use 𝑦𝑛−2 and 𝑓𝑛+1, 𝑓𝑛+2, 𝑓𝑛+3 as points of 
collocation. The block predictor method has 3 −
𝑠𝑡𝑒𝑝 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 4 and 2 − 𝑠𝑡𝑒𝑝 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 3 for the 
block corrector method. The step reduction block 
solver utilizes the trigonometrically fitted method as 
the basis function approximation in accordance with 
the oscillating and vibrating solutions. The 
trigonometrically fitted method for the 3-step block 
predictor method of order 4 is defined as 

𝑦(𝑥) = ∑ 𝑎𝑖
2
𝑖=0 (

𝑥−𝑥𝑛

ℎ
)

𝑖
+ 𝑎3 ∑ 𝑤𝑖2

𝑖=1,3 (
𝑥−𝑥𝑛

ℎ
)

𝑖
+

𝑎4 ∑ 𝑤𝑖3
𝑖=0,2,4 (

𝑥−𝑥𝑛

ℎ
)

𝑖
   (4) 

Similarly, the trigonometrically fitted method for the 
2-step block corrector method of order 3 is defined as  

𝑦(𝑥) = ∑ 𝑎𝑖
1
𝑖=0 (

𝑥−𝑥𝑛

ℎ
)

𝑖
+ 𝑎2 ∑ 𝑤𝑖2

𝑖=1,3 (
𝑥−𝑥𝑛

ℎ
)

𝑖
+

𝑎4 ∑ 𝑤𝑖3
𝑖=0,2 (

𝑥−𝑥𝑛

ℎ
)

𝑖
.   (5) 

Interpolating and collocating (4) and (5) using the 
selected points of block predictor method and block 
corrected method will yield the expression as  

𝑚𝑎𝑡𝑟𝑖𝑥𝑎 = {{1, −1,1, −𝑤 +
𝑤3

6
, 1 −

𝑤2

2
+

𝑤4

24
} , {0,1, −2, 𝑤 −

𝑤3

2
, 𝑤2 −

𝑤4

6
} , {0,1, −4, 𝑤 −

2𝑤3, 2𝑤2 −
4𝑤3

3
} , {0,1, −6, 𝑤 −

9𝑤3

2
, 3𝑤2 −

9𝑤4

2
} , {0,1, −8, 𝑤 − 8𝑤3, 4𝑤2 −

32𝑤4

3
}} ;  

𝑏{𝑦[𝑛 − 1], 𝑓[𝑛 − 1], 𝑓[𝑛 − 2], 𝑓[𝑛 − 3], 𝑓[𝑛 − 4]}; 
     (6) 
{𝑎[0], 𝑎[1], 𝑎[2], 𝑎[3], 𝑎[4]} = 𝐼𝑛𝑣𝑒𝑟𝑠𝑒[𝑚𝑎𝑡𝑟𝑖𝑥𝑧]. 𝑏  
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𝑚𝑎𝑡𝑟𝑖𝑥𝑎 = {{1, −2, −2𝑤 +
4𝑤3

3
, 1 −

2𝑤2} , {0,1, 𝑤 −
𝑤3

2
, 𝑤2} , {0,1, 𝑤 −

2𝑤3, −2𝑤2}, {0,1, 𝑤 −
9𝑤3

2
, −3𝑤2}} ;  

𝑏{𝑦[𝑛 − 2], 𝑓[𝑛 + 1], 𝑓[𝑛 + 2], 𝑓[𝑛 + 3]}; 7) 
{𝑎[0], 𝑎[1], 𝑎[2], 𝑎[3]} = 𝐼𝑛𝑣𝑒𝑟𝑠𝑒[𝑚𝑎𝑡𝑟𝑖𝑥𝑧]. 𝑏  
Equations (6) and (7) represent the Mathematica 
matrix format written under Mathematica Kernel 9. 
Solving (6) and (7) using Mathematica Kernel 9 and 
substituting into (4) and (5) will bring forth the 
continuous scheme of both the block predictor 
method and block corrector method as  

𝑦(𝑥) = 𝑦𝑛−1 + [(
−(2𝑤3−

55𝑤7

12
)

2𝑤7 −

(−6𝑤5−8𝑤7)

2𝑤7 (
𝑥−𝑥𝑛

ℎ
) −

(−𝑤5−
13𝑤7

3
)

2𝑤7 (
𝑥−𝑥𝑛

ℎ
)

2
−

3

𝑤3 (
𝑥−𝑥𝑛

ℎ
)

3
+

1

𝑤4 (
𝑥−𝑥𝑛

ℎ
)

4
) ℎ𝑓𝑛−1 + (

−(6𝑤3+
59𝑤7

12
)

2𝑤7 −

(16𝑤5+12𝑤7)

2𝑤7 (
𝑥−𝑥𝑛

ℎ
) −

(3𝑤5+
19𝑤7

2
)

2𝑤7 (
𝑥−𝑥𝑛

ℎ
)

2
+

8

𝑤3 (
𝑥−𝑥𝑛

ℎ
)

3
−

3

𝑤4 (
𝑥−𝑥𝑛

ℎ
)

4
) ℎ𝑓𝑛−2 + (

−(6𝑤3−
37𝑤7

12
)

2𝑤7 −

(−14𝑤5−8𝑤7)

2𝑤7 (
𝑥−𝑥𝑛

ℎ
) −

(−3𝑤5−7𝑤7)

2𝑤7 (
𝑥−𝑥𝑛

ℎ
)

2
−

7

𝑤3 (
𝑥−𝑥𝑛

ℎ
)

3
+

3

𝑤4 (
𝑥−𝑥𝑛

ℎ
)

4
) ℎ𝑓𝑛−3 + (

−(−2𝑤3+
3𝑤7

4
)

2𝑤7 −

(4𝑤5+2𝑤7)

2𝑤7 (
𝑥−𝑥𝑛

ℎ
) −

(𝑤5+
11𝑤7

6
)

2𝑤7 (
𝑥−𝑥𝑛

ℎ
)

2
+

2

𝑤3 (
𝑥−𝑥𝑛

ℎ
)

3
−

1

𝑤4 (
𝑥−𝑥𝑛

ℎ
)

4
) ℎ𝑓𝑛−4] . (8) 

𝑦(𝑥) = 𝑦𝑛−2 + [(
−(

5𝑤3

2
−

375

3
)

𝑤5 −
(−𝑤3−3𝑤5)

𝑤5 (
𝑥−𝑥𝑛

ℎ
) −

1

𝑤3 (
𝑥−𝑥𝑛

ℎ
)

2
+

5

2𝑤2 (
𝑥−𝑥𝑛

ℎ
)

3
) ℎ𝑓𝑛+1 + (

−(4𝑤3+
50𝑤5

3
)

𝑤5 −

(2𝑤3+3𝑤5)

𝑤5 (
𝑥−𝑥𝑛

ℎ
) +

2

𝑤3 (
𝑥−𝑥𝑛

ℎ
)

2
−

4

𝑤2 (
𝑥−𝑥𝑛

ℎ
)

3
) ℎ𝑓𝑛+2 + (

−(
3𝑤3

2
−

19𝑤5

3
)

𝑤5 −

(−𝑤3−𝑤5)

𝑤5 (
𝑥−𝑥𝑛

ℎ
) −

1

𝑤3 (
𝑥−𝑥𝑛

ℎ
)

2
+

3

𝑤2 (
𝑥−𝑥𝑛

ℎ
)

3
) ℎ𝑓𝑛+3 +] . (9) 

Evaluating equations (9) and (10) at 𝑥 = 𝑥𝑛 +

ℎ, 𝑥𝑛 + 2ℎ 𝑎𝑛𝑑 𝑥𝑛 + 3ℎ  will yield block predictor 
method and block corrector method of:  
𝑦(𝑥) = 𝑦𝑛−1 + ℎ[𝛽0(𝑤, 𝑥)𝑓𝑛−1 + 𝛽1(𝑤, 𝑥)𝑓𝑛−2 +

𝛽2(𝑥, 𝑥)𝑓𝑛−3 + 𝛽4(𝑤, 𝑥)𝑓𝑛−4)] ,  (10) 
𝑦(𝑥) = 𝑦𝑛−2 + ℎ[𝛽0(𝑤, 𝑥)𝑓𝑛+1 + 𝛽1(𝑤, 𝑥)𝑓𝑛+2 +

𝛽2(𝑥, 𝑥)𝑓𝑛+3] ,    (11) 
𝑤 is the recognized frequency, 
𝛽0(𝑤, 𝑥), 𝛽1, (𝑤, 𝑥), 𝛽2(𝑤, 𝑥) 𝑎𝑛𝑑 𝛽4(𝑤, 𝑥) is called 
fixed constant coefficients. Equations (10) and (11) 
are called the Variable step reduction block solver 
(VSRBS) implemented via variable step and variable 
order strategy. See [12-13, 15-23] for info.  
 
2.1 Deriving the Tolerance Level of Variable 

Step Reduction Block Solver 

To obtain the derivation of the tolerance lever of 
variable step reduction block solver,  3 − 𝑠𝑡𝑒𝑝 block 
predictor method of order 4 and  2 − 𝑠𝑡𝑒𝑝 of block 
corrector method of order 3 with different order and 
step is been considered. A collection of [2, 5-7, 12-
13, 19-23] suggest the possibility of finding estimate 
of the principal local truncation error of  the block 
predictor method-block corrector pair without 
solving higher differential constant coefficients, 
𝑦(𝑥). Making the presumption that whenever �̃� = �̅�,  
�̅� and �̃� represents the  order of block predictor 
method and block corrector method. Right way, 
inquiry of  3 − 𝑠𝑡𝑒𝑝 block predictor method of fourth 
order to yield the principal local truncation errors as 
stated by 
�̃�

�̃�+4

[1]
ℎ�̃�+4𝑦(�̃�+4)(�̃�𝑛) = 𝑦(𝑥𝑛+1) − 𝑦𝑛+1

[𝑙1]
+

(
77

720
−

11

12𝑤3 +
5

3𝑤2) + 𝑂(ℎ�̃�+5),  

�̃�
�̃�+4

[2]
ℎ�̃�+4𝑦(�̃�+4)(�̃�𝑛) = 𝑦(𝑥𝑛+2) − 𝑦𝑛+2

[𝑙2]
+

(
533

720
+

45

2𝑤4 −
22

3𝑤3 +
29

6𝑤2) + 𝑂(ℎ�̃�+5),              (15) 

�̃�
�̃�+4

[3]
ℎ�̃�+4𝑦(�̃�+4)(�̃�𝑛) = 𝑦(𝑥𝑛+3) − 𝑦𝑛+3

[𝑙3]
+

(
2249

720
+

120

𝑤4 −
99

4𝑤3 +
19

2𝑤2) + 𝑂(ℎ�̃�+5).  
 In likewise manner, investigating the breakdown of 
2 − 𝑠𝑡𝑒𝑝 block corrector method will give rise to 
principal local truncation errors as defined by 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.41

Jimevwo Godwin Oghonyon, 
Matthew Remilekun Odekunle, 

Matthew Etinosa Egharevba, Temitope Abodunrin

E-ISSN: 2224-2880 350 Volume 21, 2022



𝐶̅
�̅�+3

[1]
ℎ�̅�+3𝑦(�̅�+3)(�̅�𝑛) = 𝑦(𝑥𝑛+1) − 𝑦𝑛+1

[𝑞1]
+

(
210−210𝑤−239𝑤3

24𝑤3 ) + 𝑂(ℎ�̅�+4),  

𝐶̅
�̅�+3

[2]
ℎ�̅�+3𝑦(�̅�+3)(�̅�𝑛) = 𝑦(𝑥𝑛+2) − 𝑦𝑛+2

[𝑞2]
+

(
177

12𝑤3 −
283

12𝑤2 −
41

3
) + 𝑂(ℎ�̅�+4)            (16) 

𝐶̅
�̅�+3

[3]
ℎ�̅�+3𝑦(�̅�+3)(�̅�𝑛) = 𝑦(𝑥𝑛+3) − 𝑦𝑛+3

[𝑞3]
+

(
−183𝑤4+432𝑤−1288𝑤2

24𝑤4 ) + 𝑂(ℎ�̅�+4), 

�̃�
�̃�+4

[1]
, �̃�

�̃�+4

[2]
, �̃�

�̃�+4

[1]  , 𝐶̅
�̅�+3

[1]
, 𝐶̅

�̅�+3

[2]  and 𝐶̅
�̅�+3

[3]  exists as a 
separate device with step size h. 𝑦(𝑥) represents the 
analytical result of the differential constant 
coefficient which agrees with the assumptions 
𝑦(𝑥𝑛) ≈ 𝑦𝑛. See [2, 5-7, 12-13, 19-23]. 
    Moving ahead, the assumptions is fixed for lesser 
valuates of h to get    
𝑦(4)(�̃�𝑛) ≈ 𝑦(3)(�̅�𝑛).   (17) 
Step reduction block solver banks on the  assumption 
(17) to be implemented. 
Furthermore, solving (15) and (16) and truncating 
terms of degree 𝑂(ℎ�̅�+5) and 𝑂(ℎ�̅�+4) will achieve 
the step reduction block solver estimates     
𝐶̅

�̅�+3

[1]
ℎ�̅�+3𝑦(�̅�+3)(�̅�𝑛) ≈

7170

8897
[𝑦𝑛+1

[𝑙1]
− 𝑦𝑛+1

[𝑞1]
]  < 𝜎1,

    
𝐶̅

�̅�+3

[2]
ℎ�̅�+3𝑦(�̅�+3)(�̅�𝑛) ≈

7440

12323
[𝑦𝑛+2

[𝑙2]
− 𝑦𝑛+2

[𝑞2]
]  < 𝜎2, 

  (18)                                                                
𝐶̅

�̅�+3

[3]
ℎ�̅�+3𝑦(�̅�+3)(�̅�𝑛) ≈

2745

44798
[𝑦𝑛+3

[𝑙3]
− 𝑦𝑛+3

[𝑞3]
]  < 𝜎3.

  
Stating the assertions that 𝑦𝑛+1

[𝑙1]
≠ 𝑦𝑛+1

[𝑞1], 𝑦𝑛+2
[𝑙2]

≠ 𝑦𝑛+2
[𝑞2] 

and 𝑦𝑛+3
[𝑙3]

≠ 𝑦𝑛+3
[𝑞3] are known as the block predicting 

and block correcting estimate achieved by the block 
solver 𝑘𝑡ℎ order. 𝐶̅

�̅�+4

[1]
ℎ�̅�+3𝑦(�̅�+3)(�̅�𝑛), 

𝐶̅
�̅�+4

[2]
ℎ�̅�+3𝑦(�̅�+3)(�̅�𝑛) and 𝐶̅

�̅�+4

[3]
ℎ�̅�+3𝑔(�̅�+3)(�̅�𝑛) will 

distinctly be called   principal local truncation errors. 
𝜎1, 𝜎2 and 𝜎3 will be tolerance level of the block 
solver.   

Again, the results of (18) is employ to take 
decision to accept or reject the computed results of 
the loop or redo the loop with a lesser suitable 
variable step size. Accepting the computed results is 
certainly based on successful loop as specified by 
(18). See [2, 5-7, 12-13, 19-23] for more details.  
 

2.2 Variable Step Size Variation Strategy for 

VSRBS 
This study uses the principal local truncation errors 
of order four (4) of the 3-step block predictor method 
and order three (3) of the 2-step block corrector 
method to introduce the idea. The block predictor 
method of order four (4) and the block corrector 
method of order three (3) will be employed to find 
the suitable vary step of the step reduction block 
solver. The principal local truncation errors of the 
block predictor method-block corrector method will 
be computed by this mathematical expression 

|y(xn+1) − y̅n+1

[l̃1]
| ≈

|z(xn+1)−y̅n+1
[q̅1]

|

h
≈

7170

8897h
|yn+1

[l1̅]
−

y̅n+1
[q̅1]

|   

|y(xn+2) − y̅n+2

[l̃2]
| ≈

|z(xn+2)−y̅n+2
[q̅2]

|

h
≈

7440

12323h
|yn+2

[l2̅]
−

y̅n+2
[q̅2]

|  (19) 

|y(xn+3) − y̅n+3

[l̃3]
| ≈

|z(xn+3)−y̅n+3
[q̅3]

|

h
≈

2745

44798h
|yn+3

[l3̅]
−

y̅n+3
[q̅3]

| ,  
where z define the exact result to the first order stiff 
problem satisfying the initial condition z(xn) =
y(xn).  

Presume rebuilding the process of  utilizing 
anew suitable variable step size qh to generate a 
anew estimates of  yn+1

[l1̅]
, y̅n+1

[q̅1], yn+2

[l2̅]
, y̅n+2

[q̅2]  and 

yn+3

[l3̅]
 and y̅n+3

[q̅3]. To ascertain and ensure the principal 
local truncation errors  in ε, choosing q such that  
|𝑧(𝑥𝑛+𝑞ℎ)−�̅�𝑛+1

[�̅�1]
(𝑢𝑠𝑖𝑛𝑔  𝑡ℎ𝑒 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 𝑞ℎ)|

𝑞ℎ
< ε  

|𝑧(𝑥𝑛+𝑞ℎ)−�̅�𝑛+2
[�̅�2]

(𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 𝑞ℎ)|

𝑞ℎ
< ε  (20) 

|𝑧(𝑥𝑛+𝑞ℎ)−�̅�𝑛+3
[�̅�3]

(𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 𝑞ℎ)|

𝑞ℎ
< ε  

Employing the principal local truncation errors of the 
block predictor method and block corrector method 
together with (20) will achieve the result as  
|𝑧(𝑥𝑛+𝑞ℎ)−�̅�𝑛+1

[�̅�1]
(𝑢𝑡𝑖𝑙𝑖𝑧𝑖𝑛𝑔 𝑞ℎ)|

𝑞ℎ
=

239

24
=

|𝑧(4)(�̅�𝑛)|𝑞3ℎ3 ≈
239

24
[

720

8897
|𝑦𝑛+1

[𝑙1̅]
− �̅�𝑛+1

[�̅�1]
|] 𝑞4ℎ4,  

|𝑧(𝑥𝑛+𝑞ℎ)−�̅�𝑛+2
[�̅�2]

(𝑢𝑡𝑖𝑙𝑖𝑧𝑖𝑛𝑔 𝑞ℎ)|

𝑞ℎ
=

31

4
= |𝑧(4)(�̅�𝑛)|𝑞3ℎ3 ≈

41

3
[

720

12323
|𝑦𝑛+2

[𝑙2̅]
− �̅�𝑛+2

[�̅�2]
|] 𝑞4ℎ4,   

  (21) 
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|𝑧(𝑥𝑛+𝑞ℎ)−�̅�𝑛+3
[�̅�3]

(𝑢𝑡𝑖𝑙𝑖𝑧𝑖𝑛𝑔 𝑞ℎ)|

𝑞ℎ
=

61

8
= |𝑧(4)(�̅�𝑛)|𝑞3ℎ3 ≈

61

8
[

180

22399
|𝑦𝑛+3

[𝑙3̅]
− �̅�𝑛+3

[�̅�3]
|] 𝑞4ℎ4. 

Thus, requesting for the new selection of 𝑞 by 
resolving (21) will further gives 

239

24
[

720

8897
|𝑦𝑛+1

[𝑙1̅]
− �̅�𝑛+1

[�̅�1]
|] 𝑞3ℎ3 =

7170

8897

|yn+1
[l̅1]

−y̅n+1
[q̅1]

|

h
 <

𝜀,  

41

3
[

720

12323
|yn+2

[l2̅]
− y̅n+2

[q̅2]
|] q3h3 =

7440

12323

|yn+2
[l̅2]

−y̅n+2
[q̅2]

|

h
<

𝜀,    (22) 

61

8
[

180

22399
|yn+3

[l3̅]
− y̅n+3

[q̅3]
|] q3h3 =

2745

44798

|yn+3
[l̅3]

−y̅n+3
[q̅3]

|

h
<

𝜀. 
Hence, requesting for change in step size from 
h to qh, where q will be adjusted as  

q < ((
7170

8897
)

hε

|yn+1
[l̅1]

−y̅n+1
[q̅1]

|
)

1

4

≈ 0.80589 (
hε

|yn+1
[l̅1]

−y̅n+1
[q̅1]

|
) 

, 

q < ((
7440

12323
)

hε

|yn+1
[l̅1]

−y̅n+1
[q̅1]

|
)

1

4

≈

0.603749 (
hε

|yn+2
[l̅2]

−y̅n+2
[q̅2]

|
) ,   (23) 

q < ((
2745

44798
)

hε

|yn+1
[l̅1]

−y̅n+1
[q̅1]

|
)

1

4

≈

0.0612751 (
hε

|yn+3
[l̅3]

−y̅n+3
[q̅3]

|
) . 

 
In addition, the successful execution of VSRBS 

relies on (22) and (23). This demand of employing 
the 3-step block predictor method of order four and 
2-step block corrector method of order three 
combines with (22) or (23) is iteratively solved to 
agree with the tolerance level. Again, this iteration 
process is implemented repeatedly until the newly 
selected suitable step size satisfies the tolerance level. 
Whenever the newly selected variable step size is 
successful achieved then it eventually becomes the 
suitable vary step size to get the desired results with 
better accuracy and efficiency. Vary step size 
strategies involve varying the step size during the 
iteration process until the tolerance levels are 

achieved. A step size changes for SRBS is very 
costly to implement with high demand to achieve and 
as such, mathematical software package is used to 
easy the execution. See [2, 5-7, 12-13, 19-23] for 
details. 
 

 

3 Examples of Stiff Problems 
Stiff problems solved involve trigonometrically 
solution with oscillating and vibrating behaviour. 
Three stiff problems were considered and solved 
using the VSRBS. These stiff problems were 
extracted from [9, 11, 25] 
 

Stiff Problem 1  
A two-torso orbit mildly stiff problem 
𝑦1

′ = 𝑦3, 𝑦2
′ = 𝑦4, 𝑦3

′ =
𝑦1

𝑟3 , 𝑦4
′ =

𝑦2

𝑟3 , 𝑟 =

(𝑦1
2 + 𝑦2

2)
1

2, 0 ≤ 𝑥 ≤ 20, 
𝑦1(0) = 1, 𝑦2(0) = 0, 𝑦3(0) = 0, 𝑦4(0) = 1. 
Exact result:  𝑦1(𝑥) = 𝑐𝑜𝑠𝑥, 𝑦2(𝑥) = 𝑠𝑖𝑛𝑥, 𝑦3(𝑥) =

−𝑠𝑖𝑛𝑥, 𝑦4(𝑥) = 𝑐𝑜𝑠𝑥. 
Source. See [25] more info. 
 
Stiff Problem 2 
𝑦′(𝑥) = −2𝜋𝑠𝑖𝑛(2𝜋𝑥) −

1

10−3 (𝑦 − 𝑐𝑜𝑠(2𝜋𝑥)), 
 𝑦(0) = 1, [0, 1]. 
Exact result: 𝑦(𝑥) = cos (2𝜋𝑥),  
Source: see [9] for details. 
 
Stiff Problem 3 
𝑦1

′ = 𝑦3, 𝑦2
′ = 𝑦4, 𝑦3

′ = −𝑦1 +
1

10
(𝑦1

2 + 𝑦2
2 + 𝑦3

2 +

𝑦4
2), 𝑦3

′ = −1000𝑦2 +
1

10
(𝑦1

2 + 𝑦2
2 + 𝑦3

2 + 𝑦4
2 − 1), 

[0, 3], 𝑦1(0) = 1, 𝑦2(0) = 0, 𝑦3(0) = 0, 𝑦4(0) = 0. 
Exact result: 𝑦1(𝑥) = 𝐶𝑜𝑠𝑥,  𝑦2(𝑥) = 0, 𝑦3(𝑥) =

−𝑠𝑖𝑛𝑥, 𝑦4(𝑥) = 0. 
Source. See [11] for info. 
 

 

4 Results and Discussion 
This study considers specifically stiff problems 
whose exact result is trigonometrically in nature with 
oscillating and vibrating solutions. Again, this study 
will solve stiff problems with tolerance level and 
without tolerance level. The following tolerance level 
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of 
10−1, 10−2, 10−4, 10−6, 10−7, 10−8, 10−10 𝑎𝑛𝑑 10−11 
were used during the implementation process. The 
results of the three stiff problems were displayed in 
Table 1, Table 2 and Table 3. Headings in the tables 
are defined in the nomenclature. The VSRBS is 
coded under Mathematica Kernel 9 and implemented 
as well. The process of implementation can be 
viewed from sections 2.1 and 2.2.  VSRBS is very 
tedious computational procedure that involves the 
combination of equations (11) and (12) together with 
equation (18) written in Mathematica language. See 
[9, 11, 25] for more info. 

 
 
 
 
Table 1. Result of Stiff Problem I 

MTHDEMPLOYED MAXERROR TOL 
4PIFI 

VSRBS 
7.4085𝑒 − 5 

3.37258𝑒 − 4 
10−2 

4PIFI 
VSRBS 

7.9610𝑒 − 7 
3.37498𝑒 − 6 

10−4 

4PIFI 
VSRBS 

6.4643𝑒 − 9 
3.375𝑒 − 8 

10−6 

4PIFI 
VSRBS 

4.0474𝑒 − 11 
3.375𝑒 − 10 

10−8 

4PIFI 
VSRBS 

3.3125𝑒 − 13 
3.37508𝑒 − 12 

10−10 

 
 
Table 2. Result of Stiff Problem 2 

MTHDEMPLOYED MAXERROR TOL 
𝜌-DIBBDF(0.50) 
𝜌-DIBBDF(0.95) 

 
VSRBS 

1.04695𝑒 − 1 
1.70999𝑒 − 1 
3.74965𝑒 − 3 

10−1 

𝜌-DIBBDF(-0.75) 
𝜌-DIBBDF(-60) 

VSRBS 

3.61318𝑒 − 2 
3.83043𝑒 − 2 
4.47403𝑒 − 4 

10−2 

𝜌-DIBBDF(0.95) 
VSRBS 

1.18569𝑒 − 6 
4.47833𝑒 − 8 

10−6 

𝜌-DIBBDF(-0.75) 
𝜌-DIBBDF(-0.60) 
𝜌-DIBBDF(0.50) 

VSRBS 
 

5.14905𝑒 − 7 
5.25483𝑒 − 7 
6.58550𝑒 − 7 
3.78993𝑒 − 9 

10−7 

𝜌-DIBBDF(0.95) 
VSRBS 

4.17385𝑒 − 10 
4.47842𝑒 − 12 

10−10 

𝜌-DIBBDF(-0.75) 
𝜌-DIBBDF(-0.60) 
𝜌-DIBBDF(0.50) 

 
VSRBS 

6.28992𝑒 − 11 
6.44415𝑒 − 11 
9.41198𝑒 − 11 
3.79141𝑒 − 13 

10−11 

 
Table 3. Result of Stiff Problem 3 

MTHDEM

PLOYED 
MAXERROR TOL 

BBDF−𝛼 = 0.3 
VSRBS 

5.159812𝑒 − 4 
4.43756𝑒 − 6 

10−4 

BBDF−𝛼 = 0.3 
VSRBS 

5.235607𝑒 − 6 
4.4376𝑒 − 8 

10−6 

BBDF−𝛼 = 0.3 
VSRBS 

5.243138𝑒 − 8 
4.4376𝑒 − 10 

10−8 

BBDF−𝛼 = 0.3 
 

VSRBS 
 

5.261320𝑒
− 10 

 
4.43778𝑒 − 12 

10−10 

 
4.1 Nomenclature 

The following nomenclature will be used to show the 
results in Tables 1, 2 and 3. 
VSRBS : variable step reduction block solver  
TOL : the tolerance level employed 
Maxerror : the magnitude of the maximum errors of 
VSRBS. 
Mthdused: method employed. 
4PIFI: implementation of the four-point one-block 
fully implicit method using variable step size. See 
[25] for more info.  
𝜌-DIBBDF (𝜌𝑖): 𝜌 –Diagonally implicit block 
backward differentiation formula (𝜌 value). See [9] 
for more info.  
BBDF-𝛼: block backward differentiation 𝛼- 
formulas. See [11] for more details. 

 
 

5 Conclusion 
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A variable step reduction block solver for stiff ODEs 
has been suggested. This VSRBS emanates from the 
3-step block predictor method of order four and 2-
step block corrector method of order three. The 
VSRBS has the capacity to vary the step-vary the 
order and implement a suitable vary step size with 
the support of the tolerance level. The derivation of 
the VSRBS is done via a special trigonometrically 
fitted method used as the basis function 
approximation for the purpose of approximating the 
trigonometrically exact solution. The (VSRBS) 
evaluated three stiff problems and compare the 
results with existing methods. The performance of 
VSRBS competes favourably with [25] in terms of 
the maximum errors as a result  of finding a suitable 
variable step size for  VSRBS to satisfy the tolerance 
level. [9, 11, 25] belongs to the backward 
differentiation formula (family) which has been 
strictly designed to solve stiff problems with strong 
region of absolute stability compare to VSRBS of 
Adams family which is projected for non-stiff 
problems. VSRBS involves tedious computation of 
using a specially designed block predictor and block 
corrector method to find a suitable variable step size 
to satisfy the tolerance criteria. The VSRBS performs 
better than [9, 11] due to the execution of (4) and (5) 
as the basis function approximation compare to 
others using Lagrange polynomial and Newton 
iteration as basis function approximation. Also, the 
successful implementation is attributed to 
implementing variable step-variable order-finding a 
suitable variable step size at every loop process. 
Thus, the VSRBS is efficient and accurate for stiff 
ordinary differential equations. Further studies will 
be to design a block solver with the capacity to 
handle exponentially exact solution.   
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