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Abstract: Cancer remains a major public health concern, mainly because of the incompletely under-
stood dynamics of molecular mechanisms for progression and resistance to treatments. The link
between melanoma and thyroid cancer (TC) has been noted in numerous patients. Nucleocytoplas-
mic transport of oncogenes and tumor suppressor proteins is a common mechanism in melanoma
and TC that promotes tumorigenesis and tumor aggressiveness. However, this mechanism remains
poorly understood. Papillary TC (PTC) patients have a 1.8-fold higher risk for developing cuta-
neous malignant melanoma than healthy patients. Our group and others showed that patients with
melanoma have a 2.15 to 2.3-fold increased risk of being diagnosed with PTC. The BRAF V600E
mutation has been reported as a biological marker for aggressiveness and a potential genetic link
between malignant melanoma and TC. The main mechanistic factor in the connection between these
two cancer types is the alteration of the RAS-RAF-MEK-ERK signaling pathway activation and
translocation. The mechanisms of nucleocytoplasmic trafficking associated with RAS, RAF, and Wnt
signaling pathways in melanoma and TC are reviewed. In addition, we discuss the roles of tumor
suppressor proteins such as p53, p27, forkhead O transcription factors (FOXO), and NF-KB within the
nuclear and cytoplasmic cellular compartments and their association with tumor aggressiveness. A
meticulous English-language literature analysis was performed using the PubMed Central database.
Search parameters included articles published up to 2021 with keyword search terms melanoma and
thyroid cancer, BRAF mutation, and nucleocytoplasmic transport in cancer.

Keywords: nucleocytoplasmic transport; tumor aggressiveness; resistance; BRAF V600E; thyroid
cancer; melanoma

1. The Connection between Melanoma and Thyroid Cancer: Our
Up-to-date Knowledge

Several studies, including ours, have observed that patients with malignant melanoma
have a higher risk of developing other primary cancers, including thyroid cancer (TC) [1–3].
Patients with melanoma have a 2.3-fold higher risk of being diagnosed with papillary
TC (PTC), and patients with PTC have a 1.8-fold higher risk of developing melanoma [1].
Our analysis showed a two-fold increased risk of second primary TC (SPTC) follow-
ing melanoma (The Standardized Incidence Ratio (SIR) = 2.15, 95% confidence interval
(CI) = 1.99–2.32) compared with the general population (Figure 1A). A significantly el-
evated risk of SPTC was noted in the first year of melanoma diagnosis: SIR = 5.42
(95% CI = 4.65–6.28). Persistently increased risk of SPTC was evident beyond the first
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year of follow-up: within five years SIR = 2.05 (95% CI = 1.81–2.32) and within 10 years
SIR = 1.54 (95% CI = 1.31–1.81) (Figure 1B).
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There may be a genetic link between cutaneous melanoma and TC due to the high
occurrence of a mutation in the BRAF oncogene. Tissue specimens from patients with
melanoma and/or TC show a high rate of the BRAF V600E mutation. BRAF mutations are
observed in 36 to 83% of cases of PTC in all age groups [4] and in 63% of melanoma cases [5].
Dysregulation of the RAS-RAF-ERK pathway and thus persistent nuclear translocation
of ERK and other signaling molecules is a major common cause in the development of
melanoma and TC. Other common genetic alterations associating TC with melanoma
include the receptor tyrosine kinase RET (rearranged during transfection) gene mutation
and RAS. Research shows an altered RET gene is present in 10 to 30% of PTC and RET
rearrangements have been reported in melanomas [6].

2. Dysregulation of the Nucleocytoplasmic Trafficking

Nucleocytoplasmic trafficking is the transport of proteins, RNAs and signaling
molecules between the nucleus and the cytoplasm [7]. Generally, about 50% of proteins
are transported across the nucleus and cytoplasm or other cellular compartments to reach
their site of function [8]. Intracellular trafficking regulates biochemical activities such as
gene expression in eukaryotes. DNA synthesis and transcription take place in the nucleus,
but mRNA must be transferred to the ribosome in the cytoplasm for translation. Similarly,
proteins and signaling molecules shuttling between the nucleus and other compartments
require transporter-complexes, such as karyopherins/importins, in normal and cancer
cells [7–18]. Nucleocytoplasmic transport of proteins is achieved when nuclear localization
sequences (NLS) and nuclear export sequences (NES) on the cargo protein form a complex
with importin or exportin, and the cargo-receptor complex then bind to nucleoporins
via the receptor. The widely studied family of nuclear transporters include importins
(Importin-β2, importins α and β) and exportins (chromosome region maintenance or
CRM1) [9,11,12,15,19,20].

CRM1 is the main exporter from the nucleus of tumor suppressor and other cargo
proteins in eukaryotic cells. It exports proteins by binding to small Ran GTPase to
actively transport the proteins across the nuclear membrane [12,19,21–26]. Inhibition
of the activity of CRM1 has been extensively explored as a therapeutic target to in-
hibit shuttling nucleocytoplasmic transport in melanoma, thyroid, and other types of
cancers [9,11,12,17,19,23,24,26–32]. In Table 1, we summarize the members of the im-
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portins/exportins family with some examples of their cargoes. In certain situations,
aberrant nucleocytoplasmic trafficking has been implicated in different types of diseases
including cancers such as thyroid and melanoma [8,13,15].

Table 1. Nucleocytoplasmic transport factors with examples of their cargoes.

Transport Factor Cargoes
Exportins

Exportin-1 (Crm1) Leucin-rich NES cargoes, NF-kB, Cyclin D1, NFAT, p53, p21,
IkB, BCR-ABL, FOXO3a, TOPO IIa, eIF4E, HIV genomic RNA

Cellular apoptosis susceptibility (CAS/XPO2) Importin alpha

Exportin-t tRNA

Exportin 5 Pre-microRNA, tRNA, eEF-1A, ILF3, Staufen2, dsRNA-binding
proteins, 60S pre-ribosomal subunits

Exportin 6 Profilin, Actin

Exportin 7 P50Rho-GAP, Histone 2A, Histone H3, 14-3-3

Importins

Importin β1
Cargos with basic NLs via importin alpha, NFAT, PRPF31,
CREB, p65, β-catenin, JAK1, STAT5, cyclin B1, SRY/SOX-9,
PTHrP

Importin β2 Histone, ribosomal proteins, FOXO4, FUS, hnRNAPA1

Importin β3 c-Jun, Histones, ribosomal proteins, IRF3, RASAL2, HPV E5
(16E2)

Importin 3 HuR

Importin 4 HIF1-alpha, Histones, ribosomal proteins, Vitamin D receptor

Importin 7 c-Jun, CREB, Ribosomal proteins, SMAD3, HIV RTC, GR,
Histone H1

Importin 8 SMADs, eIF4E, Signal Recognition Particle Protein 19

Importin 9 c-Jun, PP2A (PR65), NUAK1, nuclear actin, Histone, ribosomal
proteins,

Importin 11 UBE2E3, UBE2E1, PTEN, β-catenin, UBcM2, rpL12

Importin 12 SRSF1, CIRBP

Import/Export

Importin 13
Import: c-Jun, Mago-Y14, RBM8, Ubc9, Glucocorticoid Receptor,
Pax6
Export: eIF1A

Exportin 4 Import: Sox2, SRY
Export: SMAD3, eIF5A

Non-characterized

Ran BP6 Undefined

Ran BP17 Undefined

Tumorigenesis involves complex alterations in tumor suppressor genes and activa-
tion of oncogenes from proto-oncogenes, which promote growth signaling pathways to
induce neoplastic transformation in normal cells [33]. The translocation and activation
of oncogenes initiates tumorigenesis, cell growth, and resistance to chemotherapeutic
drugs [8,9,11,13,25,32,34–36]. These oncogenes implicated in tumorigenesis undergo un-
repaired DNA damage that results in mutations that initiate and/or promote tumorige-
nesis [8,37–39]. DNA damage results in mutations or impaired gene functions that alter
post-translational modifications or disrupt the regulatory network of cells, leading to
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uncontrollable cell growth. Oncogenes and tumor suppressor proteins localized in the
nucleus play critical roles in cancer development. They have been targeted for anticancer
therapy, and a number of them are common between melanoma and TC.

3. Dysregulation of Nucleocytoplasmic Transport in Melanoma and Thyroid Cancer

Emerging evidence indicates a rising incidence of melanoma and TC in the United
States, with reports of over 100,350 and 52,890 cases in 2020, respectively, in the Surveillance,
Epidemiology, and End Results (SEER). To understand then link between melanoma
and TC aggression, we reviewed nucleocytoplasmic transport and associated molecular
mechanisms common to both cancers.

Aggressive forms of melanoma are associated with an increased risk of developing
thyroid malignancies [40], possibly via the expression of thyroid-stimulating hormone
(TSH), which converts melanocytes to melanoma. Since the TSH is elevated in patients
with thyroid failure and the TSH receptors are highly expressed in melanomas, it has
been postulated that TSH activates the TSHR signaling pathways, which are critical in the
development of melanoma [41,42]. Immune checkpoint inhibitors such as PD-(L)1 blockade
in melanoma can also trigger a thyroid dysfunction. Pathological associations exist between
melanoma and TC, and this is stirring up interest in understanding mechanisms common
to both cancers and how resistance to BRAF inhibitors treatment has common mechanisms
of survival [41,43].

Mechanisms of nucleocytoplasmic transport can be importin-dependent, export-
dependent, or unaided. Endogenous transcriptional activator-nuclear factor-κB (NF-κB),
extracellular signal-regulated kinase 2 (ERK2), β-catenin, and p53 accumulate in the cyto-
plasm in the basal state, where they interact with other signaling partners that restrict them
to the cytoplasm. NF-κB plays important roles in cell proliferation, immune response and
inhibition of apoptosis and is associated with resistance to anticancer therapies. It forms a
complex with IκB, which is an inhibitor of NF-κB import into the nucleus. In cancer cells,
IκB is phosphorylated by the IKK complex, causing IκB degradation and nuclear import
of NF-κB. Dysregulation of NF-κB nucleocytoplasmic transport leads to the promotion of
tumorigenesis in TC [14,44] and to BET inhibitors (Bromodomain and extra terminal pro-
tein inhibitors) resistance in melanoma [45]. In melanoma and TC, unidentified importin
and CRM1 shuttle RAF proteins (particularly BRAF) into and out of the nucleus, which
phosphorylate MAPK/ERK kinases (MEKs) within the mitogen-activated protein kinase
(MAPK) cascade upon activation by proto-oncogenes Rat sarcoma (RAS) proteins [46].

Activation of RAS proteins, including HRAS, KRAS, and NRAS genes, activate growth
signaling factors like those mediated by tyrosine kinase receptors including MAP kinase,
Phosphoinositide 3-kinase (PI3K), and protein kinase B (also called Akt). Together, they
promote cell proliferation and survival [39] under healthy conditions, but in tumorigenesis,
they mediate progression and aggressiveness [38,47–51].

MAP kinase, PI3K, and V600E mutation in BRAF oncogene are common features
in melanoma and TC [52,53]. On the cellular level, RAS and BRAF mutations, but not
ARAF or CRAF mutations, play significant roles in the ERK signaling pathway [54–56].
For example, ERK accumulates in the nucleus following stimulation by mitogenic signals.
Nuclear export of ERK is inhibited by blocking CRM1 because the relocalization of nuclear
ERK to the cytoplasm involves MEK1, which contains the NES sequence [57]. Other key
signaling molecules, such as forkhead O transcription factors (FOXO), p27, β-catenin,
p53, and claudin-1 are trafficked in melanoma and TC cells and are associated with cell
proliferation and progression.

FOXO transcription factors (FOXO1a, FOXO3a and FOXO4) are negative regulators
of cell proliferation, survival and progression [58]; they are inactivated through phos-
phorylation by Akt, which promotes its nuclear export [59–61]. Nuclear localization of
Akt in thyroid cells increases oncogenic expression, is associated with high metastatic
invasion in lymph nodes, and plays a significant role in tumor aggression [62–67], which
could be dependent on p27 tumor suppressor gene cytosolic levels. Under normal condi-
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tions, the cell-cycle inhibitor p27 is localized in the nucleus where it binds to and inhibits
Cyclin-dependent kinase 2 (CDK2); in many carcinomas including TC, p27 localization is
mainly cytoplasmic, resulting in cell-cycle progression and tumorigenesis. Active PI3K
signaling leads to activated Akt and phosphorylation at the NLS of p27 and its subsequent
cytoplasmic sequestration [14].

In the Wnt signaling pathway, β-catenin (CTNNB1 gene) activates T-cell factor- or lym-
phoid enhancer factor-regulated gene transcription. It is regulated by glycogen synthase
kinase 3β (GSK-3β) phosphorylation of serine and threonine residues, which stabilizes
β-catenin and prevents its degradation in the cytoplasm [14,68]. In melanoma and thyroid
cancer, β-catenin is bound to cadherins and α-catenin, which form cell-cell adhesion com-
plexes that inhibit the nuclear import of β-catenin [69]. β-catenin plays a key role in the
cadherin/catenin complex involved in cell–cell adhesion, the loss of which may lead to
tumor invasion and metastasis [70]. β-catenin can be transported by itself, through the aid
of CRM1, or translocated by binding to adenomatous polyposis coli (APC) and axin. APC
and axin can be trafficked to the nucleus and bind to nuclear β-catenin for export from
the nucleus, both of which involve NES for CRM1-mediated export [71]. Mutations in the
GSK-3β phosphorylation sites are rare but result in cellular accumulation of β-catenin.

In melanoma, activation of the Wnt signaling pathway promotes migration, invasion
and proliferation, linking Wnt signaling to more aggressive behavior and worse progno-
sis [72–74]. Primary and metastatic tumors display widespread cytoplasmic β-catenin and
the loss of nuclear expression of β-catenin has been associated with cancer progression.
Wnt5A is a known ligand in the non-canonical Wnt pathway, which inhibits β-catenin, a
key process in the canonical Wnt pathway. Increased expression of cytoplasmic Wnt5A has
been associated with melanoma progression and poor outcomes [75]. However, increased
nuclear β-catenin correlates with reduced proliferation and tumor size and improves
survival in malignant tumors [72].

p53 is a tumor suppressor protein that is activated in response to DNA damage and
other stresses. It accumulates in the nucleus where it mediates cell-cycle arrest, apop-
tosis, and senescence. Its activation involves phosphorylation and acetylation leading
to subcellular mislocalization [76–79]. The nucleocytoplasmic export of p53 is mediated
by CRM1. Most tumors have mutated p53 with low frequencies in melanoma, and cy-
toplasmic accumulation of wild-type p53 is reported in breast and colorectal carcinoma.
Nuclear accumulation of p53 protein is associated with the de-differentiation of papillary
carcinoma [80]. p53 nucleocytoplasmic transport has been targeted by nuclear transport
inhibitors as a potential mechanism to inhibit tumor aggressiveness [81].

Another protein trafficking dysregulation in melanoma and TC is related to claudin-1:
Its cytoplasmic localization is reported in invasive forms of melanoma, whereas claudin-1
nuclear localization is found in benign nevi [82,83]. Claudin-1 proteins are important in the
formation of tight junctions, which promote adhesion and growth and enhance transport
of molecules across the cell membrane. In one interesting in vitro study, melanoma cells
transfected with NLS-claudin-1 vector showed significant nuclear localization of claudin-1,
but still had transport of claudin-1 to the cytoplasm. This translocation can be controlled
by phospholipase A (PKA) phosphorylation and can affect metastatic capacity [82]. In
TC, Zwanziger et al. showed increased nuclear claudin-1 localization in follicular TC
metastases [84].

Table 2 shows the nucleocytoplasmic transport dysregulation of tumor-suppressor
proteins, transcription factors and signaling molecules such as FOXO, p53, and NF-κB in
melanoma and TC [36,49,62,64,66,85–89].



Cells 2021, 10, 367 6 of 13

Table 2. Nucleocytoplasmic mechanisms of aggressive melanoma and thyroid cancer.

Signal Transducer Translocation Effects Oncogenic Role Specific Cancer References

FOXO1, FOXO3a, FOXO4,
FOXO6

Cytoplasmic
mislocalization promoted
by Akt. Nuclear
localization of Akt in
thyroid cells increases
oncogenic expression,
high metastatic invasion
in lymph nodes and tumor
aggression

Activate transcription of
genes that triggers cellular
proliferative, cell cycle,
differentiation, and cell
death.

Melanoma, thyroid cancer
Kau et al., 2004; Tang et al.,
1999, Takaishi et al., 1999;
Nakamura et al., 2000

Claudin-1

Translocation from
nucleus to cytoplasm in
melanoma cells and
increased cytoplasmic
expression in a
PKC-dependent manner
but altered migration by
PKA Phosphorylation.

Increased expression,
invasiveness in melanoma
hence a marker of
progression

Melanoma French et al., 2009;
Leotlela et al., 2007

B-catenin Nuclear expression
Tumor suppressor role in
primary and secondary
tumors

Melanoma, thyroid cancer Chien et al., 2009

Cyclin D1

Cytoplasmic claudin-1 is
highly expressed with
more aggression and
increased invasiveness in
melanoma unlike benign
nuclear claudin-1

Accumulation of cells in
the G1 phase of cell cycle. Melanoma French et al., 2009;

Leotlela et al., 2007

CDKN1B (p27)

Phosphorylated by Akt
and exported from
nucleus to cytoplasm.
Cytoplasmic expression is
associated with poor
5-year survival in
metastatic melanoma

A cell-cycle inhibitor,
blocks cell cycle in the
G0/G1 differentiation
signals or cellular stress
—cell cycle, activation of
PI3K and MEK-dependent
kinases

Thyroid, melanoma Kau et al., 2004

p53

Mutation,
post-translational
modification, or
cytoplasmic
mislocalization

Acts as a tumor
suppressor and trigger cell
cycle arrest, apoptosis,
senescence, DNA repair,
DNA damage and change
the metabolism depending
on physiological
conditions. Also, known
as Guardian of the
genome.

Melanoma Fabbro & Henderson,
2003; Webster et al., 2019

NF-kB

Nuclear import of NF-κB
leads to increased target
gene expression leading to
promotion of
tumorigenesis and
resistance to anticancer
therapies

Activate NF-kB signaling
and induce apoptosis of
cancer cells.

Thyroid cancer Kau et al., 2004

Muc 1/EGFR

MUC1 confers survival
advantage in melanoma,
overexpression of EGFR
and nuclear
mislocalization is
associated with
aggressiveness

Induce oncogene
expression through
interaction with β-catenin
and EGFR.

Melanoma and thyroid
cancer

Zhao et al., 2014; Patel
et al., 2005; Ward et al.,
2007

4. Nucleocytoplasmic Transport and Mechanisms of Resistance in Cancer

Multiple factors are involved in progressive and aggressive melanoma and TC with
overlapping resistance mechanisms [48,53,66,90] as depicted in Figure 2A.
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Acquired resistance to BRAF kinase inhibitors is mediated by reactivation of MAPK
signaling, which elevates ERK1/2 phosphorylation and translocation to the nucleus. Car-
lino and colleagues detected a maintained phospho-ERK expression in all resistant sublines
in the presence or absence of BRAF and/or MEK inhibitors [46,91].

Another resistance mechanism is mediated by p53. Wnt5A is a non-canonical Wnt
ligand that drives a metastatic, therapy-resistant phenotype in melanoma. It increases the
half-life of wild-type nuclear p53 to promote a slow-cycling phenotype while inhibiting
p53-induced apoptosis via increased iASPP (inhibitor of apoptosis-stimulating protein
p53) activation and translocation to the nucleus. Inhibitors of p53 block the slow-cycling
phenotype and sensitize melanoma cells to BRAF/MEK inhibitors [92].

In addition to ERK, and p53, the overexpression of CRM1 has been linked with poor
prognosis and resistance to treatment in melanoma [93,94]. Inhibiting aberrant translocation
of proteins between nucleus and cytoplasm has shown high therapeutic advantage in many
different cancers including melanoma and TC [35,93]. One study has shown synergistic
effects of CRM1 and BRAF inhibitor combinations with effective tumor regression in BRAF-
mutant melanoma [95]. CRM1 may be associated with drug resistance in several cancers by
nuclear export of drug targets, including topoisomerase IIα, Bcr-Abl, and Galectin-3 [96]:

a. Galectin-3: It interacts with a wide range of partners and has multiple activities in
cancer cells. Subcellular localization of Galectin-3 is important for its function as a
regulator of apoptosis [97]. Phosphorylated cytoplasmic Galectin-3 activates ERK
and c-Jun N-terminal kinase (JNK), resulting in subsequent suppression of apoptosis
in cancerous cells. Treatment with cisplatin, a pro-apoptotic agent, can lead to move-
ment of Galectin-3 to the cytoplasm, resulting in drug resistance. CRM1 inhibition
by leptomycin B prevents nuclear export of Galectin-3 and restores cisplatin-induced
apoptosis in cancer cells [98].

b. Topoisomerase IIα: Cancer cells can develop drug resistance to the cytotoxic effects
of topoisomerase II inhibitors like doxorubicin by exporting topoisomerase IIα from
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the nucleus to the cytoplasm by a CRM1-mediated mechanism. Topoisomerase IIα
participates in DNA replication and transcription. Doxorubicin targets topoisomerase
IIα, producing DNA-cleavable complexes and cell death. For DNA damage to occur,
topoisomerase IIα must be localized in the nucleus. CRM1 inhibition can block the
nuclear export of topoisomerase IIα and sensitize cancer cells to treatment with
doxorubicin [99].

c. Bcr-Abl: The chromosomal translocation between chromosomes 9 and 22 leads to the
formation of a new gene called Bcr-Abl. This gene produces the tyrosine kinase Bcr-
Abl protein, which is localized in the cytoplasm where it activates proliferative and
anti-apoptotic signaling pathways. However, the presence of Bcr-Abl kinase protein
in the nucleus followed by its activation along with p73 will result in DNA damage-
induced apoptosis. Targeting of Bcr-Abl kinase by imatinib in combination with
leptomycin B leads to nuclear retention of Bcr-Abl kinase and promotes apoptosis in
imatinib-resistant chronic myeloid leukemia (CML) cells [100].

One example of the non-common mechanism of tumor aggressiveness is the dys-
regulated transport of thyroid transcription factor 1 (TTF-1). In PTC, reduced nuclear
localization of TTF-1 is linked to vascular invasion and nodal metastases and is a strong
predictor of tumor recurrence in the presence of BRAF mutation [101].

5. Targeting Nucleocytoplasmic Transport

The high pathophysiological relevance of importins and exportins highlights their
potential as therapeutic targets for melanoma and TC.

5.1. Targeting Nuclear Import

Currently, the development and use of protein nuclear import inhibitors for cancer
treatment lags behind that of nuclear export inhibitors, and the former have not yet entered
clinical trials. The first nuclear import inhibitor was developed in 1995 by Lin et al., who
found that cell-permeable peptides were inhibiting nuclear translocation of NF-κB in intact
cells [102]. In 2010, Ambrus et al. [103] used a novel screening approach to identify small
molecule inhibitors of the importin α/β pathway such as 58H5-6. However, since no
inhibitory effects could be observed in vivo, the 58H5-6 inhibitor could not move forward
toward clinical trials. In the following years, potent inhibitors of importin α/β-mediated
nuclear import were identified: M9M by Cansizoglu [104], karyostain 1A by Hintersteiner
et al. [105], importazole by Soderholm et al. in 2011 [106] and INI-43 by Van der Watt
in 2016 [107]. Although some of these inhibitors show high potential, their therapeutic
applicability has not yet been investigated. Further research is required to establish import
nuclear transport inhibitors as a therapeutic intervention in melanoma and TC.

5.2. Targeting Nuclear Export

CRM1 is the major exporter of proteins from the nucleus to the cytoplasm, and
for several years it has been the only exportin targeted by inhibitors. Leptomycin B
(LMB), a specific CRM1 inhibitor, has been characterized [108] and its role has been widely
described [109–111]. However, due to toxicity, phase I clinical trials with LMB were
stopped [112]. Consequently, several LMB analogs were developed, such as ratjadones, gro-
niothalamin, and KOS-2464. For various reasons, none made it to clinical trials [113–115],
but novel synthetic CRM1 inhibitors such as CBS9106 (SL-801) moved to clinical trials [116].
A new class of selective inhibitors of nuclear export (SINE) including KPT-185, KPT-251,
KPT-276, KPT-330 (Selinexor) and KPT-335 (Verdinexor) are extremely selective and used
as anti-cancer agents [117,118]. Some of the SINE compounds are currently being tested
in phase I/II/III clinical trials to treat solid organ malignancies, as single agents and in
combination with standard therapies.
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6. Conclusions

We found that cutaneous malignant melanoma increases the risk of papillary TC and
vice versa. In addition, patients with both cancers have a high frequency of BRAF V600E
mutation. Clinical outcomes following treatment with one class of drugs (such as BRAF or
MEK/ERK inhibitors) for TC and melanoma are not impressive. Hence, cancer therapy
targeting multiple pathways with combinations of SINE, MEK/ERK, PI3K, and kinase
inhibitors have been developed for the treatment of melanoma and TC, several of which
show improved responses including sorafenib, lenvatinib, and others [47–51,119,120].
Since effective cellular functioning relies on active/passive transport of molecules to other
compartments or localization in a specific site, SINE such as CRM1 antagonists, which
block nuclear export or alter post-translational modification of cargo proteins, are being
tested in combination with different drugs [10,19,26–28,121]. Phase II clinical trials of SINE
inhibitors such as selinexor, sorafenib and other kinase inhibitor combination therapies
with other classes of antineoplastic drugs show effectiveness in reducing tumorigene-
sis [96,119]. SINE inhibitors of nuclear export mechanisms decrease tumor progression and
invasiveness [14,46].
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