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Abstract: The negative impact of out-of-school students' problems at the basic and high-school levels is always very 

weighty on the affected individuals, parents, and society at large. Owing to the weighty negative consequences, 

policymakers, different government agencies, educators and researchers have long been looking for how to effectively 

study and forecast the trends as a means of offering a concrete solution to the problem. This paper develops a better hybrid 

machine learning method, which combines the least square and support vector machine (LS-SVM) model for robust 

prediction improvement of out-of-school children trend patterns. Particularly, while other previous works only engaged 

some regional and few samples of out-of-school datasets, this paper focused on long-ranged global out-of-school datasets, 

collated by UNESCO between 1975- 2020. The proposed hybrid method exhibits the optimal precision accuracies with 

the LS-SVM model in comparison with ones made using the ordinary SVM model. The precision performance of both 

LS-SVM and SVM was quantified and a lower NRMSE value is preferred. From the results, the LS-SVM attained lower 

error values of 0.0164, 0.0221, 0.0268, 0.0209, 0.0158, 0.0201, 0.0147 and 0.0095 0.0188, compared to the SVM model 
that attained higher NRMSE values of 0.041, ,0.0628, 0.0381, 0.0490, 0.0501, 0.0493, 0.0514, 0.0617 and 0.0646, 

respectively. By engaging the MAPE indicator, which expresses the mean disconnection between the sourced and 

predicted values of the out-of-school data. By means of the MAPE, LS-SVM attained lower error values of 0.51, 1.88, 

0.82, 2.38, 0.62, 2.55, 0.60, 0.60, 1.63 while SVM attained 1.83, 7.39, 1.79 7.01, 2.43, 8.79, 2.58, 4.13, 6.18. This implies 

that the LS-SVM model has better precision performance than the SVM model. The results attained in this work can serve 

as an excellent guide on how to explore hybrid machine-learning techniques to effectively study and predict out-of-school 

students among researchers and educators. 

 

Index Terms: Global Perspective, LS-SVM, Out-of-School Children, SVM, UNESCO. 
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1.  Introduction 

Proper education remained a better means of boosting individual well-being, fighting poverty, combating crime, 

reducing social vices, fostering peace, strengthening egalitarianism, sustaining the environment, and ensuring gender 

parity in society. Proper, education can also prepare and enhance learners' ability to obtain the right attitude and acquire 

the skills they need, including sense of purpose in order to improve their individual lives. 

Generally, children who had non-formal education or fall within the pre-primary or primary education that are not 

in school, are regarded as out-of-school, the most susceptible and sidelined children in society today are out-of-school 

children (OOSC) [1]. This is because they are cut off from the well-being and security net that the school offers, which 
in turn places them at a greater menace of abuse, exploitation, denial, and a lifetime of poverty (UNICEF, 2022) [2]. 

Though a substantial quantum leap toward attaining universal primary education has been realized over the years in 

many countries, however, the OOSC number in terms of global statistics still remains unacceptably high. For example, a 

published report by UNESCO [1], in September 2021 but which was updated in 2022, indicates that 244 million children 

within the 6-18 age range were still not in school worldwide. In the same vein, Sub-Saharan Africa alone owns about 

40.16% of the 244 million children number that were not formally registered in school. According to UNICEF, (2022) 

[2], Central and West Africa alone houses almost one-fourth of out-of-school children number in the world. 

In Eastern and Southern Africa, it is reported that one in nine children is not registered in school. In Latin America 

and the Caribbean region, three million, eight hundred thousand number of primary school-age children are not in school. 

In Central and Eastern Europe, about 1.0 million children-age and 1.2 adolescents teenage are not in school in that region. 

Similar reports on high out-of-school children's numbers, particularly at the primary and teenage levels are also recorded 
for West and Central Africa, South Asia, North Africa, Middle Each, and others. 

The negative impact of aforementioned out-of-school students' problems at the basic and high-school levels is always 

very weighty on the affected individuals, parents, and society at large can large globally, if not properly and timely handled. 

Our main objective in this paper is to come up with a better hybrid machine learning method, which combines the least 

square and support vector machine (LS-SVM) model for robust prediction improvement of out-of-school children trend 

patterns. 

2.  Literature Review 

For the past decade, many strategies have been adopted by researchers to discuss and reliable predict as means of 

tackling the societal prevalence of out-of-school children problem. Though a lot of effort has been put forward, with 
substantial progress accomplished in this regard, however, many stones are still left unturned. Thus, this paper is designed 

to fill in the gap. However, a realistic approach to tackling the problem holistically from a global perspective is still 

missing. 

In [3], a Decision Tree (DT) and Support Vector Machine (SVM) were both employed to predict learning disabilities 

among school-age kids, and from the results, the SVM delivered preferred accuracy compared to DT. 

An automated machine learning (AuML) method was developed in [4], to Boost the predictive estimation of student 

dropout trends in post-primary schools. The AuML model achieves different accuracy values of 99.6, 97,99.8, and 99.6%, 

respectively.  

The authors in [5], employed 5 different machine learning tools to conduct a prediction study on school Dropout 

trends among high-school students by engaging a series of parameters like education history, gender, absence, travel time, 

size of student class, school size, etc. From their research, Random Forest attained supreme performance over other 

machine learning methods such as Naïve Bayes, SVM, and CART. Said, (2020) [6] developed a predictive system for 
school dropout estimation by means of a robust classification algorithm and using a region Tabora as a clear-case study. 

After the analysis, Said realized that academic and social factors had the strongest effect on the prediction results. The 

authors in [7, 8] also utilized a classification algorithm-based prediction approach for student dropout analysis but used 

the Indian and South Korean as case studies. A review work that houses some methods adopted in different literature to 

conduct dropout and academic performance prediction is contained in [9-16]. 

The problem with the above explored and classical and machine learning methods is that they often achieved 

deficient prediction accuracies, particularly on high stochastic datasets [17-24]. 

This paper develops a better hybrid machine learning method, which combines the least square and support vector 

machine (LS-SVM) model for robust prediction improvement of out-of-school children. Particularly, while others only 

engaged some regional and few samples of out-of-school datasets, this paper focused on long-ranged global out-of-school 

datasets, collated between 1975- 2020, thus making our work to be more robust and all-inclusive. Thus, the following 
contributions are attained in this paper. 

 

• Detailed Statistical Analysis of out-of-School children's data for Nine different regions of the World. 

• Development of an improved hybrid machine learning method, using the least square and support vector 

machine (LS-SVM) model. 
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• Application of the improved hybrid machine learning prediction method for robust prediction improvement of 

out-of-school children. 

3.  Methodology 

This section presents the method of sourcing the out-of-school children's data, the considered machine learning 

model, which is LS-SVM in comparison with the classical SVM model, and the algorithm employed to perform the 

prediction process. Figure 1 display the step-by-step flowchart of the entire method implementation guide. 

3.1.  Method of Data Collection 

Databases that are specially designed always contain some important and hidden rich facts, which can be utilized 
further for specific data mining and robust intelligent decision-making. This has led to different interests in developing 

tools that can pave a way for automatic relevant data extraction and processing. According, the out-of-school data we 

explored in this paper is sourced from the official UNESCO site. The site houses numerous out-of-school datasets for 

different countries and regions of the world. 

Specifically, we collected 45 years range of out-of-school children's data, starting from 1975-2020 and the datasets 

are for nine different regions, which include Sub-Sahara Africa (SSA), Middle and East Africa (MEA), Arab World 

(ARW), Europe and Centra Asia (ECA), Heavily Indebted Countries (HIC), Latin America and Caribbean (LAC), Least 

Developed Countries (LDC), Low and Middle-Income Countries (LMC), Southern Asia (SOA). 

3.2.  Least Square Support Vector Machine (LS-SVM) 

Here, we engaged the proposed LS-SVM model, which is an advanced form of the classical SVR model, to 

adaptively learn and predict the global out-of-school children’s data. 

Now consider the out-of-school data in the form 𝑓(. ) =  [(𝑥1, 𝑦1), . . . , (𝑥𝑘 , 𝑦𝑘) ∈ 𝑅𝑡], , where 𝑥𝑘 ∈ 𝑅𝑡and 𝑦𝑘 ∈ 𝑅𝑡  

designate the input-out vectors such that, 𝑘 = 1, . . . , 𝑡 and, with t and 𝑅𝑡  indicating the specified observed data number 

and one dimensional vector space. 

Intuitively, the input out vector can be mapped nonlinearly from the output vector in the form: 

 

𝑓(x) = (𝑤𝑇𝛷(x) + 𝑐                                                                            (1) 

 

where 𝛷(. ) express the nonlinear mapping function and 𝑤 ∈ 𝑅𝑡, with c and w designating the scaler threshold and the 

adjustable weight vector. 

Specifically, with LS-SVM, the problem of optimization is defined by: 

 

Min: 
1

2
𝑤𝑇𝑤 + 𝜌

1

2
∑ 𝑒𝑘

2𝑡
𝑘=1  

 

Subject to:   

 

𝑓(x) = (𝑤𝑇𝛷(𝑥𝑘) + 𝑐 + 𝑒𝑘 , k=1, …, t                                                          (2) 

 

where 𝜌 and 𝑒𝑘 express the regularization parameter and error variable. 

By applying Langrangian multiplier method and after differentiation, we obtain 

where K(x𝑘 − x𝑏) designates the kernel function. 

 

𝑦(x) = 𝑓(x) = ∑ ∝𝑘
𝑡
𝑘=1 𝐾(x𝑘 , x) + 𝑐                                                               (3) 

 

For A=(x𝑘 − x𝑏) and considering the radial basis kennel function we have: 

 

K(x𝑘 − x𝑏) = K(A) = 𝑒𝑥𝑝 (−
𝐴𝐴𝑇

2𝑙𝑤
2 )                                                               (4) 

 

where 𝑙𝑤  express the radial basis function width. 

Figure 1 provides the implementation flowchart details of the various key steps adopted to meet our main objective 

in this paper, which is to come up with a better hybrid machine learning method, which combines the least square and 

support vector machine (LS-SVM) model for robust prediction improvement of out-of-school children trend patterns. 

 

Input: Sourced out-of-school data 

Output: Predicted out-of-school data 

             Step: (i) preprocess out-of-school data 
             Step: (ii) Load the out-of-school data 

             Step: (iii) Identify the LS-SVM key controlling parameters (hyperparameters)
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             Step: (iv) Code and the LS-SVM model in Matlab format  

             Step: (v) Apply the LS-SVM model 

             Step: (vi) Benchmark the LS-SVM model with the standard SVM model 

             Step: (vii) Display the LS-SVM and SVM model prediction performance 

 

 

Fig.1. Proposed LS-SVM Model Implementation Flowchart 

4.  Results and Analysis 

The results and analysis are presented in two parts. While the first concentrates on detailed statistical analysis of the 

acquired out-of-school data, the second parts the results with analysis of utilized LS-SVM model prediction performance 

on the school data over the standard SVM model. 

4.1.  Statistical Analysis of Out-of-School Children Data for Nine World Region 

As mention earlier, we obtained 45 years range of out-of-school children’s data, starting from 1975-2020 and the 

datasets are for 9 different regions which include Sub-Sahara Africa (SSA), Middle and East Africa (MEA), Arab World 

(ARW), Europe and Centra Asia (ECA), Heavily Indebted Countries (HIC), Latin America and Caribbean (LAC), Least 

Developed Countries (LDC), Low and Middle-Income Countries (LMC), Southern Asia (SOA). 

To present quantify and performance the statistical analysis, we explored for first order measures, which are sum, 

mean, maximum and minimum. The results in table 1 contains the quantified sum, mean, maximum and minimum values 

of out-of-school children’s statistical values. 

Table 1. Quantified Statistical of Mean, Maximum, Minimum and Sum Values of Out-of-School Children Data for the Nine Different Nine regions 

 Mean Maximum Minimum Sum 

SSA 3.59E+07 4.61E+07 2.87E+07 1.65E+09 

MEA 5.47E+06 7.86E+06 1.99E+06 2.52E+08 

ARW 8.65E+06 1.07E+07 6.39E+06 3.98E+08 

ECA 2.13E+06 3.69E+06 963149 9.78E+07 

HIC 2.75E+07 3.64E+07 2.20E+07 1.26E+09 

LAC 2.81E+06 5.50E+06 1.09E+06 1.29E+08 

LDC 3.14E+07 4.08E+07 2.36E+07 1.44E+09 

LMC 8.83E+07 1.18E+08 5.60E+07 4.06E+09 

SOA 3.06E+07 4.17E+07 1.36E+07 1.41E+09 

 

The sum of out-of-school children number for SSA, MEA, ARW, ECA, HIC, LAC, LDC, LMC and SOA are 

1.65263e+09, 2.51637e+08, 3.98093e+08, 9.77735e+07, 1.26404e+09, 1.29253e+08, 1.44231e+09, 4.06215e+09, 

1.4057e+09, respectively. 
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The highest out-of-school children number attained by each of the groups stand at 4.60919e+07, 7.86439e+06, 

1.07058e+07, 3.69399e+06, 3.63705e+07, 5.50487e+06, 4.07689e+07, 1.18148e+08, and 4.17e+07, respectively. Also, 

the lowest out-of-school children number attained by each of the groups stand at 2.87068e+07, 1.98647e+06, 

6.38997e+06, 9.63149e+05, 2.20388e+07, 1.09029e+06, 2.35851e+07, 5.60109e+07, and 1.36e+07, respectively. 

 

 

Fig.2. Quantified Statistical of Sum Value Out-of-School Children Data for Nine Different Nine Regions 

 

Fig.3. Quantified Statistical of Mean, Maximum and Minimum Values of Out-of-School Children Data for Nine Different Nine Regions 

4.2.  LS-SVM Model Prediction Performance Compared with the Standard SVM Model 

This section provides the utilized LS-SVM model prediction performance on the school data over the standard SVM 

model. The key LS-SV M modelling control parameters such as the 𝑙𝑤  and 𝜌 were obtained through exhaustive search 

process and its predictive learning performance were evaluated with Mean percentage error (MAPE), Correlation 

coefficient (R), and Normalized Root Mean Square Error (NRMSE): 

The graphs in Figures 4-13 exhibit the optimal precision accuracies of the LS-SVM model in comparison with ones 

made using the ordinary SVM model. Precision performance of both LS-SVM and SVM quantified and displayed in each 

graph in term of NRMSE values. 

With NRMSE, a lower value is preferred. From the graphs, the LS-SVM attained lower error values of 0.0164, 
0.0221, 0.0268, 0.0209, 0.0158, 0.0201, 0.0147 and 0.0095 0.0188, compared to the SVM model that attained higher 

NRMSE values of 0.041, ,0.0628, 0.0381, 0.0490, 0.0501, 0.0493, 0.0514, 0.0617 and 0.0646, respectively. 

By engaging the MAPE indicator, which expresses the mean disconnection between the sourced and predicted values 

of the out-of-school data. By means of the MAPE, LS-SVM attained lower error values of 0.51, 1.88, 0.82, 2.38, 0.62, 

2.55, 0.60, 0.60, 1.63 while SVM attained 1.83, 7.39, 1.79 7.01, 2.43, 8.79, 2.58, 4.13, 6.18. This implies that LS-SVM 

model better precision performance over the SVM model. Moreover, by means of, R indicator, which quantifies the 

closeness or connection between predicted and sourced out-of-school children data values. In term of quantified 

correlation coefficient performance as reviewed in graphs of figures 14-21, it is also clearly unveiled that the LS-SVM 

outperform the ordinary SVM prediction model.
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Fig.4. Predicted Results of Sourced out-of-school Data Versus Data Using the Proposed Hybrid LS-SVM Method and the Ordinary SVM  

Method for SSA 

 

Fig.5. Predicted Results of Sourced out-of-school Data Versus Data Using the Proposed Hybrid LS-SVM Method and the Ordinary SVM  

Method for MEA 

 

Fig.6. Predicted Results of Sourced out-of-school Data Versus Data Using the Proposed Hybrid LS-SVM Method and the Ordinary SVM  

Method for ARW
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Fig.7. Predicted Results of Sourced out-of-school Data Versus Data Using the Proposed Hybrid LS-SVM Method and the Ordinary SVM  

Method for ACA 

 

Fig.8. Predicted Results of Sourced out-of-school Data Versus Data Using the Proposed Hybrid LS-SVM Method and the Ordinary SVM  

Method for HIC 

 

Fig.9. Predicted Results of Sourced out-of-school Data Versus Data Using the Proposed Hybrid LS-SVM Method and the Ordinary SVM  

Method for LMA
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Fig.10. Predicted Results of Sourced out-of-school Data Versus Data Using the Proposed Hybrid LS-SVM Method and the Ordinary SVM  

Method for LMC 

 

Fig.11. Predicted Results of Sourced out-of-school Data Versus Data Using the Proposed Hybrid LS-SVM Method and the Ordinary  

SVM Method for LDC 

 

Fig.12. Predicted Results of Sourced out-of-school Data Versus Data Using the proposed hybrid LS-SVM Method and the Ordinary SVM  

Method for SOA
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Fig.13. Correlation Performance between the Predicted and Sourced out-of-school Data the Proposed Hybrid LS-SVM Method and the Ordinary SVM 

Method for SSA 

 

Fig.14. Correlation Performance between the Predicted and Sourced out-of-school Data the Proposed Hybrid LS-SVM Method and the Ordinary SVM 

Method for MEA 

 

Fig.15. Correlation Performance between the Predicted and Sourced out-of-school Data the Proposed Hybrid LS-SVM Method and the Ordinary SVM 

Method for ARW
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Fig.16. Correlation Performance between the Predicted and Sourced out-of-school Data the Proposed Hybrid LS-SVM Method and the Ordinary SVM 

Method for ECA 

 

Fig.17. Correlation Performance between the Predicted and Sourced out-of-school Data the Proposed Hybrid LS-SVM Method and the Ordinary SVM 

Method for HIC 

 

Fig.18. Correlation Performance between the Predicted and Sourced out-of-school Data the Proposed Hybrid LS-SVM Method and the Ordinary SVM 

Method for LAC
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Fig.19. Correlation Performance between the Predicted and Sourced out-of-school Data the Proposed Hybrid LS-SVM Method and the Ordinary SVM 

Method for LMC 

 

Fig.20. Correlation Performance between the Predicted and Sourced out-of-school Data the Proposed Hybrid LS-SVM Method and the Ordinary SVM 

Method for LDC 

 

Fig.21. Correlation Performance between the Predicted and Sourced out-of-school Data the Proposed Hybrid LS-SVM Method and the Ordinary SVM 

Method for SOA 

5.  Conclusions 

Education is generally seen as the leading pathway to pecuniary prosperity, the attested key to different technical, 

industrial, and scientific developments, a sure means of combating, analphabetism, poverty, and the sustaining  pillar of 
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social justice plus fairness. Therefore, the best way to empower people should be to ensure they are educated. It is to 

ensure they are helped to pass through the compulsory, right of free, and quality basic education. This agrees with the 

popular thought that education is the sure right for all children or an individual, however, this is not absolutely the case, 

globally. 

This paper develops a better hybrid machine learning method, which combines the least square and support vector 

machine (LS-SVM) model for robust prediction improvement of out-of-school children trend patterns. Particularly, while 

other previous works only engaged some regional and few samples of out-of-school datasets, this paper focused on long-

ranged global out-of-school datasets, collated by UNESCO between 1975- 2020. The proposed hybrid method exhibits 

the optimal precision accuracies with the LS-SVM model in comparison with ones made using the ordinary SVM model. 

The precision performance of both LS-SVM and SVM was quantified and a lower NRMSE value is preferred. From the 
graphs, the LS-SVM attained lower error values of 0.0164, 0.0221, 0.0268, 0.0209, 0.0158, 0.0201, 0.0147 and 0.0095 

0.0188, compared to the SVM model that attained higher NRMSE values of 0.041, ,0.0628, 0.0381, 0.0490, 0.0501, 

0.0493, 0.0514, 0.0617 and 0.0646, respectively. 

Moreover, by engaging the MAPE indicator, which expresses the mean disconnection between the sourced and 

predicted values of the out-of-school data. By means of the MAPE, LS-SVM attained lower error values of 0.51, 1.88, 

0.82, 2.38, 0.62, 2.55, 0.60, 0.60, 1.63 while SVM attained 1.83, 7.39, 1.79 7.01, 2.43, 8.79, 2.58, 4.13, 6.18. This implies 

that the LS-SVM model has better precision performance than the SVM model. Thus, in this paper, the following itemized 

contributions have been made: 

 

• Detailed Statistical Analysis of out-of-School children's data for Nine different regions of the World. 

• Development of an improved hybrid machine learning method, using the least square and support vector 
machine (LS-SVM) model. 

• Application of the improved hybrid machine learning prediction method for robust prediction improvement of 

out-of-school children. 

 

The above key contributions can serve as an excellent guide on how to explore hybrid machine-learning techniques 

to effectively study, predict and solve out-of-school students’ problems globally. 

Other robust hybrid machine-learning techniques that could be engaged further to effectively study, predict and solve 

out-of-school students includes the kernel controlled-Gaussian process regression method [25], random forest-particle 

swam method [26], and least square- weighted iteration method [27, 28]. The applications of these methods are however 

slated for future work. 
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