ANALYSIS OF THE ANOPHELES GAMBIAE INSECTICIDE RESISTANCE PROTEIN-PROTEIN INTERACTION NETWORK

SHEKARI, ABEDNEGO (20PBF02178)

FEBRUARY, 2023

ANALYSIS OF THE ANOPHELES GAMBIAE INSECTICIDE RESISTANCE PROTEIN-PROTEIN INTERACTION NETWORK

BY

SHEKARI, ABEDNEGO (20PBF02178) B.Sc Biochemistry, Kaduna State University, Kaduna

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARDS OF THE MASTER OF SCIENCE (M.Sc) DEGREE IN BIOINFORMATICS IN THE DEPARTEMENT OF COMPUTER AND INFORMATION SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA

FEBRUARY, 2023

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfillment of the requirement for the award of the degree of Master of Science in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, SHEKARI, ABEDNEGO (20PBF02178), declare that this dissertation is a representation of my work, and is written and implemented by me under the supervision of Dr. Marion O. Adebiyi of the Department of Computer and Information Science, College of Science and Technology, Covenant University, Ota, Nigeria. I attest that the dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation are duly acknowledged.

SHEKARI, ABEDNEGO

Signature and Date

v

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Dr. Victor Odumuyiwa (External Examiner)

(Head of Department)

Prof. Olufunke O. Oladipupo

Dr. Marion O. Adebiyi (Supervisor)

We certify that this dissertation titled "ANALYSIS OF THE ANOPHELES GAMBIAE INSECTICIDE RESISTANCE PROTEIN-PROTEIN INTERACTION NETWORK" is original research carried out by SHEKARI, ABEDNEGO (20PBF02178) in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Dr. Marion O. Adebiyi. We have examined and found this work acceptable as part of the requirements for the award of Master of Science (M.Sc.) in Bioinformatics.

CERTIFICATION

Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

I dedicate this project to God Almighty, the source of all wisdom, inspiration, and understanding, for his constant grace and faithfulness to me towards completing this research work. Indeed, it was a journey of faith, and God has been forever faithful toward helping me achieve this remarkable feat at the prestigious Covenant University. Thank you, my priority. Ascribe all glory, honor, and adoration to you, Lord.

ACKNOWLEDGEMENTS

I want to acknowledge God for the wisdom, grace, and enablement he has given me from day one of this journey of faith. Indeed, the journey would not have been a success without the help of God Almighty. Even when I thought I had no one to depend on for support, he brought people to my aid beyond my expectations.

I will like to especially appreciate my supervisor Dr. Marion Adebiyi for her motherly love, total support, encouragement, patience, and guidance in making this research work a reality. Indeed, without her immense support and encouragement, this research would not have been possible. I would like to thank the Head of the Department of Computer and Information Sciences, Prof. Olufunke O. Oladipupo for her advice. My sincere appreciation goes to all other members of staff of the department.

My immense gratitude goes to my parents, Mr. & Mrs. Shekari Bako, my siblings, Mrs. Rebecca Samuel, Mrs. Regina Zamani, Mrs. Comfort Mathew, Mrs. Alheri Augustine, Mrs. Gloria Hananiah, Mrs. Tabitha Sunday, Mr. and Mrs. Joshua Shekari, Mr. Nehemiah Shekari and Uncle Elisha Bako for their encouragement and support, I pray God to bless you immensely. Mum, I know you are proud of me, and I want you to know that you are forever in my heart. I love you so dearly, continue to rest well. Also, my appreciation goes to my fiancé', Grace Amisi Iliya for her total support, encouragement, and patience.

My appreciation to the Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE) for the privilege given to me. I would love to also appreciate my colleagues who made my stay fun, Miracle Enwere, Itunu Ajiboye, Precious Adebola, Emmanue Alagbe, Hannah George, and Erika Biguerel. I love you all.

Finally, I would like to appreciate my friend Abraham for his financial support and encouragement from the very beginning of this journey to the end. Indeed, without your support, this journey would not have been a reality. I will also like to appreciate Zeal Bala Sunday, Caleb Wayo Silas, Moses Ogaba, and Mr. and Mrs. Jerry Emmanuel Dauda for their support and encouragement.

TABLE OF CONTENT

CO	NTENTS	PAGES
CO	VER PAGE	i
TIT	LE PAGE	ii
AC	CEPTANCE	iii
DEC	CLARATION	iv
CEI	RTIFICATION	v
DEI	DICATION	vi
ACI	KNOWLEDGEMENTS	vii
TAI	BLE OF CONTENT	viii
LIS	T OF FIGURES	xii
LIS	T OF TABLES	xiii
LIS	T OF ABBREVIATIONS	xiv
ABS	STRACT	XV
CH	APTER ONE: INTRODUCTION	1
1.1	Background to the Study	1
1.2	Statement of the Problem	3
1.3	Aim and Objectives of the Study	4
1.4	Justification for the Study	4
1.5	Scope of the Study	5
CH	APTER TWO: LITERATURE REVIEW	6
2.1	The Overview of Anopheles Gambiae	6
2.2	Insecticides	7
2.3	Insecticide Resistance 8	
2.4	Mechanism of Insecticide Resistance	9
	2.4.1 Knockdown Mutation	10
	2.4.2 Metabolic Mutation	10
	2.4.3 Other Mechanism	11
2.5	Vector Control Intervention Programs	12
	2.5.1 Long-lasting Insecticide-treated Nets	12

	2.5.2	Indoor Residual Spray	12
2.6	Omics	Technology Driven Information	13
	2.6.1	Genomics	13
	2.6.2	Transcriptomics	13
	2.6.3	Proteomics	14
	2.6.4	Metabolomics	14
	2.6.5	Interactomics	15
2.7	System	Biology	15
	2.7.1	The Prospects of System Biology	16
	2.7.2	Experimental System Biology	16
	2.7.3	Computational System Biology	18
2.8	Networ	rk Biology	19
2.9	Catego	ries of Biological Network	19
	2.9.1	Data Driven Network	19
	2.9.2	Knowledge Derived Network	20
2.10	Frame	work of Biological Networks	20
2.11	Molec	ular Interaction Networks	21
	2.11.1	Protein-Protein Interaction Network	21
	2.11.2	Regulatory Network	22
	2.11.3	Metabolic Network	23
	2.11.4	Signalling Network	24
2.12	Topolo	ogy-based Approaches In Network Biology	24
2.13	Centra	lity Measures	25
	2.13.1	Degree centrality	26
	2.13.2	Closeness centrality	27
	2.13.3	Eigenvector centrality	27
	2.13.4	Betweenness centrality	27
	2.13.5	Eccentric centrality	28
2.14	Netwo	ork Clustering	28
	2.14.1	Graph-based and Topology-based Techniques	28
2.15	Netwo	rk Annotation	29
2.16	Interac	ction Databases	30
		ix	

2.17	Revie	ew of Related Studies	32
СНА	PTER	THREE: METHODOLOGY	36
3.1	Collec	ction of Insecticide Related Resistance Gene	36
3.2	Const	ruction of PPI Network and Integration	37
3.3	Centra	ality Analysis	37
	3.3.1	Degree Centrality	37
	3.3.2	Closeness Centrality	38
	3.3.3	Eigenvector Centrality	38
	3.3.4	Betweenness Centrality	38
3.4	Cluste	ring Analysis	39
3.5	Gene	Ontology and KEGG Pathway Enrichment Analysis	39
СНА	PTER	FOUR: RESULTS AND DISCUSSIONS	41
4.1	Result	S	41
	4.1.1	Protein-Protein Interaction Network	41
	4.1.2	Centrality Measures Analysis	42
	4.1.3	Clustering Analysis	46
	4.1.4	Functional Enrichment Analysis	47
4.2	Discus	ssions	50
	4.2.1	Anopheles gambiae insecticide resistance PPIN	50
	4.2.2	Topological properties anaysis	50
	4.2.3	Network Analysis of Densely Connected Modules	53
	4.2.4	Functional Enrichment Analysis	55
СНА	PTER	FIVE: CONCLUSION AND RECOMMENDATIONS	58
5.1	Concl	usion	58
5.2	Contri	bution to Knowledge	58
5.3	Recon	nmendation	59
5.4	Limita	ation of the Study	59
5.5	Areas	for Further Research	59
REF	EREN	CES	60

APPENDIX A	72
APPENDIX B	81
APPENDIX C	81

LIST OF FIGURES

FIG	URES TITLE OF FIGURES PA	GES
2.1	The life cycle of An. gambiae.	7
2.2	Information flow within a cell.	17
2.3	An example of a top-down network based on high throughput data.	20
2.4	An example of a bottom-up network based on genome-scale meta	abolic
	reconstructions.	20
2.5	An illustration of the general structure of biological network investigations	using
	a flowchart	21
2.6	The interaction network biological centrality metrics.	26
3.1	A workflow for the analysis of resistance mechanisms in Anopheles gambie	36
4.1	An gambiae Insecticide resistance protein-protein interaction network.	42
4.2	Protein-protein interaction clusters formed after performing MCODE, OH-PIN	l, and
	IPCA clustering analysis.	47
4.3	First neighbors of the top hub genes	49
4.4	Bubble plot showing the result of GO enrichment analysis of insecticide resist	ance-
	related proteins in An. gambiae.	56
4.5	Barplot showing the result of GO enrichment analysis of insecticide resist	ance-
	related proteins in An. gambiae.	57

LIST OF TABLES

TABL	ES TITLE OF TABLES	PAGES
4.1	List of seed proteins used to retrieve interacting proteins at string	ency >0.5. 41
4.2	The proteins and DC value of the top 10 proteins in An. gamb	iae insecticide
	resistance	43
4.3	The proteins and CCx value of the top 10 proteins in An. gamb	iae insecticide
	resistance	44
4.4	The proteins and EC value of the top 10 proteins in An. gamb	iae insecticide
	resistance	45
4.5	The proteins and BC value of the top 10 proteins in An. gamb	iae insecticide
	resistance	46
4.6	The top 10 centrality ranking in An. gambiae insecticide resis	tance network
		53

LIST OF ABBREVIATIONS

PPI	Protein-Protein Interaction
PPIN	Protein-Protein Interaction Network
CC	Cellular Component
BP	Biological Process
MF	Molecular Function
GO	Gene Ontology
KEGG	Kyoto Encyclopedia of Genes and Genomes
STRING	Search Tool for the Retrieval of Interacting Genes/Proteins
DAVID	Database for Annotation, Visualization, and Integrated Discovery
BC	Betweenness Centrality
CCx	Closeness Centrality
DC	Degree Centrality
EC	Eigenvector Centrality
LLINs	Long-Lasting Insecticide-Treated Nets
IRS	Indoor Residual Spraying

ABSTRACT

One of the deadliest diseases affecting millions of people annually, particularly in Africa, and has claimed millions of lives is malaria. It is caused by the malaria pathogen Plasmodium falciparum, during a blood meal by a female Anopheles vector. Although several control programs were established to enable the effective control and management of the disease by targeting the malaria vector using insecticides, there has been an increase in resistance to the currently existing insecticides. One of the challenges in effectively controlling malaria is because the molecular mechanisms by which malaria vector evades insecticide effect remain unclear. This could have enabled the development of targetspecific insecticides. This study aims to elucidate the complex underlying mechanisms Anopheles gambiae evade currently existing insecticides. The An. gambiae PPIN was constructed using Cytoscape, and topology and clustering analysis was conducted to predict key proteins and pathways that are significant in the molecular mechanisms of An. gambiae. The network's GO and KEGG enrichment analysis was conducted using DAVID. RStudio was used to visualize the network. The network consists of 224 proteins (nodes) and 2115 interactions (edges). The network topology analysis reveals three essential proteins (GSTE2, AGAP002945, and AGAP004581) that are hub genes, and when either of them is removed, the network will crash. The GO and KEGG analysis showed three important biological processes (glutathione metabolism, protein folding and refolding, and chaperone-mediated protein folding) and three pathways (cytochrome P450s, glutathione, and protein processing pathways) were significantly enriched in the vector's insecticide resistance molecular mechanisms. The analysis showed that the proteins associated with insecticide resistance in An. gambiae were confined with the cytoplasm, cytosol, and plasma membrane. From the Study, five essential candidate target proteins (GSTE1, GSTE2, GSTD3, AGAP002945, and AGAP004581) and three molecular pathways (cytochrome P450s, glutathione, and protein processing pathways) were found to be enriched in An. gambiae. It is anticipated that this will guide future research into developing novel target-specific insecticides to combat malaria.

Keywords: Insecticide resistance, Protein-protein interaction network, Centrality analysis, Clustering analysis, Anopheles gambiae.