BIOCHEMICAL AND MOLECULAR STUDIES of Tapinanthus cordifolius AND Irvingia wombolu LEAVES IN HIGH-FAT DIET AND STREPTOZOTOCIN-INDUCED DIABETIC RATS

CHIKE-EKWUGHE, AMARACHI (08CO07510)

JUNE, 2023

BIOCHEMICAL AND MOLECULAR STUDIES of Tapinanthus cordifolius AND Irvingia wombolu LEAVES IN HIGH-FAT DIET AND STREPTOZOTOCIN-INDUCED DIABETIC RATS

BY

CHIKE-EKWUGHE, AMARACHI (08CO07510)

B.Sc Biochemistry, Covenant University, Ota M.Sc Biomedicine, University of Portsmouth, Portsmouth

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES, IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR AWARD OF DOCTOR OF PHILOSOPHY (Ph.D) DEGREE IN BIOCHEMISTRY, DEPARTMENT OF BIOCHEMISTRY, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA.

JUNE, 2023

ACCEPTANCE

I confirm that this thesis has been approved as a partial fulfillment of the requirements to receive the degree of Doctor of Philosophy (Ph.D.) in Biochemistry from the Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria.

Miss. Adefunke F. Oyinloye Secretary, School of Postgraduate Studies

Signature and Date

Prof. Akan B. Williams Dean, School of Postgraduate Studies

Signature and Date

DECLARATION

I, CHIKE-EKWUGHE, AMARACHI (08CO07510), hereby state that I conducted this research under the guidance and supervision of Prof. Olubanke O. Ogunlana and Prof. Abiodun H. Adebayo from the Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria. I confirm that this thesis has not been submitted, in its entirety or in part, for the purpose of obtaining any other degree. Proper recognition has been given to all the sources of materials and scholarly publications utilized in this thesis.

CHIKE-EKWUGHE, AMARACHI

Signature and Date

CERTIFICATION

We certify that this thesis titled "BIOCHEMICAL AND MOLECULAR STUDIES OF *Tapinanthus cordifolius* AND *Irvingia wombolu* LEAVES IN HIGH-FAT DIET AND STREPTOZOTOCIN-INDUCED DIABETIC RATS" is an original work conducted by CHIKE-EKWUGHE, AMARACHI (08CO07510) in the Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria, under the supervision of Prof. Olubanke O. Ogunlana and Prof. Abiodun H. Adebayo. We have examined and found this work acceptable as part of the requirements for the award of Doctor of Philosophy (Ph.D) degree in Biochemistry.

Prof. Olubanke O. Ogunlana (Supervisor)

Signature and Date

Prof. Abiodun H. Adebayo (Co-Supervisor)

Signature and Date

Prof. Israel S. Afolabi (Head of Department)

Signature and Date

Prof. Akintunde A. Akindahunsi (External Examiner)

Signature and Date

Prof Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DEDICATION

I dedicate this thesis to my Creator, Saviour and Helper – God Almighty, for making me who I am today. He alone made this work a reality. To God be the glory.

ACKNOWLEDGEMENTS

Firstly, I appreciate God Almighty for his love, provision, protection, grace and mercy, which has enabled me to complete this Ph.D. programme successfully. His love and divine providence are so overwhelming. I am indeed very grateful.

I acknowledge the Chancellor and Chairman, Board of Regents, Covenant University, Dr. David O. Oyedepo, for being such a visionary leader; this institution is truly a blessing. I genuinely acknowledge the Vice-Chancellor, Prof. Abiodun H. Adebayo, the Acting Registrar, Mrs. Regina A. Tobi-David, the Dean, School of Postgraduate Studies, Prof. Akan B. Williams, the Sub-Dean, School of postgraduate Studies, Dr. Emmanuel O. Amoo, the Dean College of Science and Technology, Prof. Timothy A. Anake and the entire management staff of Covenant University, thank you for the exemplary leadership that facilitated the completion of this program. I sincerely appreciate my Head of Department, Prof. Israel S. Afolabi, for his support and encouragement to finish my work in record time. Thank you, sir. My immense and wholehearted appreciation goes to my Supervisors, Prof. Olubanke O. Ogunlana and Prof. Abiodun H. Adebayo, for their unwavering support, mentoring, input, commitment, and advice throughout this programme. I sincerely appreciate the Director-General of National Institute for Pharmaceutical Research and Development (NIPRD), Dr. Obinna O. Adigwe, and Staff of the National Institute for Pharmaceutical Research and Development (NIPRD), for giving me a good laboratory environment to carry out some of my research. I appreciate the Vice-Chancellor of Micheal Okpara University of Agriculture Umudike, Umuahia, Prof. Maduebibisi O. Iwe, for granting me study leave and support, which has enabled me to carry out this Ph.D. programme.

I sincerely appreciate my lecturers; Prof. Abiodun H. Adebayo, Prof. Shalom N. Chinedu, Prof. Emeka E. J. Iweala, Prof. Emmanuel N. Maduagwu, Prof. Solomon O. Rotimi and others. Thank you very much for impacting me from your wealth of knowledge. Thank you so much for your encouragements and help. God bless you. I appreciate Dr. Titilope M. Dokunmu, Dr. Omolara F. Yakubu, Dr. Omolola E. Omotosho, Dr. Oluwakemi A. Rotimi, Dr. Tolulope D. Olawole, Dr. Opeyemi C. De Campos, Dr. Wisdom O. Joel, Dr. Franklin N. Iheagwam, Mrs

Gloria N. Okenze, Miss Omeremime E. Dania and Miss Evarista A. Ebigwai, Dr. Bababode I. Adelani, Mrs. Deborah K. Akinlabu, Mr. Alaba O. Adeyemi, Mrs. Omowunmi R. Afolabi and Miss. Bose E. Adegboye. My deep appreciation goes to the Faculty and Staff of the Department of Biochemistry for their teachings, training, constructive criticism and encouragement throughout the Ph.D. programme. I acknowledge the support of Mr Friday A. Ezeafojuro, the herbalist that assisted with the plant, Mr. Adamu A. Aliyu of the Medicinal Plant Research and Traditional Medicine, Mr. Solomon F. Ameh and Mr. Sunday A. Dzarma of the pharmacology department, NIPRD, Abuja, for their technical assistance during this research work.

I sincerely appreciate and am grateful to God for the gift of my dear parents, my mother for her prayers, support and words of encouragement through this programme and my father of blessed memory, Late Dr. Agbafor I. Igwe for his great tutoring. I also want to sincerely appreciate my siblings, Mrs. Ihunanyachi J. Njoku, Nmachi D. Agbafor, Ginikachi V. Agbafor, Toochukwu V. Agbafor, and Chinonso J. Agbafor, for their support and encouragement throughout this programme. I want to strongly and wholeheartedly appreciate my husband, Engr. Chike A. Ekwughe for his love, financial aid, care, wholehearted support and prayers, enabled me to achieve this feat. Thank you for always supporting my dream. God bless you beyond measure. I genuinely appreciate my wonderful children, Munachimso V. Ekwughe, Kaitochi J. Ekwughe and Amarachi J. Ekwughe, who endured some hard times for the sake of this Ph.D. programme. You will exceed my achievements through God's grace. I love you dearly and may God bless you all.

Lastly, I want to appreciate my colleagues (both at work and school), friends and well-wishers for their unquantifiable support and investments in my life. I may not have the appropriate words, but I am grateful to you all. God bless you very much.

TABLE OF CONTENTS

CONTENTS	PAGES
COVER PAGE	i
TITLE PAGE ACCEPTANCE	ii iii
DECLARATION	iv
CERTIFICATION	\mathbf{v}
DEDICATION	vi
ACKNOWLEDGEMENTS	vii
LIST OF TABLES	XV
LIST OF FIGURES LIST OF PLATES	xviii
LIST OF PLATES LIST OF APPENDICES	xxii xxiii
LIST OF AFFENDICES LIST OF ABBREVIATION	XXIV
ABSTRACT	XXV
CHAPTER ONE	1
INTRODUCTION	1
1.1 Background to the Study	1
1.2 Statement of the Research Problem	4
1.3 Research Questions	5
1.4 Research Hypothesis	5
1.5 Aim and Objectives of the study	5
1.5.1. Aim	5
1.5.2. Specific Objectives	6
1.6. Justification of the Study	6
CHADTED TWO	0
CHAPTER TWO LITERATURE REVIEW	8
2.1. Diabetes Mellitus	8
	O
2.2. Epidemiology of Diabetes	9

2.2.2 Incidence	11
2.2.3 Age	12
2.2.4 Gender	12
2.3 Aetiology of Diabetes	14
2.3.1. Environmental Risk Factors	16
2.3.2 Genetic Factors	16
2.4. Classification of Diabetes	33
2.4.1 Type 1 Diabetes	33
2.4.2. Type 2 Diabetes	33
2.4.3. Gestational Diabetes Mellitus (GDM)	34
2.5. Characteristics of Diabetes Mellitus	34
2.6. Diagnosis of Diabetes	34
2.7. The Pathophysiology of Diabetes mellitus	38
2.8 Mechanism of Damage	41
2.8.1 Glucose: The Master Switch Mechanism of Damage	41
2.8.2 Obesity	48
2.9. Complications of Diabetes	49
2.9.1 Hyperglycemia and Oxidative Stress	49
2.9.2 Insulin Resistance and Oxidative Stress	49
2.9.3 Inflammation and Oxidative Stress	50
2.9.4 Diabetes and Inflammation	54
2.9.5 Diabetic Retinopathy (DR)	58
2.9.6. Diabetes Nephropathy (DN)	58
2.10. Detrimental Effects of Insulin Resistance-Related Metabolic Derangement a	and Organs
Affected	58

2.11. Diagnosis of Liver Damage	61
2.11.1. Histological and Ultrastructural Changes	61
2.11.2. Biochemical Changes	61
2.11.3. Other Modifications	62
2.11.4. Mechanism of Damage	62
2.13 Therapeutic Targets of Type 2 Diabetes	66
2.14 Models for Inducing Type 2 Diabetes Mellitus	77
2.15. Current Treatment for Diabetes	81
2.15.1 Conventional Anti-Diabetic Agents	83
2.15.2 Complementary Treatments for the Management of T2D	87
2.15.3. New Classes of Drugs Included in Advanced Therapy	93
2.15.4 Monotherapy for the Treatment of T2DM	99
2.15.5 Combination Therapy for the Treatment of T2DM	99
2.15.6 Bioactive Compounds and Management of Diabetes	99
2.16. Medicinal Plants with Antidiabetic Activity	106
2.17. Tapinanthus Cordifolius	114
2.17.1. Common and Local Names	114
2.17.2 Phytochemical and Nutritional Composition of TC	116
2.17.3. Ethnobotanical uses of TC	116
2.17.4. Morphology	116
2.17.5. Reported Biological Activities	118
2.18. Irvingia Wombolu	118
2.18.1. Common and Local Names	118
2.18.2. Ethnobotanical Uses	121
2.18.3. Morphology	121

2.18.4. Phytochemical and Nutritional Composition	
2.18.5. Epidermal Study	123
2.18.6. Reported Biological Activities	123
2.19. Gaps in Literature	123
CHAPTER THREE MATERIAL CAND METHODS	125
MATERIALS AND METHODS 3.1 Materials	125 125
3.1.1 Plant Selection and Authentification	125
3.1.2 Ethical Approval	125
3.1.3 Experimental Animals	125
3.1.4 Standard Drugs and Chemicals	126
3.2 Methods	126
3.2.1 Plant Drying and Extraction	126
3.2.2 Differential Solvent Fractionation Process	126
3.3 In vitro Studies	127
3.3.1 Qualitative Phytochemical screening of extracts and fractions of IW and TC	127
3.3.2 Quantitative Phytochemical Screening Analysis of TC and IW	128
3.3.3 Gas Chromatography/Mass Spectrometry (GC-MS) Evaluations	130
3.3.4 In Vitro Antioxidant Activity Assessment	131
3.3.5 Evaluation of <i>In vitro</i> Antidiabetic Assay	132
3.4 In silico Study	134
3.5.1. Acute Toxicity Test in Mice	136
3.5.2 Sub-Chronic Toxicity Study	136
3.5.3. Oral Glucose Tolerance Test (OGTT)	138
3.5.4. High-Fat Diet (HFD) Formulation	

3.5.5. 21-day Diabetic Study on Albino Wistar Rats	
3.5.6 Biochemical Evaluations	143
3.5.7. Antioxidant Assays	144
3.5.8 Molecular Studies	147
3.6 Method of Statistical Analysis	149
CHAPTER FOUR RESULTS 4.1 Estimation of Percentage Yields of IW and TC extracts	151 151 151
4.4 In vitro Antioxidant Activity of TC and IW	158
4.5 In vitro Anti-Diabetic Activity of IW and TC	160
4.6 Evaluations of TC in Gas chromatography-Mass spectrometry (GC-MS)	162
4.7 In Silico Study	169
4.7.1 Study on α-Glucosidase	169
4.7.2 <i>In Silico</i> Study on α-Amylase	178
4.8 In vivo Studies on TC Extracts	187
4.8.1 Acute Toxicity Evaluation of Ethanol Extracts of TC in Wistar Rats	187
4.8.2 28-Day Study/ Sub-Chronic Toxicity	195
4.8.3 Anti-diabetic and Biochemical study of TC in Diabetic Rats	202
4.8.4 Molecular Studies	229
CHAPTER FIVE DISCUSSION	244 244

CHAPTER SIX	257
CONCLUSION AND RECOMMENDATIONS	257
6.1 Summary	257
6.2 Conclusion	258
6.3 Contributions to Knowledge	259
6.4 Recommendations	259
6.5 Limitations of the Study	260
REFERENCES	261
APPENDICES	312

LIST OF TABLES

TABLES	TITLE	PAGES
2.1	Clinical Characteristics of Type 1 and Type 2 diabetes	36
2.2	Criteria for the Screening and Diagnosis of Pre-diabetes and	37
	Diabetes	
2.3	Overview of Main GLUTs in the Liver, Muscle, and Adipose	71
	Tissue and their Tissue-Specific Function in Metabolism	
2.4	Models for Inducing T2D	105
2.5	List of Scientifically Investigated Medicinal Plants in the	111
	Management of Diabetes in Nigeria	
2.6	Taxonomy Tree of TC	115
2.7	Taxonomy Tree of IW	119
2.8	Gaps in Literature Highlighting Work done and Limitations	124
3.1	Oral Glucose Tolerance Test on Mice	137
3.2	Composition of Ingredients for the Formulation of HFD	139
3.3	Experimental Design for the Antidiabetic Study	140
3.4	Primer Sequences used for RT-PCR	142
3.5	Sub-Acute Toxicity Assessment	150
4.1	Phytochemical Constituents of the Extracts and Solvent Fractions	155
	of IW and TC	
4.2a	Compounds Detected in the Ethanol Extract of TC	163
4.2b	Compounds Detected in the Ethanol Extract of TC	164
4.2c	Compounds Detected in the Ethanol Extract of TC	165
4.2d	Compounds Detected in the Ethanol Extract of TC	166
4.2e	Compounds Detected in the Ethanol Extract of TC	167
4.2f	Compounds Detected in the Ethanol Extract of TC	168
4.3	Binding Affinity (kcal/mol) of the Top Five Ranked Bioactive	171
	compounds of TC against α –glucosidase	

4.4	The Lipophilicity Profile of the Five (5) Ranked Phytochemical	173
	Constituents of TC against α –Glucosidase	
4.5	The Water Solubility Profile of the Top 5 Ranked Phytochemical	174
	constituents of TC against α -Glucosidase	
4.6	The Drug-likeness Properties of the Top 5 Ranked Phytochemical	175
	constituents of TC against alpha-glucosidase	
4.7	The Pharmacokinetics Profile of the Top 5 Ranked Phytochemical	176
	constituents of TC against α –glucosidase	
4.8	The Binding Affinity (kcal/mol) of the Top Five Ranked Bioactive	179
	compounds of TC against α-amylase	
4.9	The Lipophilicity Profile of the Five (5) Ranked Phytochemical	182
	constituents of TC against α-amylase	
4.10	The Water Solubility Profile of the Top 5 Ranked Phytochemical	183
	constituents of TC against α-amylase	
4.11	The Drug-likeness Properties of the Top 5 ranked Phytochemical	184
	constituents of TC against α-amylase	
4.12	The Pharmacokinetics Profile of the Top 5 ranked Phytochemical	185
	constituents of TC against α-amylase	
4.13	The toxicity profile of the top 5 ranked phytochemical constituents	186
	of TC against α-amylase	
4.14	Relative Organ Body Weight of mice after 14-day treatment with	188
	TC	
4.15	Haematological of Mice after 14-day Treatment with TC	189
4.16	Haematological of Rats after 28-day Treatment with TC	199
4.17	Relative Organ Weights of TC Treated and Untreated Rats	200
4.18	Biochemical Effect of TC on Albino Wistar Rats	201
4.19	Calculation of Area Under Curve (AUC) of Diabetes in Albino	206
	Wistar rats	
4.20	Relative Organ Weights of Diabetic and Non-Diabetic rats	215

4.21	Activities of Tissue Protein in Tissues of Control and Experimental	221
	Groups of Diabetic Rats Treated with Ethanol Extract of TC	
4.22	GST Activities in Tissues of Control and Experimental groups of	222
	Diabetic rats Treated with Ethanol Extract of TC	
4.23	GSH Concentrations in Activities in Tissues of Control and	223
	Experimental groups of diabetic rats treated with ethanol extract of	
	TC	
4.24	SOD Activities in Tissues of Control and Experimental groups of	224
	Diabetic Rats Treated with Ethanol Extract of TC	
4.25	Catalase Activities in Tissues of Control and Experimental groups	225
	of Diabetic Rats Treated with Ethanol Extract of TC	
4.26	MDA Concentrations in Tissues of Control and Experimental	226
	groups of Diabetic Rats Treated with Ethanol Extract of TC	

LIST OF FIGURES

FIGURES	TITLE	PAGES
2.1	Diabetes Prevalence in Each Nigerian Geopolitical Zone	10
2.2	Sex Differences in Fat Distribution	13
2.3	Genetic and Environmental Risk Factors Effects on Inflammation,	15
	Autoimmunity, and Metabolic Stress	
2.4	Location of ABCC8 on the Human Genome	19
2.5	Location of CAPN10 on the Human Genome	20
2.6	Action of Glucagon and Insulin on the Liver, Muscle, And Adipose	22
	Tissue	
2.7	Location of HNF4A on the Human Genome	26
2.8	Location of INSR on the Human Genome	27
2.9	Insulin Secretion	28
2.10	Location of LPL on the Human Genome	30
2.11	Location of PPARG on the Human Genome	32
2.12	Gestational Diabetes Mellitus	35
2.13	Pathophysiology of T2DM	40
2.14	Interactions Between Homeostatic Glucose Pathways and Target	43
	Cells That Are Vulnerable to Complications of Diabetes	
2.15	Overview of Fuel Production Within the Mitochondria	44
2.16	Mechanisms of Insulin Resistance	47
2.17	The Role of Oxidative Stress in DM.	52
2.18	Schematic Overview of The Significant Areas Contributing to	53
	Diabetic Complications	
2.19	Chronic Low-Grade Inflammation Causes T2DM to Develop	57
2.20	Progression of Liver Damage	60
2.21	The Mechanism of Liver Damage in Diabetes Mellitus	64
2.22	Glucose Transporters (GLUTS) in the Liver, Skeletal Muscle, and	70
	Adipose Tissue Physiology	

2.23	The GLUT Family Contains Major Facilitative Glucose	13
	Transporters in the Liver, Skeletal Muscle, and Adipose Tissue	
2.24	Central Concepts Underlying Islet Transplantation	78
2.25	Schematic Illustration of Streptozotocin's Cytotoxic Action and	80
	Nicotinamide's Protective Action On B-Cells.	
2.26	Current and Potential Treatments for Type 2 Diabetes	82
2.27	Targets of Treatment for T2DM	85
2.28	Schematic Mechanism of α -glucosidase inhibitor to lower the	94
	blood glucose level.	
2.29	Schematic Mechanism of Incretin mimetics in lowering the blood	97
	glucose and HbA1C.	
2.30	Schematic Representation of Mechanism of Action of SGLT2	98
	Inhibitors	
4.1	Calculated Yield of IW Solvent Extract and Fractions	153
4.2	Calculated Yield of TC Solvent Extract and Fraction	154
4.3	Phytochemical Contents of the Extract and Solvent Fractions of TC	156
	in Standard Equivalents.	
4.4	Phytochemical Content of the Extract and Solvent Fractions of IW	157
	in Standard Equivalents.	
4.5	IC50 Values of Crude Extracts of TC and IW on DPPH, Nitric	159
	Oxide and ABTS of Ethanolic Extract and Different Solvent	
	Fractions.	
4.6	IC_{50} Values of Crude Extracts of TC and IW on $\alpha\textsc{-}Amylase\ \alpha\textsc{-}$	161
	Glucosidase and Lipase Activity	
4.7	Molecular Interactions with the Compounds	172
4.8	The Pharmacophore Models of the Bioactive Compounds	177
4.9	2D and 3D Representations of the Molecular Interactions of	180
	Bioactive Compounds with α-Amylase	
4.10	The Receptor-Ligand Complex Pharmacophore Models	181
4.11	Liver Function Tests of Rats after a 14-Day Acute Administration	190
	of TC	

4.12	Selected Serum Enzyme Concentrations after a 14-Day Oral	191
	Administration of TC	
4.13	Some Kidney Function Parameters after a 14-Day Oral	192
	Administration of TC	
4.14	Lipid Profile after 14-Day Oral Administration of TC	193
4.15	Selected Serum Electrolyte Concentration after 14-Day Oral	194
	Administration of TC	
4.16	Effect of TC on Biophysical Parameters of Rats after 28 Day Treatment	196
4.17	Effect of TC on Body Weight of Rats after 28 Day Treatment	197
4.18	Effect of TC on Blood Glucose Level of Rats after 28 Day Treatment	198
4.19	Oral Glucose Tolerance Test (OGTT)	203
4.20	Acute Effect of TC on Streptozotozin Induced Diabetic Rats	204
4.21	Fasting Plasma Glucose Concentrations of Normal, Untreated, and	205
	Treated Diabetic Rats	
4.22	Effect of TC on Body Weight of Rats after 21 Day Diabetes Study.	213
4.23	Effect of TC on Biophysical Parameters of Rats after 21 Day	214
	Diabetes Study.	
4.24	Some Liver Function Parameters after a 21-Day Oral	216
	Administration of TC on Diabetic Rats	
4.25	Serum Enzyme Concentrations after a 21-Day Oral Administration	217
	of TC on Diabetic Rats	
4.26	Some Kidney Function After a 21-Day Oral Administration of TC	218
	on Diabetic Rats (A) Urea (B) Creatinine And (C) Uric Acid	
4.27	Lipid Profile After a 28-Day Oral Administration of TC on	219
	Diabetic Rats	
4.28	Selected Serum Electrolyte Concentration after a 28-Day Oral	220
	Administration of TC on Diabetic Rats	
4.29	Selected Hormonal Marker Concentrations after a 21-Day Oral	227
	Administration of TC on Diabetic Rats	

4.30	Selected Inflammatory Marker Concentrations after a 21-Day Oral	228
	Administration of TC on Diabetic Rats	
4.31	Effect of TC on TNF- α (A), IL-6 (B), Ppary (C), IGF-1(D),	231
	Adiponectin(E), GLUT-4(F) Gene Expression Levels after Daily	
	Oral Administration of Extract for 21 Days in Normal and Diabetic	
	Rats.	
4.32	Proposed Model for The Mechanism of Action of TC	232

LIST OF PLATES

PLATE NO	TITLE	PAGES
2.1	Micrograph of Tapinanthus cordifolius	117
2.2	Micrograph of <i>Irvingia wombolu</i>	120

LIST OF APPENDICES

APPENDICES	TITLE	PAGES 312
Appendix 1	CHREC Ethical Permit Certificate	312
Appendix 2	GCMS Chromatogram of TC	313
Appendix 3	Effect of TC Extracts on Histology of Mice Organs after 14 Days of Treatment.	314
Appendix 4	Effect of TC Extracts on Histology of Diabetic Treatment and Non-Diabetic Group of Rats.	316

LIST OF ABBREVIATION

Bgl Blood Glucose Levels

Bmi Body Mass Index

Chrec Covenant Health Research Ethics Committee

Cftr Cystic Fibrosis Mutated Chloride Channel

Di Diabetes Insipidus

Dm Diabetes Mellitus

Gdg Guideline Development Group

Hnf4a Hepatocyte Nuclear Factor 4 Alpha

Hfd High-Fat Diet

Idf International Diabetes Federation

Iw Irvingia Wombolu

Lpl Lipoprotein Lipase

Mody Maturity-Onset Diabetes in the Young

Nice National Institute for Health and Care Quality

Niprd National Institute for Pharmaceutical and Research Development

Ros Reactive Oxygen Species

Snps Single Nucleotide Polymorphisms

Stz Streptozotocin

Sur Sulfonylurea Receptor

Te Tapinanthus Cordifolius

T2d Type 2 Diabetes

Tzds Thiazolidinediones

Ins The Insulin Hormone

Whr Waist-To-Hip Circumference

Who World Health Organization

ABSTRACT

Over 80% of the population from developing countries depend on medicinal plants as the primary health care source for managing diabetes. Globally, the prevalence of diabetes is rapidly on the increase and the high cost of treatment is a significant cause for concern. This study investigated the *in vitro*, *in silico* and *in vivo* phytochemical, antioxidant, toxicological and antidiabetic activities of Irvingia wombolu (IW) and Tapinanthus cordifolius (TC) leaf extracts. The leaves of TC and IW were extracted singly using 85% ethanol and fractionated sequentially using n-hexane, ethyl-acetate, butanol, and water. Phytochemical screening, in vitro antioxidant and antidiabetic studies of the extract and solvent fractions, were carried out using standard methods. The extract with the highest in vitro antioxidant and antidiabetic activities was further used for the in silico and in vivo studies. Bioactive compounds were identified using gas chromatography/mass spectrometry (GC/MS). In silico assessment of the identified compounds was carried out by molecular docking. Furthermore, acute and subchronic toxicity studies were assessed in male and female mice and rats respectively. The animal diabetes model was induced using a high-fat diet and a single low dose of streptozotocin (40 mg/kg). Blood glucose levels of diabetic rats were monitored at various time intervals for 6 h after TC extract administration (200, 400 and 800 mg/kg/day) and then every 7 days till the 21st day. The oral glucose tolerance test (OGTT) was carried out on normal rats by administering 2000 mg/kg glucose solution and measuring the blood glucose value every hour for 2 h. At the end of the toxicological and diabetes studies, the animals were euthanized and sacrificed. Organs were harvested for histological and molecular studies, while serum was collected for haematological and biochemical analyses. The preliminary phytochemical screening revealed the presence of phenols, tannins, flavonoids, steroids, and anthraquinones in both plants; saponin, terpenes in IW with cardiac glycosides and alkaloids in TC. Quantitative analysis of the plant showed that the crude extract of TC is richer in phenols, flavonoids and tannins than IW. The TC showed the highest antioxidant activity and exhibited significant inhibition on α -amylase, α -glucosidase and lipase with IC₅₀ values of 22.72, 542 and 494 µg/mL, respectively, when compared to IW with values of 37.89, 966.75 and 910.49 µg /mL respectively. From the *insilico* studies, the alpha-tocopherol-beta-D-mannoside, 5ergosterol, acetosyringone, benzaldehyde, 4-(ethylthio)-2,5-dimethoxy, 5-trimethoxybenzoic acid, and campesterol of the 44 identified GC-MS phytoconstituents from TC extract were established as potent inhibitors of α-amylase, α-glucosidase and lipase. The acute and subchronic toxicity studies showed no deaths at the highest extract dose. No significant (p<0.05) change was observed in haematological and biochemical parameters. The histological architecture of all organs remains unchanged. The 21-day antidiabetic study showed gross alteration in blood glucose level and biophysical, liver and kidney function parameters. Organ oxidative stress, inflammatory cytokines, and hormonal and molecular parameters in diabetic rats were reversed with TC, most notably at 800 mg/kg. This study validates the ethnobotanical use of TC as an antidiabetic agent.

Keywords: Antidiabetic, in silico, Blood glucose, Irvingia wombolu, Tapinanthus cordifolius, Toxicological studies, Molecular studies