A SMART ZERO TRUST SECURITY FRAMEWORK FOR COMBATING AI-DRIVEN CYBERATTACKS IN FINANCIAL INSTITUTIONS

GUEMBE, BLESSING (17PCG01640) B.Sc Computer Science, Niger Delta University, Amassoma M.Sc Computer Science, Covenant University, Ota

JUNE, 2023

A SMART ZERO TRUST SECURITY FRAMEWORK FOR COMBATING AI-DRIVEN CYBERATTACKS IN FINANCIAL INSTITUTIONS

BY

GUEMBE, BLESSING (17PCG01640) B.Sc Computer Science, Niger Delta University, Amassoma M.Sc Computer Science, Covenant University, Ota

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF DOCTOR OF PHILOSOPHY (Ph.D) DEGREE IN COMPUTER SCIENCE, DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

ACCEPTANCE

This is to attest that this thesis is accepted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy in Computer Science in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

Ms Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, GUEMBE, BLESSING (17PCG01640), hereby declare that this research was carried out by me under the supervision of Prof. Ambrose A. Azeta of the Department of Computer and Information Sciences, Covenant University, Ota and Prof. Victor C. Osamor of the Department of Computer and Information Sciences, Covenant University, Ota. I attest that the thesis has not been presented either wholly or partly for the award of any degree elsewhere. All sources of data and scholarly information used in this thesis are duly acknowledged.

GUEMBE, BLESSING

Signature and Date

CERTIFICATION

This is to certify that the research work titled "A SMART ZERO TRUST SECURITY FRAMEWORK FOR COMBATING AI-DRIVEN CYBERATTACKS IN FINANCIAL INSTITUTIONS" is an original research work carried out by GUEMBE, BLESSING (17PCG01640), in the Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria, under the supervision of Prof. Ambrose A. Azeta and Prof. Victor C. Osamor. We have examined and found the work acceptable for its contribution to knowledge and literary presentation.

Prof. Ambrose A. Azeta (Supervisor)

Prof. Victor C. Osamor (Co-Supervisor)

Prof. Olufunke O. Oladipupo (Head of Department)

Prof. Boniface K. Alese (External Examiner)

Prof. Akan B. Williams (Dean, School of Post-Graduate Studies) Signature and Date

Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

I dedicate this thesis to my Heavenly Father, who is the source of my wisdom and strength, and in whom I place my hope for supply. I also dedicate it to my mum Mrs. Comfort Guembe and my entire Family.

ACKNOWLEDGEMENTS

First, I acknowledge the inspiration of the Almighty God that gives understanding without which this thesis may never have been successful.

I wish to express my deep sense of gratitude and thanks to the Chancellor and Chairman, Board of Regents, Covenant University, Dr. David O. Oyedepo, for the academic and spiritual platform created. I sincerely thank the Vice-Chancellor, Prof. Abiodun H. Adebayo, the Deputy Vice-Chancellor Prof. Olujide A. Adekeye and the management team of Covenant University for running the vision. My special appreciation goes to the Dean, School of Postgraduate Studies, Prof. Akan B. Williams, for his dedication towards creating an enabling research environment and producing world-class researchers. I also applaud the Sub-Dean, School of Postgraduate Studies, Dr. Emmanuel O. Amoo, for his steadfast counsel throughout my programme.

My special thanks also go to Prof. Olufunke O. Oladipupo (the Head of Department), and all the Faculty and Staff of the Computer and Information Science Department, Covenant University, for their contribution, encouragement, and support towards the realisation of this thesis.

I appreciate the profound contributions of my supervisor, Prof. Ambrose A. Azeta who has been a role model and mentor. Thank you, sir, for being always available and putting great faith in me even when I did not believe I could accomplish anything worthwhile. The lessons learnt from you and your humility throughout the process of this research will remain with me for life. I thank God for connecting me to your academic leadership. I am certain your kind and humble nature has rubbed off on me even as I move to accomplish higher things in the nearest future. Also, I acknowledge my co-supervisor, Prof. Victor C. Osamor, who has been a great mentor and inspiration to me throughout the course of this program. I thank God for the opportunity to have followed your academic leadership up until now. I will never take this for granted.

I am grateful to Dr. Itunuoluwa Isewon (the Postgraduate Coordinator) whose leadership contributed positively to the completion of this thesis.

I am indebted to my Friend and Roommate Mr. John Abubakar for his support, encouragement, and assistance towards the formatting of this thesis.

Special thanks go to my family members who would not let me rest until I had completed this work satisfactorily. Foremost among whom includes my mum Mrs. Comfort Guembe and my siblings for constant support and encouragement. Be blessed by the Lord Most High.

I would also like to thank all those people who have contributed in some ways both directly and indirectly to the success of this research.

TABLE OF CONTENTS

CONT	TENT PA	GES
COVE	ER PAGE	i
TITLI	E PAGE	ii
ACCE	CPTANCE	iii
DECL	ARATION	iv
CERT	TFICATION	v
	CATION	vi
	NOWLEDGEMENTS	vii
	LE OF CONTENTS	ix
	OF FIGURES	xiii
	OF TABLES	xvi
	OF ABBREVIATIONS	xviii
ABST	RACT	XX
СНАР	PTER ONE: INTRODUCTION	1
1.1	Background to the Study	1
1.2	Statement of the Problem	4
1.3	Aim and Objectives of the Study	5
1.4	Justification of the Study	7
1.5	Significance of the Study	7
1.6	Scope of the Study	7
1.7	Glossary and Definitions of Terms	8
СНАР	PTER TWO: LITERATURE REVIEW	10
2.1	Preamble	10
2.2	Concept of Cybersecurity	10
2.3	Cyberattack on Financial Institutions	12
	2.3.1 Cybersecurity Operational Cost in Financial Institutions	13
	2.3.2 Impact of Cyberattack on Financial Institutions	14
	2.3.3 Impact of Cyberattack on Nigeria's Financial Industry and the Economy	15
2.4	Classifications of Cyberattack	16
2.5	Categories of Cyberattack	17
2.6	Cyberattack and AI-Driven Cyberattack	19
07	2.6.1 Difference Between Traditional and AI-Driven Cyberattacks	20
2.7	AI-Driven Cyberattack	21
	2.7.1 Autonomous Cyberattack Techniques	23 24
	2.7.2 AI Against AI2.7.3 AI-Driven Cyberattack Evasion Techniques	24 25
	2.7.5 Ai-Driven Cyberattack Evasion Techniques 2.7.4 Bio-Inspired and Swarm Intelligence	
2.8	AI-Driven Attack Proof of Work	27 28
2.0	2.8.1 Application of Generative AI in Cyber Threat Hiding	28 35
2.9	AI-Driven Attack Cybersecurity Kill Chain	36
2.10	Cybersecurity Defense Strategies	42
	2.10.1 Continuous Intelligent Analysis and Threat Monitoring	44
2.11	Smart-Dos Cybersecurity	44

2.12	Machine Learning in Cybersecurity	45
2.13	Explainable AI for Trustworthy Cybersecurity	49
	2.13.1 XAI Methods in Cyber Threat Modelling	51
	2.13.2 Trade-off Between XAI and Black-Box Model in Trustworthy	
	Cybersecurity	52
	2.13.3 Need and Impact of XAI in Cybersecurity	53
	2.13.4 Transparent Machine Learning Techniques	54
	2.13.5 Output Confidence of XAI	58
	2.13.6 Rationale Explanation with XAI in Data Science	59
2.14	Zero Trust Security Framework	59
	2.14.1 Security in Zero Trust Environment	60
	2.14.2 Existing Zero Trust Security Framework	62
	2.14.3 Challenges of Zero Trust Security Framework	63
2.15	AI Model Cybersecurity	65
	2.15.1 AI Cybersecurity Defense Layered	68
	2.15.2 AI Defense Techniques for Evasive Cyberattacks	69
	2.15.3 Defence Techniques for Data Poisoning Attacks	70
	2.15.4 Defence Techniques for Backdoor Cyberattacks	71
	2.15.5 Defence Techniques for Model/Data Hijacking	71
2.16	Review Related Works	72
2.17	Summary of Findings from Related Works	77
2.18	Chapter Summary	77

CHAI	PTER 1	THREE: METHODOLOGY	79
3.1	Pream	ble	79
3.2			79
	3.2.1	Research Strategy	79
	3.2.2	Research Appraisal	80
3.3	CBN I	Risk-Based Cybersecurity Framework	81
	3.3.1	Gathering of the Nigeria Banks Cybersecurity Incident Dataset	84
3.4 Components of the Smart-DOS Framework		84	
	3.4.1	Component of the DevOpsSec	85
	3.4.2	Component of the Smart Policy Engine	87
	3.4.3	Problem Definition of the Smart Policy Engine	90
	3.4.4	Component of the Federated Pipeline	92
	3.4.5	Model-agnostic Post-hoc Explainability	95
	3.4.6	Local Explainer Problem Definition	96
	3.4.7	Global Explainer Problem Definition	98
	3.4.8	Systolic Addressing Problem Definition	100
3.5	Experi	imental Setup	103
	3.5.1	Amazon SageMaker	104
	3.5.2	Choice of Programming Language	104
	3.5.3	Dataset Description	105
3.6	Machi	ne Learning Evaluation Metrics	108
3.7	Chapter Summary 1		110

CHAI	PTER F	OUR: RESULTS AND DISCUSSION	112
4.1	Pream	ble	112
4.2	Datase	t Exploration and Discussion	112
	4.2.1	Exploratory Data Analysis of the Zeek and Intelligent Security Group	
		Dataset	112
	4.2.2	Pre-processing of the Zeek and Intelligent Security Group Dataset	115
	4.2.3	Eliminate Irrelevant Observations of the Zeek and Intelligent Security	
		Group Dataset	115
	4.2.4	Data Duplication of the Zeek and Intelligent Security Group Dataset	116
	4.2.5	Data Transformation and Normalisation of the Zeek and Intelligent	
		Security Group Dataset	116
	4.2.6	Feature Selection of the Zeek and Intelligent Security Group Dataset	116
	4.2.7	Local Model Implementation on Imbalanced Zeek and Intelligent Security	
		Group Dataset	118
	4.2.8	Sampling the Zeek and Intelligent Security Group Dataset	119
	4.2.9	Local Model Implementation on Balanced Zeek and Intelligent Security	
		Group Dataset	121
	4.2.10	Multi-Class Classification Implementation on Imbalanced Zeek	
		and Intelligent Security Group Dataset	121
	4.2.11	Multi-Class Classification Implementation on Balanced Zeek	
		and Intelligent Security Group Dataset	124
4.3	Explor	atory Data Analysis of the Nigeria Banks Dataset	126
	4.3.1	Pre-processing of the Nigeria Banks Dataset	129
	4.3.2	Dealing with Missing Values in the Nigeria Banks Dataset	129
	4.3.3	Data Type Transformation of the Nigeria Banks Dataset	129
	4.3.5	Encoding the Nigeria Banks Dataset	130
	4.3.6	Feature Selection of the Nigeria Banks Dataset	130
	4.3.7	Sampling the Nigeria Banks Dataset	131
	4.3.8	Nigeria Banks Dataset Resampling with SMOTE Technique	
		for Multi-Class	133
4.4	-	nentation of the Federated Averaging	134
4.5	-	nenting the Systolic Addressing Model	134
4.6		/ment	135
4.7		d of Benchmarking	136
4.8		ability Assessment Techniques	137
4.9	•	Class Result of the Zeek and Intelligent Security Group Imbalanced	
	Datase		141
	4.9.1	Federated Averaging for the Imbalanced Dataset	144
	4.9.2	Binary Class Result for Zeek and Intelligent Security Group	
		Balanced Dataset	145
	4.9.3	Federated Averaging for the Zeek and Intelligent Security Group	
		Balanced Dataset	149
	4.9.4	Evaluation of the Multi-Class Classification Model Based on the Zeek	
		and Intelligent Security Group Imbalanced Dataset	149
	4.9.5	Evaluation of the Multi-Class Classification Model of the Zeek	
		and Intelligent Security Group Balanced Dataset	150
	4.9.6	Feature Importance	152
	4.9.7	Binary Classification Result for the Imbalanced Nigeria Banks Dataset	153
	4.9.8	Federated Averaging for the Imbalanced Nigeria Banks Dataset	155
	4.9.9	Binary Classification Result for the Balanced Nigeria Banks Dataset	156

	4.9.10 Federated Averaging for the Balanced Nigeria Banks Dataset	156
	4.9.11 Evaluation of the Multi-Class Classification Model Based on the	
	Imbalanced Nigeria Banks Dataset	157
	4.9.12 Evaluation of the Multi-Class Classification Model Based on the	
	Balanced Nigeria Banks Dataset	158
4.10	Result of the XSec Explainer	159
4.11	Benchmarking of Proposed Model with Existing Models	162
4.12	Results and Evaluation of the Systolic Addressing	164
4.13	Vulnerability Assessment Report	167
	4.13.1 Vulnerability Result Analysis	168
4.14	Chapter Summary	168
CHA	PTER FIVE: CONCLUSION AND RECOMMENDATIONS	171
5.1	Preamble	171
5.2	Summary	171
5.3	Contribution to Knowledge	172
5.4	Conclusion	173
5.5	Recommendations	173
REFI	ERENCES	174
Appe	ndix A	190
Appendix B Appendix C		

LIST OF FIGURES

FIGURES	TITLE OF FIGURES	PAGES
2.1	Traditional Cyberattack Decision Logic	20
2.2	AI-Driven Attack Complex Decision Logic	21
2.3	AI-Driven Cyberattack Techniques	23
2.4	Application of Deep Learning in Evolving Cyber Threat	27
2.5	Traditional Dictionary-Based Password Brute-Force Attacks	30
2.6	AI-Driven Password Brute-Force Attacks	31
2.7	GAN Architecture	35
2.8	MalGAN Architecture	36
2.9	AI-Driven Attack Cybersecurity Kill Chain	37
2.10	Clustering Technique for Cyberattack Detection	47
2.11	Machine Learning Application in Malware Detection	48
2.12	Zero Trust Security Model	62
2.13	AI Model Cybersecurity	66
2.14	AI Cybersecurity defence Layer	69
3.1	Methodology Workflow	80
3.2	CBN Risk-Based Cybersecurity Framework	81
3.3	Use-Case of Central Bank of Nigeria Risk-Based Cybersecurity	
	Framework	83
3.4	The Proposed Smart-DOS Zero Trust Security Model	85
3.5	Component of the Smart DevOpsSec	86
3.6	Component of the Local Smart Policy Engine Model	87
3.7	Component of Smart-DOS Brute-Force Attack Detection	88
3.8	Data Preprocessing Pipeline	89
3.9	Component of the Federated Pipeline	92
3.10	Global Model Insights	95
3.11	Local Explainable Model	97
3.12	Flowchart of the Global Explainer Decision Logic	100
3.13	Systolic Addressing Modelling	101
3.14	Amazon SageMaker Environmental Setup	102
3.15	Tubular Representation of Confusion Matrix	110

4.1	Head Structure of the Dataset	113
4.2	Output of the data info function	114
4.3	Output of the data info function	114
4.4	Summary Statistics of the Dataset	115
4.5	Class Ratio of the Original Dataset	119
4.6	Dataset After Oversampling	121
4.7	Class Distribution of the Original Dataset	123
4.8	Pie Chart Distribution of Multi-class Imbalanced Dataset	124
4.9	AI-Driven Class Distribution of Multi-Class Balanced Dataset	126
4.10	Data Info of the Nigeria Banks Dataset	127
4.11	Attack Types and Distribution of the Nigeria Banks Dataset	127
4.12	Attack Distribution of the Nigeria Banks Dataset for Binary Class	128
4.13	Attack Distribution of the Indigenous for Multi-Class	128
4.14	Summary of Missing Values in the Nigeria Banks Dataset	129
4.15	Results of Data Type Transformation of the Nigeria Banks Dataset	130
4.16	Pairwise Correlation Matrix	131
4.17	Nigeria Banks Dataset Distribution After Preprocessing	132
4.18	Nigeria Banks Dataset Distribution After Oversampling	133
4.19	Training and Deployment of the Proposed Model with Amazon	
	SageMaker	135
4.20	Vulnerability Assessment Architecture	137
4.21	Modified Attack Phase with Discovery Phase Iteration Architecture	138
4.22	CVVS Based Score Decision Tree	139
4.23	Confusion Matrix of the Zeek and Intelligent Security Group	
	Imbalanced Dataset	143
4.24	AUC-ROC Curve of the Zeek and Intelligent Security Group	
	Imbalanced Dataset	143
4.25	Precision-Recall Curve of the Zeek and Intelligent Security Group	
	Imbalanced Dataset	144
4.26	Confusion Matrix of the Zeek and Intelligent Security Group	
	Balanced Dataset	147
4.27	AUC-ROC Curve of the Zeek and Intelligent Security Group	
	Balanced Dataset	148

4.28	Precision-Recall Curve of the Zeek and Intelligent Security Group		
	Balanced Dataset	148	
4.29	Actual Values Versus Predicted Values of the Zeek and Intelligent		
	Security Group Balanced Dataset	151	
4.30	ROC Curve for the Multi-Class Classification of the Zeek and Intelligent		
	Security Group Balanced Dataset	152	
4.31	Top Ten Important Features of the Zeek and Intelligent Security Group		
	Balanced Dataset	153	
4.32	Global Explainer for Summary Plot	160	
4.33	Shap Explainer Value for the Dependency Plot	161	
4.34	Shap Explainer Value for Dependence Plot	162	
4.35	Benchmarking of Proposed Model with Existing Binary Class		
	Models Based on Performance Accuracy	163	
4.36	Benchmarking of Proposed Model with Existing Multi-Class		
	Models Based on Performance Accuracy	164	
4.37	Scattered Plot of the Systolic Addressing Showing Legitimate Flow	165	
4.38	Scattered Systolic Addressing Showing AI-Driven Attacks	166	
4.39	Vulnerability Assessment Result Based on CVSS Score	168	

LIST OF TABLES

TABLES	TITLE OF TABLES	PAGES
1.1	Objectives and Methodology Mapping	6
2.1	Ranking of Cyberattacks in the Top Ten Industry	13
2.2	AI Techniques in the Reconnaissance Stage of Cybersecurity Kill Chain	38
2.3	AI Techniques in the Cybersecurity Kill Chain Access and Penetration Sta	.ge 39
2.4	AI Techniques in the Delivery Stage of the Cybersecurity Kill Chain	40
2.5	AI Techniques in the Exploitation Phase of Cybersecurity Kill Chain	41
2.6	AI Techniques in the C2 Stage of the Cybersecurity Kill	42
3.1	Activities of the Key Stakeholders of the CBN Risk-Based Framework	82
3.2	Systolic Addressing Requirement Description	102
3.3	Systolic Addressing Technical Description	103
3.4	Features of the Zeek and Intelligent Security Group Dataset	106
3.5	Attack Distribution in the Zeek and Intelligent Security Group Dataset	107
3.6	Features of the Nigeria Banks Dataset	108
3.7	Attack Distribution in the Nigeria Banks Dataset	108
4.1	Top Ten Selected Features of the Dataset	117
4.2	Data Resampling with SMOTE Technique for Binary Class	120
4.3	Class Distribution of the Original Dataset	122
4.4	Data Resampling with SMOTE Technique for Multi-Class	125
4.5	Data Resampling of the Nigeria Banks Dataset	132
4.6	Nigeria Banks Dataset Resampling with SMOTE Technique for Multi-Cla	ss 133
4.7	Maximum Attack Level Based on DRS	140
4.8	Classification Result of the Zeek and Intelligent Security Group	
	Imbalanced Dataset	141
4.9	Classification Report of the Zeek and Intelligent Security Group	
	Imbalanced Dataset	142
4.10	Actual versus Predicted Result of the Zeek and Intelligent Security Group	
	Imbalanced Dataset	142
4.11	Performance Accuracy of the Centralised and Federated Model of the Zeel	X
	and Intelligent Security Group Imbalanced Dataset	144

4.12	Classification Result of the Zeek and Intelligent Security Group	
	Balanced Dataset	145
4.13	Classification Report of the Zeek and Intelligent Security Group	
	Balanced Dataset	146
4.14	Actual versus Predicted Result of the Zeek and Intelligent Security Group	
	Balanced Dataset	146
4.15	Performance Accuracy of the Centralised and Federated Model for Zeek	
	and Intelligent Security Group Balanced Dataset	149
4.16	Multi-Class Classification Result of the Zeek and Intelligent Security Group	
	Imbalanced Dataset	149
4.17	Multi-Class Classification Result of the Zeek and Intelligent Security Group	
	Balanced Dataset	150
4.18	Actual Versus Predicted Result of the Multi-Class Classification on the	
	Zeek and Intelligent Security Group Balanced Dataset	150
4.19	Classification Result of the Imbalanced Nigeria Banks Dataset	153
4.20	Classification Report of the Imbalanced Nigeria Banks Dataset	154
4.21	Actual Versus Predicted Samples for the Imbalanced Nigeria Banks Dataset	155
4.22	Performance Accuracy of the Centralised and Federated Model for the	
	Imbalance Nigeria Banks Dataset	155
4.23	Classification Result of the Balanced Nigeria Banks Dataset	156
4.24	Classification Report of the Balanced Nigeria Banks Dataset	156
4.25	Performance Accuracy of the Centralised and Federated Model for the	
	Balanced Nigeria Banks Dataset	157
4.26	Multi-Class Classification Result of the Imbalanced Nigeria Banks Dataset	157
4.27	Multi-class Classification for the Imbalanced Nigeria Banks Dataset	158
4.28	Multi-Class Classification Result of the Balanced Nigeria Banks Dataset	158
4.29	Multi-class Classification for the Balanced Nigeria Banks Dataset	159
4.30	Benchmarking of Proposed Model with Existing Binary Class Models	162
4.31	Benchmarking of Proposed Model with Existing Multi-class Models	163
4.32	Benchmarking the Systolic Addressing with Existing Model	166
4.33	Vulnerability Assessment Score	167
4.34	Vulnerability Assessment Result Based on DRS Score	168

LIST OF ABBREVIATIONS

AI	Artificial Intelligence
BYOD	Bring Your Own Device
C2	Command and Control
CBN	Central Bank of Nigeria
CISO	Chief Information Security Officer
CNN	Convolutional Neural Network
CVSS	Common Vulnerability Scoring System
DA	Document Analysis
DDoS	Denial of Service Attack
DevOpsSec	Development, Operations and Security
DL	Deep Learning
DMBs	Deposit Money Banks
DNN	Deep Neural Network
DRS	DDoS Resiliency Score
DT	Decision Tree
EDA	Exploratory Data Analysis
GAM	General Addictive Model
GAN	Generative Adversarial Networks
GBRT	Gradient Boosted Regression Trees
IDSs	Intrusion Detection Systems
KNN	K-nearest Neighbor
LR	Logistic Regression
LSTM	Long Short-term Memory
ML	Machine Learning
MP	Matching Pursuit
NIBSS	Nigeria Inter-Bank System
NNs	Neural Networks
PA	Policy Administrator
PDP	Policy Decision Point
PE	Policy Engine
PEP	Policy Enforcement Point
PSPs	Payment Service Providers

RF	Random Forest
RNNs	Recurrent Neural Networks
SA	Systolic Addressing
SVM	Support Vector Machine
ТА	Trust Algorithm
UCA	Use Case Analysis
URLs	Uniform Resource Locators
VA	Voice Assistance
VM	Virtual Machine
XAI	Explainable Artificial Intelligence
XSec	Explainable Security
ZT	Zero Trust
ZTA	Zero Trust Security Architecture
ZTS	Zero Trust Security

ABSTRACT

Cybercriminals are currently weaponising Artificial Intelligence (AI) to execute convoluted cyberattacks. This new type of cyberattack is known as an AI-driven attack. AI-driven attack incorporates AI into conventional cyberattack tools to elude detection and inflict more damage. Few studies have demonstrated the effectiveness of zero trust security frameworks and AI approaches in combating sophisticated cyberattacks. However, the existing approaches are prone to data poisoning, model weight attack, and data leakage. This study proposed a Smart zero trust security framework for combating AI-driven attacks in financial institutions to address the gaps in the existing approaches. To achieve this, the study investigated the Central Bank of Nigeria risk-based cybersecurity framework to examine the use-case, stakeholders responsibilities, and reusable concepts. The study designed a DevOpsSec technique to distribute security across the development phase. A systolic addressing approach was implemented to ensure continuous threat hunting. The Federated Artificial Intelligence Technology Enabler Framework was adopted to create virtual banks and a central server. The virtual banks collaborate to train the model under the supervision of the central server without exposing their data to others. The Gradient Boosting Decision Tree and SecureBoost techniques were used to train the model. At the same time, the model-agnostic post-hoc explainer was used to explain essential features that influence the model decision. The proposed model was trained on the Zeek and Intelligent Security Group Dataset and the Nigerian Banks dataset. The systolic addressing was simulated in a network lab environment. The implemented model was evaluated with standard machine learning evaluation metrics and benchmarked with state-of-art approaches. The result shows that the implemented model achieved the best performance, with 99.81% and 99.99% prediction accuracy, 100% precision, recall and F1-score for the binary classification on the Zeek and Intelligent Security Group Dataset and Nigerian Banks Dataset. The systolic addressing was able to detect malicious patterns in 56.14 seconds. The model agnostic post-hoc explainer reveals that the "flow duration milliseconds" positively impacts detecting AI-driven attacks, while the packet sent has a decreasing effect. The model was also evaluated with the ISO/IEC 27000:2018 cybersecurity vulnerability assessment techniques such as the Common Vulnerability Scoring System and DDoS Resiliency Score. The model achieved a Common Vulnerability Score of 3.15 and a DDoS Resiliency Score of 7.0. This implies that the model is capable of withstanding multiple variant attacks. The result suggests that the model can efficiently be incorporated into the existing zero trust security policy engine to enhance protection.

Keywords: AI-Driven Cyberattack, Cybersecurity, DevOpsSec, Zero trust