ANALYZING THE FREQUENCY RESPONSE OF SOLAR PHOTOVOLTAIC PENETRATION INTO COVENANT UNIVERSITY MICROGRID

OKEY PETERS, VICTOR (21PCK02427) B.Eng, Electrical and Information Engineering, Landmark University, Omu-Aran

JULY, 2023

ANALYZING THE FREQUENCY RESPONSE OF SOLAR PHOTOVOLTAIC PENETRATION INTO COVENANT UNIVERSITY MICROGRID

BY

OKEY PETERS, VICTOR (21PCK02427) B.Eng, Electrical and Information Engineering, Landmark University, Omu-Aran

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF ENGINEERING (M.Eng) DEGREE IN ELECTRICAL AND ELECTRONICS ENGINEERING IN THE DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY, OTA, OGUN STATE

ACCEPTANCE

This is to attest that this dissertation has been accepted in partial fulfilment of the requirements for the award of the degree of Master of Engineering in Electrical and Electronics Engineering, Department of Electrical and Information Engineering, College of Engineering, Covenant University Ota Nigeria.

Ms Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, **OKEY PETERS, VICTOR (21PCK02427)**, declare that this dissertation is a representation of my work, and is written and implemented by me under the supervision of Dr. A. F. Agbetuyi of the Department of Electrical and Information Engineering, Covenant University, Ota, Nigeria. I attest that this dissertation has in no way being submitted either wholly or partially to any other university or institution of higher learning for the award of a masters' degree. All information cited from published and unpublished literature has been duly referenced.

OKEY PETERS, VICTOR

Signature and Date

CERTIFICATION

This is to certify that the research work titled "ANALYZING THE FREQUENCY RESPONSE OF SOLAR PHOTOVOLTAIC PENETRATION INTO COVENANT UNIVERSITY MICROGRID" Is an original research work carried out by VICTOR, OKEY PETERS (21PCK02427) in the Department of Electrical and Information Engineering Covenant University, Ota, Ogun State, Nigeria under the supervision of Dr. A. F. Agbetuyi. We have examined and found this work acceptable as part of the requirements for the award of Master of Electrical and Electronics Engineering.

Dr. Felix A. Agbetuyi (Supervisor)

Dr. Isaac A. Samuel (Head of Department)

Dr. Oluwafemi M. Onibonoje (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) **Signature and Date**

Signature and Date

Signature and Date

Signature and Date

DEDICATION

I dedicate this Dissertation to the ONE TRUE GOD.

ACKNOWLEDGEMENTS

My profound gratitude goes firstly to God Almighty for His unspeakable gifts wherewith He so lavishly poured upon me, and his daily benefits that I enjoy. Also, to my wonderful parents for the constant push to do better and achieve set goals.

I want to thank the Vice Chancellor and managements of Covenant University for creating an enabling environment for qualitative research. I also want to appreciate the post graduate coordinator, Dr. Kennedy Okukpujie for constantly motivating and encouraging to meet the set deadlines

My sincere appreciation goes to my amiable supervisor, Dr. A. F. Agbetuyi for his kindheartedness, support, direction, patience inquires throughout my program, mentorship and advice he gave to me through the stages of this research work enabling me to complete in time. Meeting you has further encouraged me, guided me to strive for the best.

My appreciation also goes to Dr. A. Abdulkareem, Dr. A. A. Awelewa, Dr. Isaac Samuel, Mr. Simon Edache and Mr. Femi Pat-Natson and for their support and encouragement in setting a good foundation upon which I could build a successful research.

TABLE OF CONTENTS

CONTENT	PAGES
ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	v
DEDICATION	vi
ACKNOWLEDGEMENTS	vii
LIST OF FIGURES	xi
LIST OF TABLES	xii
ABBREVIATIONS	xiii
ABSTRACT	XV
CHAPTER ONE: INTRODUCTION	1
1.1 Preamble	1
1.1.1 The Background of the Study	2
1.2 Statement of the Problem	3
1.3 Aim of Research	4
1.4 Objectives of Research	4
1.5 Thesis Organization	4
1.6 Scope of the Study	4
1.7 Justification of the Study	4
CHAPTER TWO: LITERATURE REVIEW	5
2.1 Preamble	5
2.2 Electricity Sources and Demand in Nigeria.	6
2.2.1 Renewable Energy Sources in Nigeria	7
2.2.1 Renewable Energy Sources in Nigeria	9
2.3 Energy and Pollution	10
2.4 Global PV Industry	12
2.5 PV System Topologies	13
2.5.1 Overview	13
2.5.2 Off-Grid PV System	14
2.5.2.1 PV System with ESS (Off-grid)	14
2.5.2.2 PV System Without Battery Storage (OII-grid)	14
2.5.5 GRId-Tied PV System with the Ability to Deverse Dever Flow	15
2.5.3.1 Grid-fied PV System with Deverse Dever Plocked	15
2.5.2 Grid-Tied PV System with Reverse Power Blocked	15
2.5.4 Grid Connection of PV Systems	10 17
2.6 1 Components of a Microgrid	l / 10
2.0.1 Components of a wheregride by Operation	18
2.6.2 Classification of a Microgrid Connected to the Utility Grid	19
2.6.2.2 Islanded Microgrid Operation	19 20
2.6.2.3 Stability in Switching	20
	<i>2</i> 1

2.6.3 Challenges Associated with Microgrids	21
2.7 Grid Connected Systems Components.	22
2.7.1 DC-DC Converter	23
2.7.2 VSC Controller	23
2.7.3 Point of Common Coupling	24
2.8 Types of Grid-Tied PV System	24
2.9 Grid Code Impact by the Rising Penetration Level of Grid Connected PV systems.	24
2.9.1 The Impact of Variations in the Injected PV Power on the Power Grid.	25
2.10 The Impact of Distributed Generation (DG) on Electrical Distribution Networks	
in Technical Terms.	26
2.10.1 Equipment Overload	26
2.10.2 System Losses	27
2.10.3 Protection Systems	28
2.10.4 Reactive Power	28
2.10.5 System Frequency	29
2.11 Campus Microgrid Designs	30
2.11.1 Classification of Microgrids	30
2.11.2 Guidelines for Designing Campus Microgrids	31
2.11.3 Load Profiling (Clusters)	32
2.11.4 Future Energy Prediction	32
2.11.5 Load Demand Analysis	33
2.12 Review of Related Works	34
2.12.1 Gaps in Existing Literature	38
2.13 Chapter Summary	38
CHAPTER THREE: MATERIALS AND METHODS	39
3.1 Preamble	39
3.2 Overview of Solar PV Energy Resource Data	40
3.3 Analyzing the Load Demand of Covenant University's Network	42
3.3.1 Energy Demand in Covenant University	42
3.4 Covenant University Microgrid Composition	48
3.5 Design of Covenant University Solar PV Grid-Tied System	48
3.5.1 Solar Photovoltaic Panel Choice and Size	49
3.5.2 Choice of Inverter and Size	52
3.5.3 Maximum Power Point Tracking (MPPT) Selection	52
3.6 Analytical Computation and Simulation	54
3.7 Analytical Methods to Determine the Maximum Penetration Level that will not	
Cause Frequency Deviation.	55
3.7.1 First Simulation	57
3.7.2 Second Simulation	60
3.7.3 Third Simulation	62
3.7.4 Fourth Simulation	64
3.7.5 Fifth Simulation	66
3.8: MATLAB-Simulink Design	68
3.8.1 Simulation/Arithmetic Solving	68

3.8.2 Irradiation and Temperate Setting	69
3.9 Chapter Summary	70
CHAPTER FOUR: RESULTS AND DISCUSSIONS	71
4.1 Preamble	71
4.1.1 Results for 5% Penetration	71
4.1.2 Results for 10% Penetration	73
4.1.3 Results for 15% Penetration	74
4.1.4 Results for 20% Penetration	75
4.1.5 Results for 25% Penetration.	76
4.1.6 Results for 21% Penetration	77
4.1.7 Results for 22% Penetration	78
4.2 Further Discussion	79
4.3 Benchmarking Results.	80
CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS	81
5.1 Summary	81
5.2 Research Contribution	81
5.3 Future Recommendation	81
REFERENCES	82
APPENDIX	88

LIST OF FIGURES

FIGURES LIST OF FIGURES

PAGES

Figure 2.1: Renewable energy sources available in Nigeria	7
Figure 2.2Total installed capacity of solar photovoltaic systems globally, spanning the years 2	2000
to 2022 (United Nations Development Programme, 2022).	13
Figure 2.3: PV system that stores power in batteries (Off-grid)(ISIXEKO, 2023)	14
Figure 2.4: Grid-tied PV system with the ability to reverse power flow(ISIXEKO, 2023)	15
Figure 2.5Grid-tied PV System with reverse power blocked.(ISIXEKO, 2023)	16
Figure 2.6: Grid Connection of a PV system(Gilbert Masters, 2004)	17
Figure 2.7Model of PV-diesel hybrid energy system(Shezan Arefin, 2020)	21
Figure 3.1: Aerial view of covenant university (Google Earth Pro) 39	
Figure 3.2 Methodology Work Flow chart.	41
Figure 3.3: Average energy consumption of both residential and commercial loads as at March	h
2023	47
Figure 3.4: The seasonal energy consumption of the university.	48
Figure 3.5: Line diagram of Hybrid System	49
Figure 3.6: PV array setting for 5% gotten from the MATLAB-Simulink interface	59
Figure 3.7: PV array setting for 10% gotten from the MATLAB-Simulink interface	61
Figure 3.8: PV array setting from 15% gotten from the MATLAB-Simulink interface	63
Figure 3.9: PV array setting for 20% gotten from the MATLAB-Simulink interface.	65
Figure 3.10: PV array setting for 25% gotten from the MATLAB-Simulink interface	67
Figure 3.11: Design of solar PV integration into the micro-grid.	68
Figure 3.12: Irradiation and temperature setting for the simulation using MATLAB-Simulink	69
Figure 4.1: Result from the 5% simulation that ran for 25 minutes with both varying s	olar
irradiance and temperatures.	71
Figure 4.2: Result from the 10% simulation that ran for 25 minutes with both varying solar	
irradiance and temperatures.	73
Figure 4.3: Result from the 15% simulation that ran for 25 minutes with both varying solar	
irradiance and temperatures.	74
Figure 4.4: Result from the 20% simulation that ran for 25 minutes with both varying solar	
irradiance and temperatures.	75
Figure 4.5: Result from the 25% simulation that ran for 25 minutes with both varying solar	
irradiance and temperatures.	76
Figure 4.6: Result from the 21% simulation that ran for 25 minutes with both varying solar	
irradiance and temperatures.	77
Figure 4./: Result from the 22% simulation that ran for 25 minutes with both varying solar	-
irradiance and temperatures.	/8

LIST OF TABLES

TABLES LIST OF TABLES PAGES Table 2.1: Power plants in Nigeria (Paul & Egware, 2015). 8 Table 2.2 Renewable energy resources in Nigeria (Dahunsi et al., 2020; NERC, 2019) 10 Table 2.3 Frequency Specifications (NERC, 2019) 30 Table 2.4: Shows the review of some similar works 33 Table 3.1: Data from Global Solar Atlas for Ado Odo/Ota, Nigeria(Global Solar Atlas, 2023) .. 40 Table 3.2: Energy Consumption Analysis in Covenant University on a monthly basis(Covenant University) 42 Table 3.3: Technical specification of LONGI LR5-66HPH-515M (LONGI Panel Spec, 2023) 50 Table 3.4: Technical specification of SUNNY TRIPOWER CORE1(Solar Technology, 2021) 53 Table 3.5: Shows the details used in the simulation on MATLAB-Simulink for 5% integration 57 Table 3.6: Shows the frequency response of 5% solar PV integration into the Microgrid 59 Table 3.7: Shows the details used in the simulation on MATLAB-Simulink for 10% integration60 Table 3.8: Shows the frequency response of 10% solar PV integration into the microgrid 61 Table 3.9: Shows the details used in the simulation on MATLAB-Simulink for 15% integration62 Table 3.10: Shows the frequency response of 15% solar PV integration into the microgrid 63 Table 3.11: Shows the details used in the simulation on MATLAB-Simulation for 20% integration 64 Table 3.12: Shows the frequency response of 20% solar PV integration into the microgrid 65 Table 3.13: Shows the details used in the simulation on MATLAB-Simulink for 25% integration 66 Table 3.14: Shows the frequency response of 25% solar PV integration into the microgrid 67 Table 4.1: Shows the summary of all the frequency responses when solar PV is integrated into the micro-grid at different levels. 79 Table 4.2 Comparison between simulated results and results from literature 80

ABBREVIATIONS

AC	Alternating Current
AFDB	African Development Bank
ALDC	African Leadership Development Centre
BSRN	Baseline Surface Radiation Network
DC	Direct Current
DES	Distributed Energy Sources
DG	Distributed Generation
ESS	Energy Storage Systems
GHI	Global Horizontal Irradiation
GWDC	Giga-watt Direct Current
IAE	International Energy Agency
IRENA	International Renewable Energy Sources
LFS	Load Flow Studies
LDA	Load Demand Analysis
NASENI	National Agency for Science and Engineering Infrastructure.
NEMSA	Nigerian Electricity Management Services Agency
NESI	Nigerian Electricity Supply Industry
RE	Renewable Energy
RES	Renewable Energy Sources
SERC	Sokoto Energy Research Centre
PCC	Point of Common Coupling

PV Photovoltaics

- VAR Volt-Amp Reactive
- VSC Voltage Source Converter

ABSTRACT

Frequency response is a crucial aspect of power quality, representing the system's response to generated power and applied loads. Understanding frequency variations when integrating renewable energy into a microgrid is essential, considering the variability of renewable sources due to weather conditions. This study focuses on Covenant University as a case study, aiming to identify the optimal renewable energy source and permissible penetration levels in relation to the average hourly peak load, without disrupting the existing system's operations. The study calculates the average peak load demand at Covenant University as 1.42MW, with a generation capacity of 4.5MW. The MATLAB-Simulink software was employed to design and simulate the solar PV system, while maintaining a constant average peak load throughout the simulations. Penetration levels of 5%, 10%, 15%, 20%, and 25% were considered. Simulation results indicate that the system's frequency response remains within permissible limits up to a solar PV penetration level of 21% (289.2kW) relative to the average hourly peak load. Beyond this point, the frequency starts deviating beyond the acceptable limits. The findings of this study provide valuable guidance for integrating solar PV into Covenant University's existing campus system, revealing that the maximum solar PV penetration without energy storage is 21% (298kW) of the average hourly peak load, resulting in frequency deviations of 50.89Hz and 49.22Hz.

KEYWORDS: Frequency Response, Microgrid, MATLAB, Renewable Energy, PV Penetration Levels