DEVELOPMENT OF A DECENTRALISED MODEL FOR ELECTRONIC TICKETING USING BLOCKCHAIN TECHNOLOGY

OWIVRI, OGHENETEGA CHINEDU (21PCJ02285) B.Eng. Electrical & Electronics Engineering, Kwame Nkrumah University of Science of Technology, Kumasi, Ghana

JULY, 2023

DEVELOPMENT OF A DECENTRALISED MODEL FOR ELECTRONIC TICKETING USING BLOCKCHAIN TECHNOLOGY

BY

OWIVRI, OGHENETEGA CHINEDU (21PCJ02285) B.Eng. Electrical & Electronics Engineering, Kwame Nkrumah University of Science of Technology, Kumasi, Ghana

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF ENGINEERING (M.Eng) DEGREE IN COMPUTER ENGINEERING IN THE DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERISTY, OTA, OGUN STATE

JULY, 2023

ACCEPTANCE

This is to attest that this dissertation has been accepted in partial fulfillment of the requirements for the award of the degree of Master of Engineering in Computer Engineering in the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Nigeria.

Ms. Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, **OWIVRI**, **OGHENETEGA CHINEDU** (21PCJ02285), declare that this dissertation is a representation of my work, and is written and implemented by me under the supervision of Dr. Kennedy O. Okokpujie of the Department of Electrical and Information Engineering, Covenant University, Ota, Nigeria. I attest that this dissertation has not been submitted wholly or partially to any other university or institution of higher learning for the award of a master's degree. All information cited from published and unpublished literature has been duly referenced.

OWIVRI, OGHENETEGA CHINEDU

Signature and Date

CERTIFICATION

We certify that this dissertation titled "DEVELOPMENT OF A DECENTRALISED MODEL FOR ELECTRONIC TICKETING USING BLOCKCHAIN TECHNOLOGY" is an original research work carried out by OWIVRI, OGHENETEGA CHINEDU (21PCJ02285), in the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria under the supervision of Dr. Kennedy Okokpujie. We have examined and found this work acceptable as part of the requirements for the award of Master of Computer Engineering.

Dr. Kennedy O. Okokpujie (Supervisor)

Dr. Isaac A. Samuel (Head of Department)

Prof. Jonathan G. Kolo (External Examiner) **Signature and Date**

Signature and Date

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DEDICATION

All Glory to God Alone and my loving Mother Mrs. Josephine Ifeoma Owivri for her support, prayers, and for not giving up on me.

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude and appreciation to all those who have played a significant role in the completion of my thesis. Without their support, guidance, and encouragement, this accomplishment would not have been possible.

First and foremost, I am profoundly grateful to God for His grace, blessings, and unwavering guidance throughout this entire journey. His divine intervention has been instrumental in every step, and I am forever grateful.

I extend my deepest appreciation to my supervisor, Dr. Kennedy Okokpujie, for his continuous support, patience, and invaluable guidance. His expertise, constructive feedback, and motivation pushed me to strive for excellence and ensured that I met all the departmental deadlines. His unwavering belief in my abilities has been a driving force behind the successful completion of this thesis. I would like to extend my warmest appreciation to my internal assessor Dr. Oluwadamilola Oshin for her constructive criticisms, insights and contributions that have enhanced the quality of this research work.

I am grateful to Dr. Isaac Samuel, my Head of Department, for his words of encouragement and support, and I am grateful for his mentorship.

My heartfelt thanks go to my mother, Mrs. Josephine Ifeoma Owivri, for her prayers, unwavering support, and belief in my abilities. Her constant encouragement and love provided me with the strength and motivation to overcome obstacles along the way. I would also like to acknowledge my Aunt Adamma Duru for her encouraging words and unwavering support. Her belief in my potential and her constant motivation were instrumental in keeping me focused and determined.

Furthermore, I would like to express my gratitude to Sir Tarry for his valuable contributions to the development of this research work. His insights and expertise greatly enhanced the quality and depth of my research, and I am thankful for his contributions.

Finally, I extend my appreciation to all my friends and family members who have supported me throughout this journey. Your words of encouragement, understanding, and patience have been invaluable.

To all those mentioned and the countless others who have contributed in various ways, I am forever grateful for your support and guidance. Your presence in my life has been a tremendous blessing, and I am deeply indebted to each one of you. Thank you for believing in me and for being an integral part of my academic success.

vii

TABLE OF CONTENTS

CONTENT	PAGES
COVER PAGE	Ι
TITLE PAGE	II
ACCEPTANCE	III
DECLARATION	IV
CERTIFICATION	V
DEDICATION	VI
ACKNOWLEDGEMENTS	VII
TABLE OF CONTENTS	VIII
LIST OF FIGURES LIST OF TABLES	X XII
ABBREVATIONS	XIII
ABSTRACT	XIII XV
CHAPTER ONE: INTRODUCTION	1
1.1 Background to the Study	1
1.2 Statement of the problem	5
1.3 Research Questions	6
1.4 Aim and Objectives of the Research Work	6
1.5 Justification for the research	8
1.6 Scope of study	8
1.7 Research Limitations	8
CHAPTER TWO: LITERATURE REVIEW	9
2.1 Preamble	9
2.2 Origin of Blockchain	9
2.3 Asymmetric Cryptography and Digital Signature (ECDSA)	11
2.3.1 Digital signature algorithm	12
2.4 Hash Function	13
2.5 Secure Hash Algorithm (Keccak – 256)	14
2.6 Consensus Mechanism	15
2.6.1 Proof of work (PoW) 2.6.2 Proof of Stoke (PoS)	16
2.6.2 Proof of Stake (PoS) 2.6.2.1 Follow-the Satoshi (FTS) Algorithm	17 18
2.7 Ethereum Network	18
2.8 Electronic Ticketing	22
2.9 Ethereum Virtual Machine (EVM)	22
2.10 Smart Contracts (SC)	22
2.11 ERC Token Standard	25
2.12 IPFS (InterPlanetary File System)	26
2.13 QR code (Quick Response code)	27
2.14 Other Related Technologies	28
2.14.1 Metamask	28
2.14.2 Web 3.0	28
2.14.3 Decentralized Application (dApp)	28
2.14.4 React.JS	29

APPENDIX B	
REFERENCES APPENDIX A	89 93
5.4 Future Recommendations	88
5.3 Research Contributions	87
5.2 Summary	87
5.1 Preamble	87
CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS	87
4.6.3 Benchmark Results with existing Works	84
4.6.2 Performance Evaluation	82
4.6.1.4 Privacy	82
4.6.1.3 Security and Access Control	82
4.6.1.2 Trust	82
4.6.1.1 Integrity and Reliability	81
4.6.1 Security Analysis.	81
4.6 Evaluation and Analysis	81
4.5 Point of Admittance and Administrative client	78
4.4.3 User Profile Page	77
4.4.2 Ticket Evidence Page	77
4.4.1 Front-End UI of the dApp	76
4.4 Integrating the smart contract into a decentralized web application	76
4.3.3 Compiling and deploying the smart contract to the EVM	74
4.3.2 Data functions for ticketing smart contract	69
4.3.1 Data structures for ticket tracking	68
4.3 Implementation Details 4.3 Implementation Results of the Smart Contract Deployment	68
4.1 Preamole 4.2 Implementation Details	67
CHAPTER FOUR: RESULTS AND DISCUSSION 4.1 Preamble	67 67
3.9 Ticketing Smart Contract	64
3.8 Smart Contract Deployment	63
3.7 Algorithm of the Ticketing Model	62
3.6 Solution to privacy and transparency	58
3.5 Evidence information for verification	55
3.4 Solution to Traceability and Security	54
3.2 System Architecture and Framework3.3 Participants of the Proposed Ticketing Model	51 53
3.1 Preamble 3.2 System Architecture and Framework	49 51
CHAPTER THREE: METHODOLOGY	49 40
2.17 Performance Evaluation Metrics	48
2.16 Research gaps in related works	47
2.15 Review of Related Works	30
2.14.7 OpenZeppelin	30
2.14.6 Sepolia Testnet	29
2.14.5 Thirdweb SDK	29

LIST OF FIGURES

FIGURES	TITLE OF FIGURES	PAGES
1.1	Centralized Ticketing Architecture	3
2.1	PoW and PoS Comparison	19
2.2	Overview of the Ethereum Network	20
2.3	Overview of Smart Contracts	24
2.4	How Files are Stored on the IPFS	26
3.1	Research Activities Workflow	50
3.2	Overall Architecture of the Proposed Ticketing Framework	51
3.3	Transactions Hashed in a Merkle tree	55
3.4	Evidence for verification of ticket authenticity	57
3.5	Solution to Privacy and Transparency	59
3.6	Consumer ID Generation	60
3.7	Ticket Verify System	61
3.8	Check if The Regenerated Hash is Included in The Storage	62
3.9	Sequence Diagram of the Proposed Ticketing model	66
4.1	A screenshot of the login page of the dApp for electronic ticketing	67
4.2	Remix IDE	68
4.3	Code Snippet of the Mint Ticket Function	70
4.4	Snapshot of a successful ticket request transaction	71
4.5	Log of Tickets Marked as Used by the Administrative Client	72
4.6	Compilation results from Remix IDE	74
4.7	Thirdweb CLI for Uploading Smart Contract ABI to the Blockchain	75

4.8	Thirdweb SDK Dashboard for deploying Smart Contract	75
4.9	Front-End User Interface of the dApp	76
4.10	Ticket Evidence Page	77
4.11	User Profile Page on the dApp	78
4.12	Administrative Client for Point of Admittance	79
4.13	Transaction Log of all Tickets Marked as Used on the Administrative client	80
4.14	Administrative Dashboard for Tracking All Transactions on the SC	80
4.15	Arithmetic Mean and Median of the Ticket Purchase Completion Time	83
4.16	Arithmetic Mean and Median of the Ticket Verification Completion Time	84

LIST OF TABLES

TABLES	TITLE OF TABLES	PAGES
1.1	Objectives and methodology mappings for the study	7
2.1	Literature Review Table	33
3.1	Standard fractions of Ether and their Wei Values	64
4.1	Classifications of SC Functions	73
4.2	Comparison of the proposed Model with Existing Works	86

ABBREVATIONS

ABI	Application Binary Interface
CA	Certificate Authority
DAO	Decentralized Autonomous Organizations
DAPP	Decentralized Applications
DHT	Distributed Hash Tables
DOM	Document Object Model
DPoS	Delegated Proof of Stake
DSA	Digital Signature Algorithm
ECC	Elliptic Curve Cryptography
ECDSA	Elliptic Curve Digital Signature Algorithm
ERC	Ethereum Request for Comments
ETH	Ether
EVM	Ethereum Virtual Machine
FTS	Follow-The-Satoshi
ICT	Information and Communication Technology
IDE	Integrated Development Environment
IPFS	Interplanetary File System
JS	JavaScript
LPoS	Leased Proof of Stake
MITM	Man in The Middle
MSP	Member Service Provider
NFT	Non-Fungible Token
PoS	Proof of Stake
PoW	Proof of Work
QR	Quick Response
RSA	Rivest Shamir Adleman
SC	Smart Contract
SDK	Software Development Kit
SHA	Secure Hash Algorithm

TPS	Transactions per Second
TPM	Transactions per Minute
ТХ	Transaction
UI	User Interface
UTXO	Unspent Transaction Output

ABSTRACT

Single-user electronic ticketing systems are widely utilized in several industries, such as transportation, cafeterias, cinemas, and other activities but they face challenges such as fraud, counterfeiting, and security risks. This work addresses these issues by utilizing blockchain technology, which employs cryptography, decentralized ledgers, consensus mechanisms, and smart contracts. Existing electronic ticketing solutions often function in a centralized manner or focus solely on event-based ticketing, with limited progress in the context of single-user electronic ticketing systems. The proposed model leverages blockchain technology to ensure ticketing information transparency. It incorporates asymmetric encryption techniques to protect user privacy and utilizes digital signature technology to verify ticket authenticity. The model also introduces an innovative ticket verification mechanism using ERC721 standards. To achieve decentralization, the Ethereum Virtual Machine's request for comments (ERC-721) Protocols, digital signatures, and the Interplanetary File System (IPFS) are employed as decentralized storage for ticket metadata. This research not only addresses centralization concerns but also enhances security, traceability, transparency, and trust through the application of blockchain technology and cryptographic methods. The decentralized electronic ticketing model is implemented as a consumer application, and a comprehensive empirical analysis evaluates its performance, particularly in terms of transaction completion time. The outcomes illustrate the efficiency of the suggested model. in mitigating fraud, counterfeiting, and security risks in single-user electronic ticketing systems. The decentralized approach ensures improved reliability, security, and transparency. Based on the empirical analysis, the model exhibits efficient ticket transaction completion time of 19.64 seconds, and a mean ticket verification time of 3.17 seconds, providing a practical solution for real-world implementation. In conclusion, this research presents a robust and fully decentralized electronic ticketing model that leverages blockchain technology, ERC721 standards, digital signatures, and IPFS. The findings highlight the potential of the proposed model to revolutionize single-user electronic ticketing systems, fostering security, reliability, and trust in ticketing transactions.

Keywords: Blockchain, Cryptography, ERC721, EVM, Smart Contract, Ticketing