DEVELOPING A PHYSICIAN-PATIENT SPEECH RECOGNITION AND DOCUMENTATION MODEL FOR NIGERIAN HOSPITALS

ETUKUDO, DEBORAH BASSEY (20PCH02191)

DECEMBER, 2022

DEVELOPING A PHYSICIAN-PATIENT SPEECH RECOGNITION AND DOCUMENTATION MODEL FOR NIGERIAN HOSPITALS

BY

ETUKUDO, DEBORAH BASSEY (20PCH02191) B.Sc. Computer Science, Landmark University, Omu-Aran

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.Sc.) DEGREE IN MANAGEMENT INFORMATION SYSTEM IN THE DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

DECEMBER, 2022

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfillment of the requirements for the award of the degree of MASTER of Sciences in Management Information System in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Nigeria.

Miss. Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, ETUKUDO, DEBORAH BASSEY (20PCH02191), declare that this research was carried out by me under the supervision of Dr. Olamma U. Iheanetu of the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Nigeria. I attest that the dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation are duly acknowledged.

ETUKUDO, DEBORAH BASSEY

Signature and Date

CERTIFICATION

We certify that this dissertation titled "DEVELOPING A PHYSICIAN-PATIENT SPEECH RECOGNITION AND DOCUMENTATION MODEL FOR NIGERIAN HOSPITALS" is an original research work carried out by ETUKUDO, DEBORAH BASSEY (20PCH02191), in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Nigeria under the supervision of Dr. Olamma U. Iheanetu. We have examined and found this work acceptable as part of the requirements for the award of Master of Science in Management Information System.

Dr. Olamma U. Iheanetu (Supervisor)

Prof. Olufunke O. Oladipupo (Head of Department)

Prof. Olusegun Folorunso (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) **Signature and Date**

Signature and Date

Signature and Date

Signature and Date

DEDICATION

I dedicate this work to the Almighty God, for His infinite wisdom, grace, and love over my life. Also, this work is dedicated to my loving parents who have both worked exceptionally hard to set me up for success.

ACKNOWLEDGEMENTS

I appreciate God almighty for the strength, grace, wisdom, and understanding to execute this study. Many thanks to the head of the department, Prof. Olufunke Oladipupo, and the entire members of the faculty for this opportunity. I appreciate my supervisor, Dr. Olamma U. Iheanetu for her guidance, support, and encouragement. I also appreciate my family, friends, and colleagues for their help and support.

TABLE OF CONTENTS

COV TITI DEC CER DED ACK TAB LIST LIST LIST	TENTS ER PAGE LE PAGE LARATION TIFICATION ICATION NOWLEDGEMENTS LE OF CONTENTS 'OF FIGURES 'OF TABLES 'OF TABLES 'OF ABBREVIATIONS FRACT	PAGES i iv v vi vii viii xi xiii xiv xvi
CHA	PTER ONE: INTRODUCTION	1
1.1	Background to the Study	1
1.2	Statement of the Problem	5
1.3	Aim and Objectives of the Study	6
1.4	Research Methodology	
1.5	Significance of the Study	
1.6	Scope and Limitations of the Study	7
1.7	Organisation of the Dissertation	8
CHA	PTER TWO: LITERATURE REVIEW	9
2.1	Introduction	9
2.2	The Evolution of the Electronic Health Records	9
2.3	SOAP Medical Keeping	10
	2.3.1 Subjective	11
	2.3.2 Objective	11
	2.3.3 Assessment	11
	2.3.4 Plan	12
2.4	Information Extraction	12
	2.4.1 State of the Art Information Extraction Techniques (overview)	12
	2.4.2 Audio Information Extraction	13
	2.4.3 Noteworthy Utterance	17
2.5	Machine Learning Approaches to ASR Development	17

	2.5.1 Types of Machine Learning	19
2.6	Deep Learning Approaches to ASR Development	21
	2.6.1 Classes of Deep Learning Model	22
	2.6.2 Deep Learning Algorithm	23
	2.6.3 Advantages of Deep Learning Algorithm	24
2.7	Context of Unstructured Data and Structured Data	25
2.8	Challenges in Analysis of Electronic Health Record Data 2	
2.9	Data in Automatic Speech Recognition 3	
2.10	Confusion Matrix 3	
2.11	Review of Related Works 3	
CHA	PTER THREE: METHODOLOGY	39
3.1	Introduction	39
3.2	Survey	41
3.3	Existing Model (Wav2vec)	
3.4	The Proposed Model 4	
3.5	Data Collection	47
	3.5.1 Speech Data Collection	47
	3.5.2 Text Classification Collection	49
3.6	Data Pre-processing	50
	3.6.1 Pre-processing for Text Classification	50
	3.6.2 Audio Dataset	51
3.7	The Subsystems	52
	3.7.1 Speech Recognition System	52
	3.7.2 Text Summarization	53
	3.7.3 Text Classification	56
3.8	Evaluation	58
	3.8.1 Evaluation metrics	58
	3.8.2 Dataset used for Evaluation	60
3.9	Development Environment	60
CHA	PTER FOUR: RESULTS AND DISCUSSION	62

4.1	Introduction	62
4.2	Data Collection and Pre-processing	62
	4.2.1 Speech Data Pre-processing	62
	4.2.2 Text Data Pre-processing	64
4.3	Data Visualization	67
4.4	Evaluation	70
	4.4.1 Speech Recognition Result	70
	4.4.2 Text Classification Result	73
4.5	Simulation and Testing	79
	4.5.1 Web Application Implementation	80
4.6	Discussion	82
СНА	APTER FIVE: CONCLUSION AND RECOMMENDATION	87
5.1	Summary	87
5.2	Conclusion	87
5.3	Contributions to Knowledge	88
5.4	Recommendations	88
REF	FERENCES	89

LIST OF FIGURES

FIGURES TITLE OF FIGURES	PAGES
Figure 2.1: The official Google Cloud Speech-to-Text website, with the pro-	oduct's
demonstration interface in the foreground.	33
Figure 2.2: Structure of Confusion Metrics	34
Figure 3.1: Methodological flow diagram	40
Figure 3.2: Gender distribution of respondent	41
Figure 3.3: Respondent hospital type	42
Figure 3.4: Average time duration for consultation	42
Figure 3.5: Number of Patients they attend to Daily	42
Figure 3.6: Doctors Years of Experience	43
Figure 3.7: How Nigerian hospitals document consultation	43
Figure 3.8: Architecture of existing Wav2vec model	44
Figure 3.9: Proposed model architecture	45
Figure 3.10: Activity diagram of the flow process	46
Figure 3.11: Overview of the procedure for speech data collection	47
Figure 3.12: Audio labeling using audacity	51
Figure 3.13: Speech recognition architecture	53
Figure 3.14: Extractive Summarization Process	53
Figure 3.15: Screenshot of spacy pre-processing	54
Figure 3.16: Screenshot of Spacy Summarization	55
Figure 3.17: MLP Architecture Overview	57
Figure 3.18: Screenshot of a text classification model	58
Figure 3.19: Screenshot of system specification	61
Figure 4.1: Screenshot of some of the audio data collected	63
Figure 4.2: Screenshot of some the audio data labeled	63
Figure 4.3: Before noise was removed from the audio	64
Figure 4.4: After noise was removed from the audio	64
Figure 4.5: Screenshot of some labeled SOAP notes.	65
Figure 4.6: Screenshot of the data pre-processing	65

Figure 4.7: S	creenshot of one hot encoding in soap note	66
Figure 4.8: S	plitting of the dataset for SOAP classification	66
Figure 4.9: D	Data visualization of the distributed SOAP notes.	67
Figure 4.10:	Data visualization of the SOAP note.	68
Figure 4.11:	Data visualization of the subjective class	68
Figure 4.12:	Data visualization of the objective class	69
Figure 4.13:	Data visualization of the assessment class	69
Figure 4.14:	Data visualization of the plan class	70
Figure 4.15:	Confusion metrics for the machine learning techniques	76
Figure 4.16:	Confusion metrics for MLP technique	78
Figure 4.17:	Screenshot of the developed web application for the speech recognition	
	system.	80
Figure 4.18:	Screenshot of the developed web application for the SOAP system (i)	81
Figure 4.19:	Screenshot of the developed web application for the SOAP system (ii	81
Figure 4.20:	Number of times system was used for testing	83
Figure 4.21:	Reason for using the system	83
Figure 4.22:	Screenshot of the respondent responses concerning the system usability	84
Figure 4.23:	Screenshot of the respondent responses concerning the system user	
	interface.	84
Figure 4.24:	Screenshot of the respondent responses concerning how well the app	
	recognized the consultations.	84
Figure 4.25:	Screenshot of the respondent responses concerning how long consultation	
	took using the app.	85
Figure 4.26:	Feedback gotten from system testing	85

LIST OF TABLES

TABLES TITLE OF TABLES	PAGES
Table 1.1: Summary of objectives	6
Table 3.1: The medical conversation scripts	48
Table 3.2: Table showing the counts of the labeled and manu	ally labeled conversation
in SOAP	51
Table 3.3: Evaluation metrics (i)	59
Table 3.4: Evaluation metrics (ii)	60
Table 4.1: Overall result from ASR evaluation	70
Table 4.2: Finetuned Wav2vec model trained on the primary	dataset 72
Table 4.3: Wav2vec model trained on TIMIT dataset	72
Table 4.4: Machine learning text classification evaluation res	sult 74
Table 4.5: Evaluation Metrics table of the SOAP classification	on 76
Table 4.6: Confusion metrics table of the SOAP classificatio	n 78
Table 4.7: Result from text classification	79

LIST OF ABBREVIATIONS

AED	Acoustic Event Detection
AI	Artificial Intelligence
ANN	Artificial Neural Network
ASR	Automatic Speech Recognition
ATM	Amazon Transcribe Medical
BP	Back Propagation
CNN	Convolutional Neural Network
DBN	Deep Belief Networks
DL	Deep Learning
DNN	Deep Neural Network
DT	Decision Tree
DQA	Data Quality Assessment
EHR	Electronic Health Record
EMR	Electronic Medical Record
GP	Gaussian Process
GPU	Graphics Processing Unit
FF	Forward Propagation
НММ	Hidden Markov Model
IE	Information Extraction
LSTM	Long Short-Term Memory
ML	Machine Learning
MLP	Multilayer Perceptron
NLP	Natural Language Processing
NLG	Natural Language Generation
NN	Neural Network
RBM	Restricted Boltzmann Machine

RNN	Recurrent Neural Network
SR	Speech Recognition
SOAP	Subjective, Objective, Assessment, Plan
SVM	Support Vector Machine
TIMIT	Texas Instruments/Massachusetts Institute of Technology.

ABSTRACT

Despite the increase in the use of automated systems for physician-patient consultation in developed countries, Nigerian hospitals are still actively using the traditional approach which implies using pen and paper or typing on the computer in documenting and extracting the conversation between the physician and the patient. This has been observed to cause long consultation time, burnout during consultations, bad consultation experience for the patient, etc. Due to the Nigerian accent, the present speech recognition system when tested with a Nigerian accent could not properly detect it. This study aims to develop an automatic speech recognition system for extracting and classifying structured data from physician-patient conversations done in a Nigerian hospital. A pretrained Wav2vec model was retrained with the primary data used in this work for better detection of the Nigerian accent. The accuracy score of the SOAP classification using a deep learning approach, gave a total of 83%, compared to that of the machine learning approach which gave a total accuracy of 82%. For the speech recognition system evaluation, the Word error rate, word information lost, and match error rate gave a better accuracy of 0.889, 0.800, and 0.896 respectively as compared to the TIMIT dataset which gave 0.999, 0.999, and 0.999 respectively. The proposed system performs better in the identification of the Nigerian accent than the existing system.

Keywords: Automatic Speech Recognition, Wav2vec, Electronic Health Record, SOAP Notes, Text Classification, MLP.