ASSESSMENT AND OPTIMISATION OF COOLING LOADS FOR OPTIMAL BUILDING ENERGY EFFICIENCY USING GREY-TAGUCHI AND ANOVA METHODS

AKOMOLAFE, MARVELLOUS IREOLUWA (20PCM02098) B.Eng, Mechanical Engineering, University of Ilorin, Ilorin

AUGUST 2023

ASSESSMENT AND OPTIMISATION OF COOLING LOADS FOR OPTIMAL BUILDING ENERGY EFFICIENCY USING GREY-TAGUCHI AND ANOVA METHODS

BY

AKOMOLAFE, MARVELLOUS IREOLUWA (20PCM02098) B.Eng, Mechanical Engineering, University of Ilorin, Ilorin

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE MASTER OF ENGINEERING (M.Eng) DEGREE IN MECHANICAL EBGINEERING IN THE DEPARTMENT OF MECHANICAL ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

AUGUST 2023

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (M.Eng) in the Department of Mechanical Engineering, College of Engineering, Covenant University, Ota, Nigeria and has been accepted by the school of Postgraduate Studies, Covenant University, Ota, Ogun state, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, AKOMOLAFE, MARVELLOUS IREOLUWA (20PCM02098), declare that this dissertation was carried out by me under the supervision of Prof. Sunday O. Oyedepo, in the Department of Mechanical engineering, College of Engineering, Covenant University, Ota, Ogun state, Nigeria. I attest that this dissertation has not been presented, either wholly or partially for the award of any degree elsewhere. All sources of scholarly information used in this research work were duly acknowledged.

AKOMOLAFE, MARVELLOUS IREOLUWA

Signature and Date

CERTIFICATION

This is to certify that this dissertation titled "ASSESSMENT AND OPTIMISATION OF COOLING LOADS FOR OPTIMAL BUILDING ENERGY EFFICIENCY USING GREY-TAGUCHI AND ANOVA METHODS" is an original work carried out by AKOMOLAFE MARVELLOUS IREOLUWA (20PCM02098) in the Department of Mechanical Engineering, Covenant University, Ota, Ogun state, Nigeria under the supervision of Prof. Sunday O. Oyedepo. This dissertation has met the required standard for the award of Master of Engineering (M.Eng) in Mechanical Engineering.

Prof. Sunday O. Oyedepo (Supervisor)

Prof. Joshua O. Okeniyi (Head of Department)

Prof. Chigbo A. Mgbemene (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) **Signature and Date**

Signature and Date

Signature and Date

Signature and Date

DEDICATION

To God, the Almighty, the Father of all; for His unending Mercy and Grace.

ACKNOWLEDGEMENTS

First and foremost, I want to express my deepest gratitude to my project supervisor, Professor Sunday Oyedepo, for his unwavering support, guidance and unrelenting patience. I could never have gotten this far without your immense support.

I am immensely grateful to the faculty members whose in-depth lectures and thoughtprovoking discussions have formed the foundation of my understanding and perspective. Your dedication to fostering learning and intellectual curiosity is truly inspiring.

My heartfelt appreciation goes to my family. To my sisters, your love, inspiration, and endless belief in my abilities have been my strongest motivation. Thank you for being my biggest cheerleaders.

To my mother, your unending support, sacrifices, and undying love cannot be measured. Thank you for always being there, for your understanding, and for reminding me of the importance of perseverance.

Finally, to my late father, who in death has an indelible influence on my life. His memory and the principles he instilled in me have been my guiding light throughout this journey. Even in his absence, his belief in the value of education and dedication to hard work has been the only reason why I had persevered.

Thank you all for being part of my journey and for making this achievement possible.

TABLE OF CONTENTS

CONTENT	۲ S	PAGES
АССЕРТА	NCE	iii
DECLARA	ATION	iv
CERTIFIC	CATION	v
DEDICAT	ION	vi
ACKNOW	LEDGEMENTS	vii
TABLE O	F CONTENTS	viii
LIST OF A	PPENDICES	xii
LIST OF F	IGURES	xiii
LIST OF P	LATES	XV
LIST OF 1	`ABLES	xvi
NOMENC	LATURE	xviii
ABSTRAC		xxi
CHAPT	ER ONE: INTRODUCTION	1
1.1	Background of Study	1
1.2	The Grey-Taguchi and ANOVA Method	3
1.3	Research Problem	4
1.4	Aim and Objectives	5
1.5	Scope and Limitations of the Study	6
1.5	5.1 Scope of the Study	6
1.5	5.2 Limitations of the Study	6
CHAPTI	ER TWO: LITREATURE REVIEW	8
2.1	Preamble	8
2.2	Energy Efficiency in Buildings	8
2.2	2.1 An Overview of Energy Efficiency in Buildings	9
2.2	2.2 Global Energy Consumption and Greenhouse Gas Emission in Buildings	10
2.2	2.3 Importance of Energy Efficiency in Buildings	14
2.2	2.4 Policies and Initiatives Promoting Energy Efficiency in Buildings	14
2.2	2.5 Key Challenges in Achieving Energy Efficiency in Buildings	18

2.3 Th	e Pattern of Energy Consumption in Higher Education Institutions	19
2.3.1 Fa Ed	actors Influencing Energy Consumption Patterns in Higher ducation Institutions	20
2.3.2 Pr	comoting Energy Efficiency on University Campus	20
2.3.3 R	eview on Energy Consumption Pattern in University Campus	22
2.4 Co	ooling Load Estimation Techniques	27
2.4.1 O	verview of Cooling Load Estimation Methods	28
2.4.2 C	onventional Methods for Cooling Load Estimation	29
(a)	Transfer Function Method (TFM)	29
(b)	Cooling Load Temperature Difference/Time Averaging (CLTD/TA)	30
(c)	Radiant Time Series Method (RTSM)	32
2.4.3 A	dvanced Techniques for Cooling Load Estimation	34
(a)	Dynamic Thermal Simulation	35
(b)	Machine Learning Algorithms	36
(c)	Artificial Intelligence Approaches	37
2.5 Gr	ey-Taguchi Method	38
2.5.1 In	troduction to the Grey-Taguchi Method	39
2.5.2 Pr	rinciples and Concepts of the Grey-Taguchi Method	39
2.5.3 Aj St	pplication of the Grey-Taguchi Method in Energy Efficiency rudies	40
(a)	Grey-Taguchi Method in Cooling Load Estimation	41
2.5.4 B	enefits and Advantages of Using the Grey-Taguchi Method	42
CHAPTER T	HREE: METHODOLOGY	44
3.1 Stu	udy Area	44
3.2 Da	ta Collection and Analysis	45
3.2.1 D	ata Collection	45
(a)	The Covenant University Cafeteria 1	46
(b)	The Covenant University Chapel	47
(c)	The Centre for Learning Resources (CLR) – University Library	48
(d)	The Covenant University Guest House	48
(e)	The Covenant University Health Centre	49
3.2.2 D	ata Analysis	50

3.	.3	Materials and Resources	50
	(a)	Architectural Building Plans	50
	(b)	Minitab Statistical Software	51
	(c)	Laptop with Internet Access	51
3.	.4	Cooling Load Calculation Principles	51
	(a)	External	52
	(b)	Internal	52
	(c)	Infiltration	52
	(d)	System	52
3.	.5	Cooling Loads Terminologies and Concepts	52
	3.5.1	Space Heat Gain	52
	(a)	Sensible Heat	53
	(b)	Latent Heat	53
3.	.6	Cooling Load Calculation Method	54
	(a)	Transfer Function Method (TFM)	54
	(b)	Cooling Load Temperature Differential (CLTD/CLF)	54
	(c)	Total Equivalent Temperature Differential / Time-Averaging (TETD / TA)	54
	3.6.2	Accuracy and Reliability of Various Calculation Methods	54
3.	.7	Estimation of Cooling Load Through Surface Condition	55
	3.7.1	Conduction Through Shaded Walls and Roofs	55
	3.7.2	Conduction Through Sunlit Surfaces	57
	3.7.3	Conduction Through Windows	60
	3.7.4	Solar Radiation Through Glass	61
3.	.8	Cooling Load Estimation of Internal Heat Gains	63
	3.8.1	Heat Gains from People	63
	3.8.2	Instantaneous Thermal Gain from Illumination	65
	3.8.3	Heat Emission from Devices	66
	3.8.4	Latent Heat Load of Infiltration	67
3.	.9	Cooling Load Design Consideration and Assumptions	69
3.	.10	Optimisation Methodology	70
CHAI	PTER	FOUR: RESULTS AND DISCUSSIONS	73
4.	.1	Descriptive Parameters of the Study Area	73

4.2	D	esign of Experiments – Create the Taguchi Design	74
4.3	E	stimation of the Cooling Loads for the Selected Buildings	76
	(a)	Conduction Through Roof	77
	(b)	Conduction Through Exterior Wall	78
	(c)	Conduction Through Windows	79
	(d)	Solar Radiation Through Windows	80
	(e)	Heat Gains from People	80
	(f)	Heat Gain from Lighting	80
	(g)	Latent Heat Load of Infiltration	81
4.4	T	aguchi Experimental Design	84
4.5	R	egression Analysis of the Cooling Load	85
4.6	Pe	erformance of the Cooling Load Prediction Model	88
4.7	V	alidation of the Cooling Load for Optimised Model Parameters	90
СНАРТ	'ER F	FIVE: CONCLUSION AND RECOMMENDATIONS	94
5.1	С	ontributions to Knowledge	95
5.2	R	ecommendations	95
	(a)	Mitigation of Radiative Heat	95
	(b)	Control of Human-generated Heat	95
	(c)	Managing Energy Equipment Usage and Window Area	96
	(d)	Ongoing Use and Refinement of the Grey-Taguchi and ANOVA Methods	96
	(e)	Incorporation of Additional Variables:	96
	(f)	Development of Comprehensive Guidelines:	96
	(g)	Model Validation and Refinement:	96
5.3	R	ecommendations for Further Study	97
	(a)	Granular Specific Building Analysis	97
	(b)	Sustainable Green Building Technologies	97
	(c)	Behavioural and Occupancy Patterns	97
	(d)	Integration of Advanced Machine Learning Models	97
REFERE	NCES	5	98
APPENDI	ICES		107

LIST OF APPENDICES

Appendix A: U-Factors for Various Fenestration Products in W/ (m².K)1Appendix B: July solar cooling load for sunlit glass1Appendix C: Visible Transmission (VT), Shading Coefficient (SC), and Solar Heat Gain Coefficient (SHGC) at Normal Incidence for Single Pane Glass and Insulating Glass1Appendix D: Roof construction types1Appendix E: Thermal properties and code numbers of layers used in wall and roof description.1Appendix F: Cooling load temperature differences for calculating cooling load from roofs.1	APPENDICES	LIST OF APPENDICES	PAGE
Appendix B: July solar cooling load for sunlit glass1Appendix C: Visible Transmission (VT), Shading Coefficient (SC), and Solar Heat Gain Coefficient (SHGC) at Normal Incidence for Single Pane Glass1Appendix D: Roof construction types1Appendix E: Thermal properties and code numbers of layers used in wall and roof description.1Appendix F: Cooling load temperature differences for calculating cooling load from roofs.1	Appendix A: U-F	actors for Various Fenestration Products in W/ (m ² .K)	107
 Appendix C: Visible Transmission (VT), Shading Coefficient (SC), and Solar Heat Gain Coefficient (SHGC) at Normal Incidence for Single Pane Glass and Insulating Glass Appendix D: Roof construction types Appendix E: Thermal properties and code numbers of layers used in wall and roof description. Appendix F: Cooling load temperature differences for calculating cooling load from roofs. 	Appendix B: July	solar cooling load for sunlit glass	109
Appendix D: Roof construction types 1 Appendix E: Thermal properties and code numbers of layers used in wall and roof description. 1 Appendix F: Cooling load temperature differences for calculating cooling load from roofs. 1	Appendix C: Visi Gai and	ble Transmission (VT), Shading Coefficient (SC), and Solar He in Coefficient (SHGC) at Normal Incidence for Single Pane Gla Insulating Glass	eat Iss 110
Appendix E: Thermal properties and code numbers of layers used in wall and roof description. 1 Appendix F: Cooling load temperature differences for calculating cooling load from roofs. 1	Appendix D: Roo	of construction types	111
Appendix F: Cooling load temperature differences for calculating cooling load from roofs. 1	Appendix E: The des	rmal properties and code numbers of layers used in wall and roc cription.	of 112
	Appendix F: Coo froi	ling load temperature differences for calculating cooling load m roofs.	113

LIST OF FIGURES

FIGURES	LIST OF FIGURES	PAGES
Figure 2.1	: Change in primary energy by geography (Source: Statistical review of world energy by bp, 2022)	11
Figure 2.2	: Change in primary energy by fuel (Source: Statistical review of world energy by bp, 2022)	12
Figure 2.3	: Changes in CO ₂ emissions from energy (Source: Statistical review of world energy by bp, 2022)	13
Figure 2.4	: Overview of 50-year policy evolution in energy efficiency in buildings in the EU (Source: Economidou et al., 2020)	s 16
Figure 2.5	: Progress of Energy Performance Certificate (EPC) approval in Sweder Segmentation and shading represent different data schemas used for declarations from version 1.0.1 in 2007 to version 2.4 (Source: Pasichnyi et al., 2019)	n. 17
Figure 2.6	: Components of cooling load (Source: Sajjad et al., 2020)	28
Figure 2.7	: Schematic Diagram Showing the CLTD methodology (Source: Oktay al., 2020)	et 31
Figure 2.8	: Room thermal dynamics and cooling load conversion process: a) all-ai system; b) radiant system (Source: Ning et al., 2022)	r 33
Figure 2.9	: Cooling load calculation procedure for the revised RTSM (Source: Nin et al., 2022)	ng 33
Figure 2.1	0 : General input data of thermal simulation engine (Source: Bahar et al. 2013)	, 35
Figure 2.1	1: Workflow to produce a thermal simulation model (Source: Bahar et a 2013)	ıl., 36
Figure 2.1	2: General schematic of a machine learning workflow (Source: Chagant et al., 2022)	i 37
Figure 3.1	: An aerial view of Covenant University campus (Source: Google Earth)) 44
Figure 3.2	: Section through a wall showing each layer's thermal resistances (R-value) (Source: Di Foggia, 2018)	56
Figure 3.3	: Section through a roof showing each layer's thermal resistances (R-value) (Source: Di Foggia, 2018)	57
Figure 3.4	: Solar angles for vertical and horizontal surfaces (Source: Mahbobur Rahman, 2019)	58
Figure 3.5	: Time lag of heat transferred through a sunlit wall into a space (Source: Xu et al., 2022)	59

Figure 3.6: Incident radiation on a glass (Source:	
https://en.wikipedia.org/wiki/Solar_gain)	61
Figure 3.7: Conceptual framework for the cooling load optimisation model	71
Figure 4.1: Choice of orthogonal arrays for Taguchi design	75
Figure 4.2: Signal to Noise ratio for cooling load model parameters	85
Figure 4.3: Standardized Effects Illustrated via a Pareto Diagram	89
Figure 4.4: Residual plots for the cooling load	90

LIST OF PLATES

PLATE	LIST OF PLATES	PAGES
Plate 3.1: (Covenant University cafeteria 1	47
Plate 3.2: (Covenant University chapel	47
Plate 3.3: (Covenant University library	48
Plate 3.4: (Covenant University Guest House	49
Plate 3.5: (Covenant University health centre	49

LIST OF TABLES

FIGURES	S LIST OF FIGURES P	PAGES
Table 2.1:	Primary energy consumption by region in Exajoule (EJ) (Source: Statistical review of world energy by bp, 2022)	11
Table 2.2 :	Emissions by region in Million Tonnes of Carbon dioxide (MTCO) (Source: Statistical review of world energy by bp, 2022)	13
Table 3.1:	Cooling Load Temperature Differences (CLTD) for conduction through glass (Source: 1997 ASHRAE Handbook – Fundamentals)	n 61
Table 3.2 :	Representative rates at which heat, and moisture are given off by Huma Beings in different states of activity (Source: 1997 ASHRAE Handbook – Fundamentals)	n k 63
Table 3.3 :	Cooling Load Factor (CLF) for People (Source: 2021 ASHRAE Handbook – Fundamentals)	65
Table 3.4:	Estimates of infiltration airflow, air changes per hour (Source: 1997 ASHRAE Handbook – Fundamentals)	68
Table 4.1:	Descriptive characteristics of the study area	73
Table 4.2 :	The descriptive characteristics of the research areas as a whole	73
Table 4.3:	Performance Levels of Cooling Load Variable	74
Table 4.4:	Cooling load model parameters	74
Table 4.5:	Parameters of the cooling load model in a L27 orthogonal array	76
Table 4.6:	Thermal resistance values and corresponding identification codes for the layers comprising the roof structure.	e 77
Table 4.7:	Thermal resistance values and their associated identification code for th layers used in external walls configurations.	e 79
Table 4.8:	Cooling load model parameters and cooling load components of each of the selected buildings	f 82
Table 4.9:	L_{27} Orthogonal array of cooling load model parameters and cooling load components	ad 83
Table 4.10): Response table for Signal to Noise ratio	84
Table 4.11	1: Optimal level for each factor of the cooling load model	85
Table 4.12	2: Best subset regression showing the total versus the cooling load model parameters.	l 86
Table 4.13	3: Comparison of model 7 and 8	87
Table 4.14	I: Analysis of Variance (ANOVA) and estimated coefficient of the regression model	87
Table 4.15	5: Summary of model performance	89

Table 4.16: Actual cooling loads vs predicted cooling loads of the selected buildings.

NOMENCLATURE

Abbreviations

ACH	Air Change per Hour
AI	Artificial Intelligence
AIC	Akaike's Information Criterion
ANOVA	Analysis of Variance
BIC	Bayesian Information Criterion
CIS	Commonwealth of Independent States
CLF	Cooling Load Factor
CLTD/TA	Cooling Load Temperature Difference/Time Averaging
DOE	Design of Experiments
EJ	Exajoules
EPED	Energy Performance of Building Directive
EPC	Energy Performance Certificates
EU	European Union
GHG	Greenhouse Gas Emissions
GRA	Grey Relational Analysis
GTM	Grey-Taguchi Method
HAP	Hourly Analysis Program
HEI	Higher Education Institution
HBM	Heat Balance Method
HVAC	Heating Ventilation and Airconditioning
IEA	International Energy Agency
IPCC	Intergovernmental Panel on Climate Change
MAPE	Mean Absolute Percentage Error
MTCO	Million Tonnes of Carbon dioxide
P4P	Pay for Performance
PRESS	Predicted Residual Sum of Squares
RTSM	Radiant Time Series Method
Q	Heat gain by conduction
U/U-factor	Overall heat transfer coefficient
А	Area of the surface
S	Standard Deviation of the Residuals

S/N	Signal to Noise Ratio
Seq SS	Sequential Sum of Squares
SC	Shading Coefficient
SCL	Solar Cooling Load
SDGs	Sustainable Development Goals
SHGC	Solar Heat Gain Coefficient
TFM	Transfer Function Method
VIF	Variance Inflation Factor
ZEB	Zero Energy Building

Greek Letters

ΔT	Dry-bulb Temperature Difference Across the Surface
η	The Signal-to-Noise Ratio Coefficient
m	The Total Number of Observations

Superscript

R^2	Coefficient of Determination
Z_{ij}^2	The Noise component for the ith Observation and jth Variable

Subscript

A_w	Area of Wall
Cooling load _{actual}	The Actual Cooling Load of the Space
Cooling load _{pred}	The Predicted Cooling Load of the Space
F _{sa}	Light Special Allowance Factor
F_u	Usage Factor
F _r	Radiation Factor
F _{ul}	Light Use Factor
N _b	Number of Lighting Points
N_p	Number of Persons
P_e	Power Rating of Equipment
Q_{equip}	Sensible Heat Gain for Equipment
Q_{latent}^{infil} , Q_{il}	Latent Heat of Infiltration
$Q_{sensible}^{infil}$, Q_{is}	Sensible Heat of Infiltration

Q_{light} , Q_{li}	Heat Gain from Lighting
Q_{latent}^{people} , Q_l	Latent Heat Gain from People
$Q_{sensible}^{people}, Q_s$	Sensible Heat Gain from People
Q_{wall}	Heat Gain by Conduction Through the Wall
Q_{roof}	Heat Gain by Conduction Through the Roof
$Q_{radiated}^{window}, Q_{wr}$	Solar Radiation Through a Window
Q_{window} , Q_{wi}	Heat Conduction Through Windows
R_a	Roof Area
R _{aluminium foil}	Thermal Resistance of Aluminium Foil
<i>R_{ceiling}</i>	Thermal Resistance of Ceiling
R _{cement plaster}	Thermal Resistance of Cement Plaster
R _{glasswool}	Thermal Resistance of Glasswool
$R_{Gypsum\ plaster}$	Thermal Resistance of Gypsum Plaster
$R_{hollowcementblock}$	Thermal Resistance of a Hollow Cement Block
R _{moving air}	Thermal Resistance of the Moving Air
R _{still air}	Thermal Resistance of Still Air
R _{zinc}	Thermal Resistance of Zinc
$S/_N$ ratio _{LTB}	Signal to Noise Ratio (larger-the-better)
$S/_N$ ratio _{STB}	Signal to Noise Ratio (smaller-the-better)
T _o	Outdoor Dry-bulb Temperature
T_i	Indoor Dry-bulb Temperature
V_s	Volume of Space
W _a	Window Area
W_b	Wattage of Lighting

ABSTRACT

Amid the escalating global energy usage and carbon dioxide (CO₂) emissions originating from buildings, energy efficiency has become a topmost concern for energy policies across various nations. The problem is further amplified by the rapid surge in the usage of air conditioning systems, predominantly in the developing countries' infrastructure, influenced by higher living standards, modern architectural designs, and a preference for cooler indoor environments. The central aim of this research is to devise a cooling prediction model utilizing Taguchi orthogonal array and ANOVA techniques to optimise cooling loads in buildings, using Covenant University as a case study. The study primarily targets the compelling issue of energy inefficiency in selected buildings in Covenant University, with a special focus on improving energy efficiency through cooling load optimisation. Results of the investigation offered a predictive model which accounted for an impressive 98.51% of the cooling load variation, underpinned by an R^2 value of 98.51% and an adjusted R^2 value of 98.08%. The study further illuminated that the application of the model to the selected buildings showcased mixed outcomes. The university library's cooling load, originally at 137582.31W, was refined to 136816.11W, reflecting a 0.56% MAPE. The university chapel, starting with a cooling load of 149224.61W, experienced an optimisation down to 143776.22W, showcasing a 3.65% MAPE. Cafeteria 1 underwent a transition from its 110380.99W to a lower 108323.48W, marking a 1.86% MAPE. For the university Guest House, its initial cooling load of 89953.43W was pruned to 85393.19W, translating to a 5.07% MAPE. However, the Health Centre's cooling load escalated from 52494.41W to 53748.80W, resulting in a 2.39% MAPE. Further illuminating the study, the influence of key factors on the cooling load was discerned. The area of the roof (R_a) emerged as the most potent influence, followed closely by the number of occupants (N_p) , the wall area (A_w) , and the power rating of equipment (Pe). Beyond pure statistics, the exploration extended into tangible engineering solutions conducive for energy conservation in the studied buildings. Techniques encompassed retrofitting with energy-efficient windows, the inclusion of dynamic building shading, optimisation of HVAC system operations, the integration of automated lighting and energy management systems, and the contemplation of alternative cooling mechanisms, such as evaporative cooling. Conclusively, this research not only furthers the understanding of building energy efficiency but also furnishes a blueprint for the effective application of energy conservation policies amidst the global urgency for sustainable practices. The data-driven insights presented here are crucial for energy planners, architects, and university authorities, laying a foundation for more energyefficient building operations.