STRUCTURAL BEHAVIOUR OF FIRE-DAMAGED REINFORCED CONCRETE BEAMS RETROFITTED WITH BAMBOO FIBRE LAMINATE

AKIN-ADENIYI, AYOMIDE JOHN (20PCI02280)

AUGUST, 2023

STRUCTURAL BEHAVIOUR OF FIRE-DAMAGED REINFORCED CONCRETE BEAMS RETROFITTED WITH BAMBOO FIBRE LAMINATE

BY

AKIN-ADENIYI, AYOMIDE JOHN (20PCI02280) B.Sc. Civil and Environmental Engineering, University of Lagos

DISSERTATION SUBMITTED TO A THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE **REQUIREMENTS FOR THE AWARD OF THE MASTER OF** ENGINEERING (M.Eng) DEGREE IN CIVIL ENGINEERING IN THE DEPARTMENT OF CIVIL ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY, OTA, OGUN STATE

AUGUST, 2023

ACCEPTANCE

This is to attest that this dissertation has been accepted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (M.Eng) in Civil Engineering in the Department of Civil Engineering, College of Engineering, Covenant University, Ota, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, **AKIN-ADENIYI, AYOMIDE JOHN** (**20PCI02280**) declare that this dissertation is a representation of my work and is written and was carried out by me under the supervision of Dr. Paul O. Awoyera of the Department of Civil Engineering, College of Engineering, Covenant University, Ota, Nigeria. I attest that this dissertation has in no way been submitted either wholly or partially to any other university or institution of higher learning for the award of any degree. All information cited from published and unpublished literature has been duly referenced.

AKIN-ADENIYI, AYOMIDE JOHN

Signature and Date

CERTIFICATION

This is to certify that the research work titled **"STRUCTURAL BEHAVIOUR OF FIRE-DAMAGED REINFORCED CONCRETE BEAMS RETROFITTED WITH BAMBOO FIBRE LAMINATE"** is an original work carried out by **AKIN-ADENIYI, AYOMIDE JOHN** and meets the requirements and regulations governing the award of a Master of Engineering (M.Eng) degree in Civil Engineering from the Department of Civil Engineering, College of Engineering, Covenant University, Ota, Nigeria and is approved for its contribution to knowledge and literary presentation.

Dr. Paul O. Awoyera (Supervisor)

Prof. Anthony N. Ede (Head of Department)

Prof. Joseph O. Akinyele (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) **Signature and Date**

Signature and Date

Signature and Date

Signature and Date

DEDICATION

I dedicate this research work to the Almighty God, the source and giver of wisdom, knowledge and understanding whose grace and mercy kept me throughout this program. I also dedicate this research work to my parents, siblings, and friends whose words of encouragement kept me pushing even up until the end of this program.

ACKNOWLEDGEMENTS

My utmost thanks go to the Almighty God for the gift of life, strength, grace, and opportunity to start and complete this dissertation.

I want to acknowledge and express my gratitude to Dr, David O. Oyedepo, the Chancellor of Covenant University whose vision and standards have provided an astounding platform for me to obtain this degree. I would also like to express my gratitude to the management team of Covenant University, which is capably led by the Vice Chancellor, Professor Abiodun H. Adebayo, the Registrar, Mrs. Regina Tobi-David, the Dean of SPS, Professor Akan B. Williams, the Sub-dean, Dr. Emmanuel O. Amoo, and the Dean of the College of Engineering, Professor David O. Olukanni.

My sincerest appreciation goes to my supervisor, Dr. Paul O. Awoyera for his insightful direction and unwavering support during this process. I'm really grateful to him because he made certain that I put in the appropriate work, kept me on my toes and ensured that I remained consistently focused. It was indeed a great opportunity for me to work under his supervision.

Furthermore, I would like to appreciate the entire management of Civil Engineering under the leadership and guidance of Professor Anthony N. Ede, past and present postgraduate Coordinators, Dr. Gideon O. Bamigboye and Dr. Oluwarotimi Olofinnade for the administrative support, helpful assistance and advice throughout the course of this programme, Prof. David Omole, Dr. Olatokunbo Ofuyatan, Dr. Isaac I. Akinwumi, Dr. Solomon Oyebisi, Dr. Benjamin Oyegbile, Dr. Mark, Engr. Abimbola Odetoyan, and Engr. John Oluwafemi for their reviews and support throughout my program.

Special thanks to Engr. Jolayemi Joshua for his hands on support, advice, and readiness to always be of help anytime I needed his help. My appreciation also goes to Mr. Idowu and Mr. David for their support also.

My regards to my colleagues, Joshua Adebesin and Jotham Kamlenga and my friends who are too many to be mentioned for their ideas, support, and encouragement.

Lastly, I would love to express my deepest gratitude to my parents, siblings, and other family members for being a great source of support and motivation to me.

TABLE OF CONTENTS

CONTENTS PAGES **COVER PAGE** ii ACCEPTANCE iii **DECLARATION** iv **CERTIFICATION** v **DEDICATTION** vi ACKNOWLEDGEMENT vii **TABLE OF CONTENTS** viii LIST OF FIGURES xi LIST OF TABLES xii LIST OF PLATES xiv LIST OF ABBREVIATIONS XV ABSTRACT xvi **CHAPTER ONE: INTRODUCTION** 1 1.1 Background of the study 1 **1.2 Problem Statement** 4 1.3 Aim of the study 4 1.4 Objectives of the study 5 5 1.5 Justification for the study 1.6 Scope of the study 6 **CHAPTER TWO: LITERATURE REVIEW** 7 2.1 Overview 7 2.2 Non-destructive Tests 9 2.2.1 Rebound Hammer 9 9 2.2.2 Ultrasonic Pulse Velocity 2.3 Residual Mechanical Properties of Concrete 11 2.3.1 Residual Compressive Strength 15 2.3.2 Residual Tensile Strength 21 2.4 Structural Retrofitting of RC structures 25 2.5 Reinforced Concrete Jacketing 26 2.6 Fibre reinforced polymers 26 2.6.1 Carbon fibre-reinforced polymers 28 2.6.2 Glass fibre-reinforced polymers 37 2.7 Bamboo Fibre 40

2.8 Retrofitting using Natural Fibres	41
2.9 Retrofitting using Bamboo Fibre	41
2.10 Findings and Relevant Gaps in Knowledge	42
CHAPTER THREE: MATERIALS AND METHODS	43
3.1 Experimental Programme	43
3.2 Designation of samples	43
3.3 Materials	43
3.3.1 Epoxy Polymer Matrix	43
3.3.2 Sikadur 31CF Adhesive	43
3.3.3 Concrete mixture	44
3.4 Beam Details	44
3.5 Beam Fabrication	45
3.6 Fire Exposure	46
3.7 Bamboo Fibre Preparation	47
3.8 BFRP Laminate Fabrication	48
3.9 Strengthening Technique	49
3.10 Experimental Tests	51
3.10.1 Weight Loss Test	51
3.10.2 Slump Test	51
3.10.3 Schmidt Rebound Hammer Test	51
3.10.4 Ultrasonic Pulse Velocity Test	51
3.10.5 Compressive Strength Test	52
3.10.6 Split Tensile Strength Test	52
3.10.7 Four-point Bending Test Setup	53
CHAPTER FOUR: RESULTS AND DISCUSSION	54
4.1 Introduction	54
4.2 Weight Loss of Beams	54
4.3 Rebound Number and Compressive Strength	54
4.4 Ultrasonic pulse velocity and compressive strength and split tensile strength	55
4.5 Effect of temperature on compressive and split tensile strength	56
4.6 Effect of temperature on flexural strength	58
4.6.1 Control Beam	58
4.6.2 Fire-Damaged Beam	58

4.6.3 Retrofitted Fire-Damaged Beam	60
4.6.4 General Comparative View of the Tested Beam Samples	62
4.7 Beam Failure Modes and Crack Patterns	63
4.8 Comparison with Parallel Research	
4.8.1 Compressive Strength	64
4.8.2 Split Tensile Strength	64
4.8.3 Flexural Strength	65
4.9 BFRP Fabrication Cost Analysis	

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS	
5.1 Summary	68
5.2 Conclusions	68
5.3 Contributions to Knowledge	68
5.4 Recommendations	69

REFERENCES	
APPENDIX	

LIST OF FIGURES

FIGUR	ES TITLE OF FIGURES	PAGES
2.1	Fire evaluation checklist	8
2.2	Residual compressive strength	16
2.3	Residual tensile strength	22
2.4	Composition of FRP composites	27
2.5	Percentage change in ultimate strength of heat-damaged RC beam before and after repair using CFRP	32
2.6	Percentage change in mid-span deflection of heat-damaged RC beam before and after repair using CFRP	32
2.7	Percentage change in ultimate strength of heat-damaged RC beam before and after repair using GFRP	38
2.8	Percentage change in mid-span deflection of heat-damaged RC beam before and after repair using CFRP	38
3.1	Beam reinforcement details	45
4.1	Relationship between beam weight loss and temperature	54
4.2	Plot of RN against predicted and actual compressive strength values	55
4.3	Relationship between CS and UPV	55
4.4	Relationship between split tensile strength and UPV	56
4.5	Relationship between compressive strength and temperature	57
4.6	Relationship between split tensile strength and temperature	57
4.7	Load-deflection plot for control beam	58
4.8	Load-deflection plot for beam B-400	59
4.9	Load-deflection plot for beam B-600	59
4.10	Load-deflection plot for beam B-800	60
4.11	Load-deflection plot for beam RB-400	61
4.12	Load-deflection plot for beam RB-600	61
4.13	Load-deflection plot for beam RB-800	61
4.14	Relationship between flexural strength and temperature	62
4.15	Normalized CS of concrete at different temperatures from literature	64
4.16	Normalized split tensile strength of concrete at different temperatures	
	from literature	65

LIST OF TABLES

TABI	LES TITLE OF TABLES	PAGES
2.1	Summary of relationship between residual compressive strength and UPV from previous studies	om 10
2.2	Summary of data on residual mechanical properties of concrete	13
2.3	Residual compressive strength	18
2.4	Residual tensile strength	23
2.5	Findings from utilizing CFRP sheets to strengthen heat-damaged RC beams	33
2.6	Findings from utilizing CFRP sheets to strengthen heat-damaged RC beams	39
3.1	Mechanical properties of Sikadur 31CF adhesive	44
4.1	Summary of behaviour of beam in flexure	62
4.2	Cost analysis for production of a single beam	67
4.3	Cost analysis for fabrication of bamboo fibre laminate	67
5.1	Periodic UPV test results on cubes	82
5.2	Periodic UPV test results on cylinders	82
5.3	Fire-damaged cubes UPV test results	82
5.4	Fire-damaged cylinders UPV test results	82
5.5	Fire-damaged beams UPV test results	83
5.6	Periodic compressive strength test results	83
5.7	Fire-damaged cubes compressive strength test results	83
5.8	Periodic split tensile strength test results	84
5.9	Fire-damaged cylinders split tensile strength test results	84
5.10	Periodic rebound hammer test results on cubes	84
5.11	Periodic rebound hammer test results on cylinders	85
5.12	Fire-damaged cubes rebound hammer test results	85
5.13	Fire-damaged cylinders rebound hammer test results	85
5.14	Beam rebound hammer test results	85
5.15	Load-deflection response of control beam	86
5.16	Load-deflection response of beam B-400	87

5.17	Load-deflection response of beam B-600	88
5.18	Load-deflection response of beam B-800	89
5.19	Load-deflection response of beam RB-400	90
5.20	Load-deflection response of beam RB-600	91
5.21	Load-deflection response of beam RB-800	92

LIST OF PLATES

PLATE	S TITLE OF PLATES	PAGES
2.1	Modes of failure for beams impaired by fire at 400°C repaired with various	
	profiles of CFRP ropes	30
3.1	Picture showing (a) cement (b) fine aggregate (c) coarse aggregate used	44
3.2	Picture showing (a) Plywood formwork (b) Steel reinforcement	45
3.3	Picture showing reinforcement placed inside the formwork	46
3.4	Picture showing the beams inside the curing tank	46
3.5	Image showing beam, cubes, and cylinders inside the furnace	47
3.6	Image showing the furnace used	47
3.7	Bamboo Fibre Preparation (a)Treatment (b) Drying (c) Sorting	48
3.8	BFRP laminate fabrication	49
3.9	Fabricated BFRP laminate	50
3.10	Application of adhesive on the beam and laminate	50
3.11	Slump test	51
3.12	(a) Rebound hammer test (b) UPV test	52
3.13	(a) Compressive strength test (b) Split tensile strength test	52
3.14	Four-point bending test setup	53
4.1	Crack pattern of control beam	63
4.2	Crack pattern of fire-damaged beam	63
4.3	Crack pattern of retrofitted fire-damaged beam	63

LIST OF ABBREVIATIONS

- RC Reinforced Concrete
- FRP Fibre Reinforced Polymer
- NFPA National Fire Protection Association
- RCJ Reinforced Concrete Jacket
- GFRP Glass Fibre Reinforced Polymer
- AFRP Aramid Fibre Reinforced Polymer
- CFRP Carbon Fibre Reinforced Polymer
- NSM Near Surface Mounted
- EBR Externally Bonded Reinforcement
- BFRP Bamboo Fibre Reinforced Polymer
- SDG Sustainable Development Goals
- ASTM American Society for Testing and Materials
- NDT Non-destructive Test
- PDT Partially Destructive Test
- RH Rebound Hammer
- CS Compressive Strength
- UPV Ultrasonic Pulse Velocity
- RN Rebound Number
- PVA Polyvinyl Alcohol
- PP Polypropylene
- HDPE High Density Polyethylene
- LDPE Low Density Polyethylene
- PVC Polyvinyl Chloride
- PALF Pineapple Leaves Fibre
- KFRP Kenaf Fibre Reinforced Polymer
- BFCP Bamboo Fibre Composite Plate
- ITZ Interfacial Transition Zone

ABSTRACT

Fire occurrences in building is becoming increasingly frequent as a result of accidents, the presence of combustible items in buildings, particularly residential buildings, and other potential sources of fire. When there is a fire occurrence in a building, the structural integrity of such building is affected. In order for such building to be habitable again, it has to either be strengthened or rebuilt. The common practice for fire-damaged buildings is to be abandoned or demolished, whereas such buildings could be assessed and strengthened for it to regain its initial load carrying capacity. Several studied have investigated methods for strengthening reinforced concrete (RC) beams impaired by fire using synthetic FRP composites but little or no studies has been done on the usage of natural FRP composite to strengthen a RC beam impaired by fire. This study investigated the usage of bamboo fibre laminate to retrofit a fire damaged RC beam and the structural behaviour of the beam was observed. Eight RC beams were designed, cast, and reinforced normally. Two of the beams were the control samples. The remaining six beams were exposed to three different temperatures (400, 600 and 800 $^{\circ}$ C) in pairs of two. One out of each pair was retrofitted with bamboo fibre laminate. Subsequently, each beam underwent testing until failure, with loads increasing in 0.5 tons increment. The outcomes revealed that the utilization of bamboo fibre laminate had the capability to enhance both the ability to carry load and deflection characteristics of a beam that had been impaired by fire. For beams exposed to 400 °C the load-carrying capacity returned to that observed in the control beam and the deflection was increased by 48.78% in relation to the control beam. In the case of beams exposed to 600 °C, the bamboo fibre laminate increased the load-carrying capacity by 29.5% beyond that of the unstrengthened fire-damaged beam but 5% less than the control beam. The deflection was also increased by 39.37% relative to the control beam. When considering beams exposed to 800 °C, the bamboo fibre laminate increased the ability to carry load by 37% beyond the unstrengthened fire-damaged beam but 10% less than the control beam. The deflection was also increased by 4.83% relative to the control beam. This study demonstrated that bamboo fibre laminate is a viable alternative for strengthening fire-damaged beams instead of using synthetic fibres.

Keywords: RC beam; bamboo fibre; fibre reinforced polymer; impaired, fire, fire-damaged beam; strengthening; load-carrying capacity.