CDPK5 AND MSP1 GENE MODULATION AND *IN VITRO* PARASITE INHIBITION BY MCL OR ITS COMBINATION WITH ARTEMISININ

OKAFOR, ESTHER OGECHI (21PCP02254) B.Sc Biochemistry, Federal University Otuoke, Bayelsa State, Nigeria

AUGUST 2023

CDPK5 AND MSP1 GENE MODULATION AND *IN VITRO* PARASITE INHIBITION BY MCL OR ITS COMBINATION WITH ARTEMISININ

BY

OKAFOR, ESTHER OGECHI (21PCP02254) B.Sc Biochemistry, Federal University Otuoke, Bayelsa State, Nigeria

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE, (M.Sc) IN BIOCHEMISTRY IN THE DEPARTMENT OF BIOCHEMISTRY, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

AUGUST 2023

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of Master of Science (M.Sc.) degree in Biochemistry in the Department of Biological Sciences, College of Science and Technology, Covenant University Ota, Ogun State, Nigeria.

Ms. Adefunke F. Oyinloye

(Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams

(Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, OKAFOR, ESTHER OGECHI (21PCP02254) declare that I carried out this research under the supervision of Dr. Titilope M. Dokunmu of the Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria. I attest that the dissertation has not been presented wholly or partially for the award of any degree elsewhere. All the sources of materials and scholarly publications used in the dissertation have been duly acknowledged.

OKAFOR, ESTHER OGECHI

Signature and Date

CERTIFICATION

We certify that this dissertation titled "CDPK5 AND MSP1 GENE MODULATION AND *In vitro* PARASITE INHIBITION BY MCL OR ITS COMBINATION WITH ARTEMISININ" is an original work carried out by OKAFOR, ESTHER OGECHI (21PCP02254) in the Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria, under the supervision of Dr. Titilope M. Dokunmu. We have examined and found the work acceptable as part of the requirements for the award of a degree of Master of Science (M.Sc.) in Biochemistry.

Dr Titilope M. Dokunmu (Supervisor)

Prof. Israel S. Afolabi (Head of Department)

Prof. Adedoyin Igunnu (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This report is dedicated to the almighty God, the giver, and sustainer of life, for His unconditional love and mercy granted to me through this project. And to my parents Mr. and Mrs. Okafor and siblings for their constant love and support.

ACKNOWLEDGEMENTS

I want to begin by thanking the Lord God Almighty for His mercies, grace, and strength throughout this work.

I would like to thank the Chancellor of Covenant University, Dr. David Oyedepo for his visionary and exemplary leadership that established this great citadel of learning and has continued to inspire me to work towards achieving my set goals. I also thank you sir for your continued prayers and prophetic declarations over Covenant University students as a whole.

I would like to acknowledge the faculty and staff of the Biochemistry department most especially the head of the department Prof. Israel S. Afolabi, and the Biochemistry Post graduate coordinator Dr. Titilope M. Dokunmu for their leadership roles. I would like to thank my supervisor, Dr. T.M. Dokunmu, for guiding me through this work. May God almighty richly bless you and your families.

I am highly indebted to all the members of Covenant University Bioinformatics Research Cluster (CUBRe); especially Prof. Ezekiel Adebiyi, for funding my M.Sc. My sincere appreciation goes to the World Bank-Funded Covenant Applied Informatics and Communications Africa Center of Excellence (CApIC-ACE) for funding my research project and the management, faculty and students at CApIC-ACE.

I also appreciate all the Faculty members of the Biochemistry unit for their comments, remarks, corrections and helpful tips during the presentation of this work. Also, to the Management and Staff of the Department of Biochemistry, Covenant University for providing an enabling environment needed to carry out this research. I also say a big thank you to Prof. O.O. Ajani in Chemistry Department, Covenant University for all the support and assistance.

I definitely would not forget to express my deepest appreciation to my parents, Mr. and Mrs. Okafor for their support and encouragement financially, morally and spiritually. I pray that God Almighty continues to protect you and bless the works of your hands. I would also say a big thank you to my siblings, best friend (Mercy) and boyfriend (Oluwatimileyin) for their loveand support. May God Almighty continue to protect you and I wish you success in your endeavors.

TABLE OF CONTENTS

COV ACC DEC CEH DEI ACI LIS' LIS' ABH	NTENTS VER PAGE CEPTANCE CLARATION RTIFICATION DICATION KNOWLEDGEMENTS T OF TABLES T OF FIGURES BREVIATIONS STRACT	PAGES ii iii iv v vi vii xii xiii xiii xiii
CHA	APTER ONE	1
INT	RODUCTION	1
1.1	Background to the study	1
1.2	Statement of Problem	4
1.3	Research Questions	4
1.4	Aim and Objectives of the Study	4
1.5	Justification for the Study	5
1.6	Scope of the Study	5
CH	APTER TWO	6
LIT	ERATURE REVIEW	6
2.1 I	Plasmodium falciparum Lifecycle and Development	6
2.2 1	Drug Targets Under Study	10
2.	2.1 <i>Plasmodium falciparum</i> Calcium-dependent Protein Kinases (<i>PfCDPK5</i>)	10
2.	2.2 Merozoite Surface Protein (MSP)	11
2.3 (Classes of Antimalarials	14
2.	3.1 Quinolones	16
2.	3.2 Artemisinin	18
2.4	Antimalarial Drug Resistance	20
2.5	Antimalarial Drug Development	24
CHA	APTER THREE	26
MA	TERIALS AND METHODS	26

3.1 Materials 20		
3.1.1 Equipment	26	
3.1.2 Reagents	26	
3.2 Methodology	27	
3.2.1 Study Design	27	
3.2.2 Inclusion/Exclusion criteria	27	
3.2.3 Study population	27	
3.2.4 Study subject	28	
3.2.5 Sample Collection and Preparation	28	
3.2.6 Maintaining culture media and preparing the blood smear	31	
3.2.6.3 Cryopreservation	31	
3.2.7 Drug sensitivity testing	32	
3.2.8 Relative Gene Expression Study	33	
3.3 Methods of statistical analysis		
CHAPTER FOUR		
RESULTS		
4.1 In vitro Study		
4.1.1 Parasite Clearance	63	
4.1.2 In vitro antiplasmodial activity of MCL and combination on wild s	train	
Plasmodium falciparum (3D7)	45	
4.2 Relative gene expression study	48	
4.2.1 Relative gene expression (ΔCt) of <i>Pf</i> MSP1 in ART, MCL and ART+MCL per	r day	
	48	
4.2.2 Relative gene expression (Δ Ct) of <i>PfCDPK</i> in ART, MCL and combination	n per	
day	48	
CHAPTER FIVE 5		
DISCUSSION		
5.1 In vitro Study	51	

5.2 Relative Gene Expression Study	52
CHAPTER SIX	54
CONCLUSION AND RECOMMENDATION	54
6.1 Summary	54
6.2 Conclusion	54
6.3 Contributions to Knowledge	55
6.4 Recommendations	55
REFERENCES	56
APPENDICES	67

LIST OF FIGURES

FIGURE	S TITLE OF FIGURES	PAGE	ES
2.1	The lifecycle of the <i>Plasmodium</i> parasite in mosquitoes and the huma	n host	8
2.2	Stages of P. falciparum		8
2.3	Core Secretory Organelles of the Merozoite		9
2.4	Development of Plasmodium falciparum gamatocytes		9
2.5	Phases of Erythrocytic Invasion		13
2.6	Structure-Activity Relationships of the Quinolone core		17
2.7	Quinoline and quinolone antibiotics		17
2.8	Structures of artemisinin and several representative derivatives		19
2.9	Chemical structure of MCULE-7146940834		25
4.1	Dose-Response Curve for Artemisinin	2	46
4.2	Dose Response Curve for MCL + ART.	2	46
4.3	Dose-Response Curve for MCL.	2	47
4.4	Relative gene expression (Δ Ct) of <i>PfMSP1</i> in ART, MCL and combin	nation p	er
day		2	49
4.5	Relative gene expression (Δ Ct) of CDPK 1 in ART, MCL and combin	nation p	er
day		2	49

LIST OF TABLES

TABLES	TITLE OF TABLES	PAGES
2.1	Classifying Antimalarials by the Life Cycle Stage	15
2.2	Drug-Resistant Antimalarials	22
2.3	Drugs and Resistant Genes	23
3.1	Reagents Required for the Preparation of Culture Medium	30
3.2	Drug Concentrations for Sensitivity Assay	30
3.3	Grouping of the cultured plate for dosing	36
3.4	One-step reverse transcription PCR (RT-PCR) reaction mix for	<i>Pf</i> MSP1
and <i>Pf</i> CDPk	35	37
3.5	One-step reverse transcription PCR (RT-PCR) reaction condi	tion for
PfMSP1 and PfCDPK5 genes		38
3.6	Primer sequence of target genes	39
4.1	The parasite clearance rate of MCL + ART at different concentration	ons 64
4.2	The parasite clearance rate for Artemisinin at different concentratio	ns 44
4.3	The parasite clearance rate of MCL at different concentrations	44
4.4	ANOVA table of the effect of the type of drug and days of administr	ation on
the expression	on of <i>PfMSP1</i>	50
4.5	ANOVA table of the effect of the type of drug and days of administr	ation on
the expression	on of <i>PfCDPK5</i>	50

ABBREVIATIONS

ART	artemisinin
BSA	Bovine Serum Albumin
CQ	chloroquine
DMSO	dimethyl sulfoxide
DNA	Deoxyribonucleic acid
HEPES	2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid
IC ₅₀	50% inhibitory concentration
MSP2	Merozoite Surface Protein 2
MW	molecular weight
PCR	Polymerase chain reaction
PfCRT	P. falciparum Chloroquine esistance transporter gene
<i>Pf</i> MDR1	P. falciparum multidrug resistance gene 1
<i>Pf</i> MRP	P. falciparum multidrug resistance-associated protein
<i>Pf</i> MSP1	Merozoite Surface Protein 1
<i>Pf</i> NHEL	Plasmodium falciparum sodium hydrogen exchanger
RBC	red blood cell
RPMI	Roswell Park Memorial Institute
RSA	ring-stage survival assay
RT	room temperature
WBC	white blood cell
WHO	World Health Organization

ABSTRACT

Recent treatment failures in artemisinin-based combination therapy (ACT) have raised concerns about its efficacy against malaria and emphasize the need to discover new treatment targets and resistance-free drugs. A small molecule (MCULE-7146940834 -MCL) showed inhibitory potential against Plasmodium falciparum, targeting gene families crucial for red blood cell invasion in silico but has not been validated in vitro. This study assesses MCULE-7146940834 in vitro, evaluating its inhibitory concentration (IC50) and gene modulation effects on Merozoite Surface Protein 1 (PfMSP1) and Calciumdependent Protein Kinase (PfCDPK5), both independently and in combination with Artemisinin (ART). *Pf*MSP1 facilitates the attachment and binding of the merozoite to the host RBC, while PfCDPK5, facilitates the secretion of invasion-related proteins and motor function to drive penetration making them promising antimalarial drug targets. Plasmodium falciparum derived from field isolates and the 3D7 strain were cultured within O+ human red blood cells. This cultivation occurred in RPMI 1640 medium supplemented with 10% heat-inactivated human serum, 25 mM HEPES buffer, and 50 µg/ml penicillinstreptomycin. The entire process was carried out under controlled conditions of 5% CO2 at 37°C. Serially diluted drugs of ART, ART+MCL, and MCL were administered to 96well microtitre plates, over 72 hours, with doses incrementing by a factor of 10 from 0 to 100µM. This procedure adhered to the WHO micro-test protocol and involved incubating the substances with parasite culture medium samples at a parasitemia level of 0.2% and a haematocrit of 4% for the same duration. The evaluation of parasitemia was performed microscopically using Giemsa-stained smears. RNA from cultured samples, pre- and posttreatment, was extracted, quantified, and analysed by real-time polymerase chain reaction using primers specific for the PfMSP1 and PfCDPK5 genes and PfGAPDH as an internal reference gene. All assays were carried out in duplicates and analyzed using graph pad prism software at p < 0.05. The outcomes from the analysis of half maximal inhibitory concentrations (IC50) using linear regression demonstrated an in vitro IC50 value of 24.68 μ M for MCL, and a value of 5.006 μ M for the combination of MCL with artemisinin. Relative gene expression (Δ Ct) shows increased expression of *Pf*MSP1 and *Pf*CDPK5 relative to PfGAPDH. These results demonstrated that the MCULE-7146940834 holds promise as a potential candidate for antimalarial drug development, making it a valuable hit compound for subsequent optimization.