DEVELOPING A PREDICTIVE MODEL FOR FACILITATING DRONE LANDING

AKPABIO, INYENEOBONG EFFIONG (14CH017843) B.Sc. Computer Science, Covenant University, Ota Ogun State

AUGUST, 2023

DEVELOPING A PREDICTIVE MODEL FOR FACILITATING DRONE LANDING

BY

AKPABIO, INYENEOBONG EFFIONG (14CH017843) B.Sc. Computer Science, Covenant University, Ota Ogun State

A DISSERTATION, SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTERS OF SCIENCE (M.Sc) DEGREEE IN COMPUTER SCIENCE, DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENENT UNIVERSITY, OTA, OGUN STATE, NIGERIA

AUGUST, 2023

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfillment of the requirements for the award of Master of Science in Computer Science in the Department of Computer Information Science, College of Science and Technology, Covenant University, Ota, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, AKPABIO, INVENEOBONG EFFIONG (14CH017843), declare that this research was carried out by me under the supervision of Prof. Victor C. Osamor of the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria. I attest that the dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation are duly acknowledged.

AKPABIO, INYENEOBONG EFFIONG

Signature and Date

CERTIFICATION

We hereby certify that this dissertation titled "DEVELOPMENT OF A PREDICTIVE MODEL FOR FACILITATING DRONE LANDING" is an original research work carried out by AKPABIO INYENEOBONG EFFIONG (14CH017843) in the Department of Computer Information Science, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof Victor. C. Osamor. We have examined and found this work acceptable as part of the requirements for the award of Master of Science in Computer Science.

Prof. Victor C. Osamor (Supervisor)

Prof. Olufunke O. Oladipupo (Head of Department) Signature and Date

Signature and Date

Prof. Adio T. Akinwale (External Examiner)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DEDICATION

This project is dedicated to Almighty God for his grace, wisdom, provision, and protection all through this program. I also dedicate this project to my family for their support during the span of this program

ACKNOWLEDGEMENTS

My sincere appreciation goes to God Almighty for the life, strength and grace to complete this study. I would also like to thank the following individuals and institutions for their contribution to the successful completion of this research work. The Founder of Covenant University; Bishop David Oyedepo and the Management of the University for providing the opportunity to conduct this research. I thank my parents and my siblings for their unending love and support; financially and emotionally, enabling me to finish this study successfully. I also thank my supervisor; Prof. Victor C. Osamor for his guidance, exceptional academic insight and understanding throughout this study. Finally, my colleagues and members of staff who have been with me and guided me throughout my study, I am truly grateful.

TABLE OF CONTENTS

CON	ITENTS		PAGES
COVER PAGE TITLE PAGE ACCEPTANCE DECLARATION CERTIFICATION DEDICATION ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES ABSTRACT		i ii iv v v vi vii vii xii xii xiii xiv	
СНА	APTER (ONE: INTRODUCTION	1
1.1	Backg	ground to the Study	1
1.2	Staten	nent of the Problem	3
1.3	Signif	ficance of the Study	4
1.4	Aim a	and Objectives	4
1.5	Organ	nization Of Study	5
CHA 2.1	PTER Torne	TWO: LITERATURE REVIEW es and UAVS	6 6
	2.1.1	Brief history of Drones	7
	2.1.2	UAV Control	8
	2.1.3	UAV Communication Network	8
	2.1.4	Components of a UAV	9
2.2	Autor	nomy	11
2.3	Mach	ine Learning	12
	2.3.1	Supervised Learning	13
	2.3.2	Unsupervised Learning	14
	2.3.3	Reinforcement Learning	14
	2.3.4	Evaluation in Machine Learning	14
2.4	Deep	Learning	16
2.5	Computer Vision		17
2.6	Artificial Neural Networks		
2.7	Convo	20	

	2.7.1	Convolution Layer	22
	2.7.2	Pooling Layer	23
	2.7.3	Fully Connected Layers.	24
2.8	Overf	itting	24
	2.8.1	Increasing the Training Data	25
	2.8.2	Fine tuning the Hyper parameters	26
	2.8.3	Model Regularization	26
2.9	Trans	fer Learning	27
2.10	Scene	Classification	28
	2.10.1	Object Detection	28
	2.10.2	2 Semantic Image Segmentation	31
2.11	Relate	ed Works	33
	2.11.1	Landing of UAVs in Static Scenes	33
	2.11.2	2 UAV Landing utilizing Cooperative Targets	34
	2.11.3	3 Machine Learning-Based Solutions	37
	2.11.4	4 Autonomous Drone Landing Dynamic scenes	40
	2.11.5	5 Scene Matching Systems	40
2.12	Autonon	nous Landing of UAVs in Dynamic Scenes	41
CHA	PTER	THREE: METHODOLOGY	43
3.1	Moth		43
3.2		Image Appricition	43
	3.2.1	Detect Preakdown	44
	3.2.2 2.2.2	Data Augmentation	43
	$\begin{array}{c} 5.2.5 \\ 2.2.4 \end{array}$	Data Augmentation	49
2.2	3.2.4 Troini	Data Pre-Processing	49
3.3	1 raim	Non Linearity	54
	222	Rolling Sub Sampling	55
	5.5.Z	Classification Lover	55
2.4	3.3.3 Desis	Classification Layer	33 57
3.4		Functional Dequirement	5/
	3.4.1	runctional Requirement	58
25	5.4.2 T	INON-Functional Requirements	58
5.5	I est l	i ne System	59

CHAPTER FOUR: RESULTS AND DISCUSSION		60	
4.1	.1 Preamble		60
4.2	The Implementation tools used		60
	4.2.1	Model	60
	4.2.2	The Web Prototype Application	63
4.3	System Requirements		64
	4.3.1	Hardware Requirements	64
	4.3.2	Software Requirement	65
4.4	The A	Application Interface	66
4.5	Model Evaluation		70
	4.5.1	Accuracy Evaluation	73
	4.5.2	Performance Evaluation	81

CHAPTER FIVE: CONCLUSION AND RECOMMENDATION		
5.1	Summary	83
5.2	Contribution to Knowledge	83
5.3	Recommendation	83
5.4	Limitation	84
5.5	Conclusion	84

REFERENCES

86

LIST OF FIGURES

FIGURE	TITLE OF FIGURES	PAGES
2.1	Structure of neurons in a neural network	20
2.2	Showing the numeric representation of images in a computer	21
2.3	Detailing the process of the convolution steps	22
2.4	Shows the visual representation of the convolution operation	23
2.5	Optimal Fitting and Over-fitting	25
2.6	Showing standard network and thinned network	27
2.7	Showing the difference between image classification object detection	29
2.8	An example of different vision tasks.	31
2.9	Types of markers or Cooperative targets.	34
3.1	Methodology Overview	43
3.2	E58 Drone Quadcopter equipped with a 4KHD Camera.	44
3.3	Example building image	46
3.4	Example Grass Image	46
3.5	Example crowd image	47
3.6	Example sand image	47
3.7	Example aerial view of trees	48
3.8	Example aerial view of Vehicle	48
3.9	Overview of the transfer learning process and output	51
3.10	Showing an example result of CNN training	54
3.11	The CNN input and output	55
3.12	Image showing non-landing locations	57
4.1	PyCharm IDE	61
4.2	Google Colab utilizing the jupyter notebook	61
4.3	Showing a screenshot of Visual Studio Code IDE	64
4.4	A full interface of the app displaying a vehicle prediction	67
4.5	A full interface of the app displaying a tree prediction	68
4.6	A full interface of the app displaying a grass prediction	68
4.7	A full interface of the app displaying people on grass prediction	69
4.8	A full interface of the app displaying building prediction	69

4.9	Airport terminal	71
4.10	Amusement Park	71
4.11	Apartment Building	72
4.12	Lawn	72
4.13	Showing Accuracy and Loss chart for the model trained from scratch	73
4.14	Showing Accuracy and Loss chart for the model trained from scratch	74
4.15	Showing Accuracy chart for the resnet model	74
4.16	Showing loss chart for the ResNet model	75
4.17	Showing accuracy chart for the InceptionResNet model	75
4.18	Showing loss chart for the InceptionResNet model	76
4.19	Showing accuracy chart for the VGG-16 model	76
4.20	Showing loss chart for the VGG-16 model	77
4.21	Showing loss chart for the Mobinet model	77
4.22	Showing loss chart for the Mobinet model	78
4.23	Showing accuracy chart for the MobinetV2 model	79
4.24	Showing loss chart for the MobinetV2 model	79
4.25	Plot of test accuracy values of the best models after training	80
4.26	Results of the model evaluation for the mobinet model	81

LIST OF TABLES

TABL	ES TITLE OF TABLES	PAGES
2.1	Confusion Matrix sample	16
3.1	Breakdown of images	45
3.2	Neural Network structure	56
4.1	Hardware Requirements (Model Development)	65
4.2	Software Requirements (Web App)	65
4.3	Software Requirement (Model development)	66
4.4	Example model result	67
4.5	Results obtained From Various Architectures	80
4.6	Performance Results of all models trained	82

ABSTRACT

Drones are one of the leading technological improvements of the 21st century and have a wide range of use in different fields of human endeavor: Military, Retail, and Medicine amongst other fields. The increasing use of drone in day to day like unfortunately comes with dangers as the number of damages and injuries increase with the increase in use of drones especially with respect to safely landing of the drones in cases of emergency. In Particular the use of autonomous drones has also seen increase number of usage in recent times. These unmanned aerial vehicles can perform majority of drone activities such as navigation, acceleration, landing, surveillance e.t.c with little to no human intervention. Landing is one such activity that yields dangers such as injury or loss of property. To mitigate this problem, this study aims to develop a model to analyze images and determine if the image represents a landmark that is safe for emergency landing of the drones. Across Literature several approaches exist to achieve autonomous drone landing, it can be broken down broadly into visual and non-visual approaches. Our study focuses on the visual approach, utilizing landmark images captured by the drone live camera. The image will then be processed by the deep learning model that utilizes convolutional neural network that will predict if the image is a safe landmark for landing. The other visual approach involves using a marker or co-operative target to mark where is safe for the drone to land with the obvious drawback of needing to pre-install the marker. Our solution also mitigates the need to have a marker installed before autonomous drone landing can be accomplished.

Keywords: Drones, Drone Landing, Image Classification, CNN, Deep Learning, Machine Learning, Transfer Learning.