DEVELOPMENT OF A WEB BROWSER EXTENSION FOR PHISHING WEBSITE DETECTION USING MACHINE LEARNING

DUROJAIYE, PEACE DUROJAIYE (15CH03729)

B.Sc. Management Information system, Covenant University, Ogun state

DEVELOPMENT OF A WEB BROWSER EXTENSION FOR PHISHING WEBSITE DETECTION USING MACHINE LEARNING

BY

DUROJAIYE, PEACE DUROJAIYE (15CH03729)

B.Sc. Management Information system, Covenant University, Ogun state

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.Sc) DEGREE IN MANAGEMENT INFORMATION SYSTEMS IN THE DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

AUGUST, 2023

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Master of Science in Management Information System in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, DUROJAIYE, PEACE OLUWASEYI (15CH03729), declare that this research was carried out by me under the supervision of Dr. Aderonke A. Oni of the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria. I attest that the dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation are duly acknowledged.

DUROJAIYE, PEACE OLUWASEYI

Signature and Date

CERTIFICATION

We certify that this dissertation titled "DEVELOPMENT OF A WEB BROWSER EXTENSION FOR PHISHING WEBSITE DETECTION USING MACHINE LEARNING" is an original research work carried out by DUROJAIYE, PEACE OLUWASEYI (15CH03729) in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Dr. Aderonke A. Oni. We have examined and found this work acceptable as part of the requirements for the award of Master of Science (M.Sc.) in Management Information System.

Dr. Aderonke A. Oni (Supervisor)

Signature and Date

Prof. Olufunke O. Oladipupo (Head of Department)

Signature and Date

Prof. Olufunke O. Vincent (External Examiner)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DEDICATION

This dissertation is dedicated to God, who is my source of strength, wisdom, inspiration and knowledge. My heartfelt gratitude goes to my parents, Pastor and Pastor (Mrs.) B.A Durojaiye and siblings; Victor, Joy, my twin brother (John) and Victoria for their unending support and encouragement in diverse ways possible. To my colleagues (Favour, Dami, Ope, Emma, Jumoke, Faith and Paul) and loved ones who have been instrumental in their way towards fulfilling this quest, I appreciate you all and may God bless you all abundantly.

ACKNOWLEDGEMENTS

First, I want to acknowledge God Almighty for his mercy and strength that enabled me to carry out this research study efficiently and effectively. I want to specially thank my parents and siblings for all their love and support. Secondly, I want to specially thank my supervisor Dr. Aderonke A. Oni for her effort in making sure this research study was a success and also her guidance and patience and the understanding she impacted unto me, thank you so much ma, May God Almighty continue to bless and protect you. Thirdly, I want to thank and give my regards to the Management and Chancellor of Covenant University for the calm and adventurous environment that has enabled me to pursue my dreams and passion in academics. I also want to appreciate my postgraduate colleagues and friends: Favour Folorunso, Damilola Adeniji, Opeyemi Odetola, Emmanuel Adedire, Faith Adegoke, Jumoke Adeyemi, Paul Owolabi and many others for their support and encouragement in times when things were tough, I celebrate you all.

TABLE OF CONTENT

COI	NTENT	PAGES
COVER PAGE TITLE PAGE ACCEPTANCE DECLARATION CERTIFICATION DEDICATION ACKNOWLEDGEMENTS TABLE OF CONTENT LIST OF FIGURES LIST OF TABLES LIST OF ABBREVIATION ABSTRACT		i iii iv v vi viii xi xii xiii
CHA	APTER ONE: INTRODUCTION	1
1.1	Background to the Study	1
1.2	Statement of the Problem	2
1.3	Aim and Objectives of the Study	3
1.4	Significance of the Study	4
CHA	APTER TWO: LITERATURE REVIEW	6
2.1	Preamble	6
2.2	Conceptual Review	6
	2.2.1 Phishing	6
	2.2.2 Phishing life cycle	7
	2.2.3 Types of Phishing Attacks	9
	2.2.4 Phishing Deceptive Features	11
	2.2.5 Techniques for Phishing Detection	15
	2.2.6 Feature Selection	18
2.3	Related Works	21

CHA	APTER '	THREE: METHODOLOGY	26
3.1	Pream	ble	26
3.2	Data C	Collection and Pre-processing	26
	3.2.1	Data Collection	26
	3.2.2	Exploratory Data Analysis	30
	3.2.3	Data Pre-processing	31
3.3	Evalua	ation of Multiple Models	34
	3.3.1	Modelling	34
	3.3.2	Evaluation	37
3.4	Rule E	Extraction	38
3.5	Brows	er extension implementation	40
CHA	APTER	FOUR: RESULTS AND DISCUSSION	44
4.1	Pream	ble	44
4.2	Data C	Collection	44
	4.2.1	Exploratory Data Analysis	44
4.3	Evalua	ation Results	49
	4.3.1	Decision Tree Classifier Result	49
	4.3.2	Random Forest Classifier Result	50
	4.3.3	Support Vector Classifier (SVC) Result	51
	4.3.4	Logistic Regression Result	52
	4.3.5	Gaussian Naive Bayes Result	53
	4.3.6	Performance Metrics Comparison	54
4.4	Rule E	Extraction	58
4.5	Phishi	Phishing Detection Web-based Platform	
	4.5.1	Handling alert display on page load	59
	4.5.2	URL Input Form	60
	4.5.3	Displaying the result and showing pop-ups messages	61
4.6	Discus	ssion of Findings	63
	4.6.1	Exploratory Data Analysis Findings	63
	462	Machine Learning Model Performance	63

	4.6.3	Rule Extraction and Phishing Detection Browser Extension	64
	4.6.4	Summary of Findings	64
СНА	PTER	FIVE: SUMMARY, RECOMMENDATION AND CONCLUSION	66
5.1	Summ	nary	66
5.2	Contr	ibution to Knowledges	67
5.3	Recor	nmendation	67
5.4	Concl	usion	68
REF1	EREN	C E	69
APP	APPENDIX A: MODEL DETAILS		

LIST OF FIGURES

FIGUR	RES TITLE OF FIGURES	PAGES
2.1	Phishing life cycle	8
2.2	Common phishing attacks used by adversaries for stealing sensitive	
	information	10
2.3	Categories of phishing features	12
3.1	The process flow	27
3.2	Diagram of the Raw Dataset	28
4.1	Result of the first few rows of the dataset	44
4.2	Information about the dataset	46
4.3	Data distribution Result	47
4.4	Correlation heatmap Result	48
4.5	Train Accuracy Comparison	55
4.6	Test Accuracy Comparison	55
4.7	Precision Comparison Result	56
4.8	Recall Comparison Result	56
4.9	F1 Score Comparison Result	57
4.10	Diagram of the Raw Rule extracted	58
4.11	Alert displayed on page load	59
4.12	Form for URL checking	60
4.13	Display result for when its safe.	61
4.14	Display result for when it's a phishing URL	61
4.15	Color Change	62

LIST OF TABLES

TABL	LES TITLE OF TABLES	PAGES
1.1	Summary of Objectives	4
2.2	Comparison of different feature categories	13
2.3	Summarization of the features explored by the literatures	14
2.4	Traditional website phishing detection techniques	15
2.5	Characterization of feature selection methods	18
3.1	URL-based features for detecting phishing websites	28
3.2	Content-based features for detecting phishing websites	29
3.3	External-based features for detecting phishing websites	30
3.4	Decision Tree Model	36
3.5	Random Forest	36
3.6	Support Vector Machine (SVM)	37
3.7	Logistic Regression	37
4.1	Best parameters for Decision Tree	49
4.2	Performance Evaluation for Decision Tree	50
4.3	Best Hyperparameters for Random Forest	50
4.4	Performance Evaluation for Random Forest	51
4.5	Best Hyperparameters for SVM	51
4.6	Performance Evaluation for Decision Tree	52
4.7	Best Hyperparameters for Logistic Regression	52
4.8	Performance Evaluation for Logistic Regression	53
4.9	Performance Evaluation for Gaussian Naive Bayes	53
4.10	Performance Metrics Evaluation	54

LIST OF ABBREVIATION

ABBREIVATIONS MEANING

APWG Anti-Phishing Working Group

ANOVA Analysis of Variance

CFS Correlation based feature selection

CSS Cascading Style Sheet
DNS Domain Name System

DT Decision Tree

ET Extra Tree

GA Genetic Algorithm

GBC Gradient Boosting Classifiers
HTML Hypertext Markup Language

IC3 Internet Crime Complaint Center

IDE Integrated Development Environment

IG Information gain
IP Internet Protocol

KNN K-Nearest Neighbor
LR Logistic Regression

MAE Mean Absolute Error

NB Naïve Bayes

NN Neural Network

PCA Principal component analysis

RF Random Forest

RFE Recursive Feature Elimination

RFSSA Recursive Features Subset Selection Algorithm

RMSE Root Mean Square Error

SAAS Software as a Service

SVM Support Vector Machine

TLD Top-level Domain

URL Uniform Resource Locator

ABSTRACT

Online platforms play a critical role in daily life; however, they expose users to cybersecurity threats, including phishing attacks. This study focuses on developing a web browser extension that utilizes machine learning techniques to identify phishing websites with enhanced accuracy. Five machine learning algorithms - Decision Tree, Random Forest, Support Vector Machine (SVM), Logistic Regression, and Gaussian Naive Bayes - were evaluated for phishing detection using a dataset of 11,430 URLs consisting of 87 features such as URL length, domain age, and web traffic. The study also engaged Exploratory Data Analysis to extract key insights from the dataset. The evaluation reveals the effectiveness of different machine learning models. Metrics like accuracy, precision, recall, and F1 score are provided for each model, highlighting their strengths and limitations. Through cross-validation and careful hyperparameter tuning, the Random model emerges as the most accurate. Rule extraction is then applied to this model, yielding understandable rules that illuminate its decision-making process. Additionally, the study practically applies the developed model through a phishing detection Web Browser Extension. This extension offers real-time website validation and alerts users about potential phishing risks. By seamlessly integrating machine learning into a user-friendly interface, the browser extension empowers users to assess website legitimacy, thereby enhancing online security. This study offers valuable insights into cybersecurity by presenting an efficient machine learning method for the identification and classification of phishing websites. The findings underscore the potential of this model to safeguard sensitive information and counter the rising threat of phishing attacks.

Keywords: Phishing detection, machine learning, Web-based Platform, real-time detection, cybersecurity, browser extension.