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ABSTRACT 

The accurate prediction of essential metabolic genes (i.e., genes necessary for cell survival) 

in eukaryotic organisms is still a difficult task in bioinformatics, especially in pathogenic 

species like Plasmodium falciparum, the malaria causing parasite. The difficulty and cost 

in time and resources of experimental methods has necessitated the use of computational 

methods for gene essentiality prediction. The majority of earlier research in this field 

concentrated on prokaryotes, omitting the complexity of weighted and directed metabolite 

transport in metabolic networks. To overcome this limitation, we developed a Network-

based Machine Learning framework that explored various network properties in 

Plasmodium falciparum using the Genome-Scale Metabolic Model (iAM_Pf480) adopted 

from the BiGG database and essentiality data from the Ogee database. Our machine learning 

framework significantly increased the accuracy of gene essentiality predictions by taking 

into account the weighted and directed nature of the metabolic network and utilising 

network-based features, producing state-of-the-art results with an accuracy of 0.85 and 

AuROC of 0.7. This study expanded our knowledge of the complex nature of metabolic 

networks and their critical function in determining the essentiality of genes. Notably, our 

model identified important genes that were previously classified as non-essential in the 

Ogee database but predicted to be essential. Some of these genes have previously been 

linked to potential drug targets for the treatment of malaria, providing promising new 

research directions. 

 

 

Keywords: Gene essentiality, Constraint-based Analysis, Graph-based analysis, Machine 

Learning, Metabolic Networks 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

The basic function of every biological system is metabolism, which produces energy, the 

components required for cellular development and adaptation, and controls a number of 

biological activities (Sahu et al., 2021). Cellular metabolism is a collection of enzymatic 

events connected to broad functional reactions that occur inside a living cell (Rigoulet et 

al., 2020). As several anabolic and catabolic based mechanisms are of great significance to 

the growth of the cell and its survival, metabolism is proven to be a key factor in the 

treatment of various infectious diseases (Abdel-Haleem et al., 2018). Metabolomics has 

gained popularity in recent years as the field that offers the most comprehensive 

understanding of physiological processes happening within living cells. In a range of 

sectors, from clinical to environmental or even agricultural sciences, it offers useful 

information for disease diagnosis, toxicological research, and therapy follow-up or 

optimization (Cuperlovic-Culf, 2018). 

Metabolic networks are a type of biological networks in which a large number of concurrent 

chemical reactions and transport activities connect chemical molecules and other small 

chemical species, known as metabolites (Rigoulet et al., 2020). The study of metabolic 

modeling, also known as metabolic pathway analysis or metabolic network analysis, has 

made it possible to replicate various intracellular and intercellular processes to better 

understand how organisms work at the systemic level. The properties of the metabolic 

network at the structural, kinetic, and regulatory levels may be inferred from measurements 

of metabolite concentrations and reaction fluxes (Ferreira, Sousa Silva, and Cordeiro, 

2021). These networks are a part of the body of knowledge referred to as network medicine 

which plays a significant role in the medical sciences. These networks have been 

reconFigured in research in order to determine which pharmacological therapy-induced 

changes in network topography can be harmful to the pathogen (Shen et al., 2010). 

A genome-scale metabolic network/s (GSMN/s) is a model constructed to acquire an 

understanding of the metabolic network. They are mathematical representations of 

metabolic networks that are developed from the context-specific annotated genome of a 
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cell/organism (Chiappino-Pepe, Pandey, and Billker, 2021). A list of all biochemical 

processes/reactions in the cell is put together with information on cellular borders, a 

biomass reaction, and exchange reactions with the organism’s/cell’s environment in order 

to rebuild GSMNs, either manually or semi-manually (Freischem, Barahona, and Oyarzún 

2022; Iranzadeh and Mulder, 2019). The mathematical model comprises constraints as 

reactions' upper and lower bound, making it more context specific which is one of the 

fundamental limitations for GSMNs that we will later look at (Chiappino-Pepe et al., 2021; 

Schinn et al., 2021). To define realistic metabolic behavior, they limit the availability/flux 

of nutrients and other metabolites that flow through a reaction per time which gives insight 

on the state of the organism (Hameri et al., 2019). In order to identify and forecast potential 

metabolic fluxes in GSMN, Flux Balance Analysis (FBA), a constraint-based (CB) 

modeling technique, is one of the mathematical optimization techniques used in the study 

of metabolic models (Wu et al., 2016).  This has been found among other applications in 

gene essentiality studies. Because of its breadth and applicability, CB Modeling of 

metabolism is expanding dramatically, and its integration with omics data offers 

mechanistic insights into the genotype-phenotype environment relationship (Bordbar et al., 

2014). 

The word “essential genes” refers to genes that are necessary for a cell to survive. For 

example, figuring out a gene's function in a network utilizing systems biology, evaluating 

metabolic microenvironments, drug target discovery and creating microorganism strains 

that have been biologically altered all calls for the identification of these essential genes. 

The environment of a cell and function of the gene determine whether it is “vital for 

survival” in a cell or not (Aromolaran et al., 2020; Nandi, Subramanian, and Sarkar, 2017). 

Experimental methods like transposon mutagenesis, single gene deletion, antisense RNA, 

and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are the methods 

often used to determine essential genes. However, these experimental approaches tend to 

be more expensive, intense and time-consuming. Hence, computational techniques have 

been proposed to predict essentiality which is cost effective and can serve as a preliminary 

step to kick-start biological research into gene essentiality. In recent years, this method has 

become very popular (Beder et al., 2021; Nandi, Ganguli, and Sarkar, 2020; Nandi et al., 

2017).  
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While the application of FBA in gene essentiality studies in prokaryotes has produced 

encouraging results and led to more advanced gene essentiality research, FBA’s ability in 

pathogenic eukaryotes is substantially more limited (Gatto et al., 2015). This is partly due 

to the limited quality of the available Genome-scale metabolic models (GSMM/s) of 

eukaryotes that serves as impute to FBA and the fact that the prediction accuracy of FBA 

is quite sensitive to the biomass (i.e. objective function) that needs to be constantly adjusted 

to fit the environmental conditions under consideration. Growth rate maximization is 

typically the biomass function (That’s we assume that the cell will do all it can to maximize 

growth in any environmental condition). Although additional objective functions, such the 

maximizing of ATP production and the lowering of substrate absorption rate, have also 

been proposed, It is still unclear if this set objective works effectively across different 

species and/or in different environmental conditions (Dusad et al., 2021). It is also unknown 

if deletion strains continue to try to optimize growth or whether gene deletions change cell 

physiology to achieve alternative survival aims that is not currently known (Nandi et al., 

2020).  

Lately, there has been an increase in awareness of the considerable promise that integrating 

FBA with machine learning provides for removing some of the core limitations of GSMN 

models and the traditional FBA (Ferreira et al., 2021; Machicao et al., 2021; Sahu et al., 

2021; Zampieri et al., 2019). Machine learning (ML), a statistical techniques that let 

computers "learn" internal systems from training data and produce incredibly accurate 

predictions or classifications, have started to be used in GSMN research in recent years 

(Cheng et al., 2013; Wu et al., 2016). Numerous research studies and surveys have been 

done to determine if ML and DL techniques may be used in metabolic network research 

(Beder et al., 2021; Vijayakumar, Rahman, and Angione, 2020; Yu et al., 2017).  

Graph theory has emerged as an additional approach to gain a deeper understanding of 

Metabolic Networks. In this method, these networks are represented as graph structures, 

and the features of these graphs are analyzed to provide valuable biological insights into 

cell metabolism. Traditionally, metabolic networks are modeled as undirected, bipartite 

graphs, where nodes represent both reactions and metabolites, and the graph is unweighted 

(Oyelade et al., 2018, 2019; Plaimas, Eils, and König, 2010). 
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However, this modeling approach does not naturally capture the concept of flux 

distribution, which must of necessity include its flow and directionality which is essential 

for understanding the flow of metabolites in the network. To address this limitation and 

provide a more comprehensive representation, Mass and Network Flow graph algorithms 

was introduced (Beguerisse-Díaz et al., 2018). In this model, nodes represent reactions, and 

the edges between them represent the flux flow from source to target reaction nodes, thus 

enabling a more accurate representation of metabolic processes in the cell.  

In 2018, Beguerisse-Díaz et al. introduced an innovative framework known as Mass Flow 

Graphs (MFG) to construct flux-based graphs using organism-wide metabolic networks 

(Beguerisse-Díaz et al., 2018). These graphs are designed to represent the directionality of 

metabolic flows, where edges indicate the flow of metabolites from source to target 

reactions. The methodology allows for the application of flux distributions computed 

through FBA with or without a specific biological context. When applied to model the 

metabolic network of Escherichia coli bacteria, the authors observed that the flux-dependent 

graphs exhibited systematic changes in their topological and community structure under 

different environmental conditions and genetic perturbations. These changes provided 

valuable insights into the re-routing of metabolic flows and the varying importance of 

specific reactions and pathways. Such insights are crucial for understanding essential 

reactions and their enzymatic catalysis. 

In 2022, Freischem et al. adopted this approach and proposed a novel machine learning 

method to directly predict gene essentiality from wild-type flux distributions, without 

assuming optimality of deletion strains (Freischem et al., 2022). Their approach involved 

projecting the wild-type FBA solution onto a mass flow graph of E. coli bacteria and 

training binary classifiers on the connectivity features of graph nodes to predict gene 

essentiality. However, this approach has not yet been explored in pathogenic eukaryotic 

organisms. Additionally, the impact of other connectivity features on gene essentiality 

prediction has not been investigated. 

Millions of instances of malaria are caused by the parasitic eukaryotic organism 

Plasmodium falciparum, which has a disproportionately negative effect on low- and 

middle-income African nations (Abdel-Haleem et al., 2018). The worrying rise in malaria 
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infections and fatalities has been highlighted in the most recent World Malaria Report. 

Malaria cases were reported in 247 million cases in 2021, which is a little increase from the 

245 million cases found in 2020. The anticipated number of fatalities from malaria rose 

from 625,000 in 2020 to 619,000 in 2021 (Centers for Disease Control (CDC), 2021; World 

Health Organization (WHO), 2023).  

The urgent need for efficient antimalarial medicines is highlighted by the increased risk of 

severe malaria and death experienced by certain vulnerable populations, such as small 

children and pregnant women. As a result, there is a rising interest in malaria research in 

Africa since it is crucial to solve this health issue (Chiappino-Pepe et al., 2021; Oyelade et 

al., 2018). Exploring important Plasmodium falciparum genes is critical to solving this 

problem since doing so opens up the possibility of creating more effective antimalarial 

drugs. Understanding the importance of certain genes enables researchers to focus on 

crucial enzymatic activities and pathways, resulting in the creation of new and improved 

malaria therapies. 

1.2 Statement of the Problem 

Finding novel drug targets involves identifying the genes necessary for certain metabolic 

pathways, which has significant effects on biological research. Despite this, it is challenging 

to classify these important genes exactly because there are so many different factors that 

determine whether a gene is necessary (Beder et al., 2021). These variables include type of 

species, the phenotypes under investigation, and environmental conditions. 

The more conventional experimental methods need a lot of time and money to determine 

which genes are essential. To get around these limitations, constraint-based computational 

techniques like Flux Balance Analysis (FBA) have been used. Even though FBA has been 

shown to be effective in finding crucial genes in prokaryotic species, its application to 

eukaryotic organisms has not been explored. Moreover, its success remains linked to the 

biomass equation while it only considers one environmental factor at a time (Aromolaran, 

Aromolaran, et al., 2021; Freischem et al., 2022). 

Network-based machine learning methods have demonstrated their effectiveness in 

identifying metabolically important genes in prokaryotic organisms, which addresses the 

constraints of FBA. It has been demonstrated that these methods are helpful in identifying 
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metabolically important genes. However, there are limited studies on the effectiveness of 

these approaches in eukaryotic organisms which this research seeks to address. 

1.3 Research Questions 

This research seeks to answer the following questions: 

i. How do we apply network-based ML framework in gene essentiality prediction in 

the eukaryotic species? 

ii. Which network-based properties extracted from flux-weighted reaction-centric 

graphs can effectively predict these metabolic essential genes? 

iii. How does the developed framework compare to traditional constraint-based 

computational methods and current research findings in this domain in terms of its 

accuracy and efficiency for identifying metabolic essential genes in eukaryotic 

pathogens? 

1.4 Aim and Objectives of the Study 

The aim of this research study is to develop a network-based machine learning framework 

that combines the features of traditional FBA for predicting metabolically essential genes 

in eukaryotic Plasmodium falciparum pathogens.  

The objectives of this study are to: 

i. Create flux-weighted reaction-centric (FWRC) graphs using the genome-scale 

metabolic models of Plasmodium falciparum organisms model extracted from 

BiGG database. 

ii. Extract predictive network-based features from the flux-weighted reaction-centric 

graphs that are predicted by metabolic essential genes. 

iii. Train and test machine learning models using the extracted features to predict 

metabolic essential genes in the chosen model organisms and evaluate their 

performance across various datasets. 

iv. Evaluate the performance of the developed framework by comparing it to traditional 

constraint-based computational methods in terms of accuracy, and efficiency. 
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1.5 Research Methodology 

Considering our research objectives above, I will be employing the following methods to 

achieve them.  

Objective 1: Create flux-weighted reaction-centric graphs using the genome-scale 

metabolic models of Plasmodium falciparum and Saccharomyces cerevisiae organisms 

extracted models, where reactions are represented as nodes and metabolites as edges. 

a) Identify and download the iAM_Pfal480 of Plasmodium falciparum 3D7 

constructed by Abdel-Haleem et al. (2018) from BiGG database 

(http://bigg.ucsd.edu/). 

b) Construct a flux-weighted reaction-centric network (FWRC) of the GSMMs 

adopting the mass flow graph algorithm proposed by (Beguerisse-Díaz et al., 2018) 

using COBRApy and NetworkX python library. 

Objective 2: Identify and extract predictive network-based features from the flux-weighted 

reaction-centric graphs that are predicted by metabolic essential genes. 

a) The constructed network graphs will be exported as a network file, and a set of 

features extracted using the NetworkX package of the python programming 

language. 

b) Save features in a csv file of reaction nodes and feature columns. 

Objective 3: Train and test machine learning models using the extracted features to predict 

metabolic essential genes in the chosen model organisms and evaluate their performance 

across various datasets. 

a) Employ various popular ML techniques such as Support Vector Machine (SVM), 

Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), Logistic Regression 

(LR) and k-Nearest Neighbour using Scikit-learn package.  

b) Train and test them across the metabolic network features that have being extracted. 

c) Performance evaluation metrics (accuracy, recall, F1- score, precision) would be 

carried out on the machine learning models using the Scikit-learn python library 

http://bigg.ucsd.edu/
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taking into account the best performing feature combinations and ML model in each 

model organism. 

Objective 4: Evaluate the performance of the developed framework by comparing it to 

traditional constraint-based computational methods in terms of accuracy, and efficiency. 

a) Carry out a single gene/reaction deletion flux balance analysis of iAM-Pf480 using 

the COBRApy python tool to predict essential genes and perform a comparative 

analysis with our ML prediction.  

1.6 Significance of the Study 

The successful development of this framework will contribute to identification of essential 

genes that will lead to advancements in drug target discovery, particularly in the field of 

combating eukaryotic pathogens, and provide valuable insights into the metabolic networks 

of these organisms. For example, the ability to precisely identify which genes are vital in 

Plasmodium falciparum which is the parasite that claims the most lives when it comes to 

malaria and caused serious health issue across the world (World Health Organization 

(WHO) 2023) is particularly crucial for the development of novel medications and 

treatment strategies to combat malaria. When mass flow graphs, network science, and 

machine learning (ML) algorithms are used together, it will be easier and more accurate to 

predict essentiality of a gene. The research seeks to investigate this possibility and show 

how these methods can be used to study GSMMs in these organisms. 

1.7 Scope of the Study 

This study investigates metabolic networks in eukaryotic pathogen using a network-based 

machine learning technique, with a particular emphasis on metabolic essential genes 

prediction. The study obtains genome-scale metabolic models for the model species 

Plasmodium falciparum. These models will be used to generate flux-weighted reaction-

centric network graphs, where the shared metabolites function as edges and reactions as 

nodes. To accurately predict gene essentiality, the study will also entail the discovery and 

extraction of predictive characteristics from the produced graphs. 
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This research will focus on the use of ML algorithms and network science techniques to 

analyze the GSMMs of Plasmodium falciparum, a unicellular parasite that causes malaria. 

The scope of the research is to get an understanding of which genes are essential.  

1.8 Limitations of the Study 

This study seeks to deploy a Network-based machine learning framework for predicting 

eukaryotic organisms. Our study emphasizes Plasmodium falciparum which may restrict 

the applicability and generalizability of its results to the entire eukaryotic kingdoms. Further 

research would be required to see whether the framework is useful in finding metabolic 

essential genes in other eukaryotic species that have not being researched. 

1.9 Organization of Dissertation 

This dissertation has been structured into five chapters, chapter one gives us the background 

of the study, revealing the research aims and objectives. Chapter two includes review of 

literature on the theoretical foundation of the research and introduces the concepts of 

metabolic gene essentiality prediction. It concludes with related works that have been 

carried out. Chapter three records the methodology. Chapter four presents the results and 

discuss our research findings. Chapter five concludes with recommendations for future 

research. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Preamble 

This chapter reviews a theoretical review of metabolic networks, Metabolic gene 

essentiality prediction, flux balance analysis, and network-based approaches to gene 

essentiality prediction. The study also reviewed related works in this area.  

2.2 Theoretical Review  

This review discusses the theoretical background to the study, elaborating on metabolic 

network analysis and their biological relevance, gene essentiality prediction and finally the 

application of ML and network science techniques in essentiality prediction. 

2.3 Metabolic Network Analysis 

A metabolic network is a form of biological network in which a large number of concurrent 

chemical reactions and transport activities connect chemical molecules and other small 

chemical species, known as metabolites (Medlock and Papin, 2020). The study of metabolic 

modelling, also known as metabolic pathway analysis or metabolic network analysis, has 

made it possible to replicate various intracellular and intercellular processes to better 

understand how organisms survive. The properties of the metabolic network at the 

structural, kinetic, and regulatory levels can be inferred from measurements of metabolite 

concentrations and reaction fluxes (Freischem et al., 2022). These networks are a part of 

the body of knowledge referred to as network medicine. These networks have been 

reconFigured in order to determine which pharmacological therapy-induced changes in 

network topography are harmful to the pathogen (Shen et al., 2010). 

2.3.1 The Importance of Metabolic Network Analysis in Biological Research 

By offering important insights into the intricate and interrelated biochemical processes that 

take place within live organisms, metabolic network analysis plays a significant role in 

biological research. Several factors make metabolic network analysis crucial in biological 

research, including the following: 

i. Understanding Cellular Function: The web of interrelated biochemical processes 

that take place inside cells is represented by metabolic networks (Rigoulet et al., 2020). 
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Researchers can better understand how cells function, including energy metabolism, 

the production of vital chemicals, and food utilization, by investigating these networks. 

Understanding cellular physiology and discovering possible treatment targets require 

this information (Bandoim, 2019). 

ii. Systems-Level View: Metabolic network analysis enables researchers to approach 

biology from a systems-level perspective (Bernstein et al., 2021). By taking into 

account the connections and regulatory mechanisms between various metabolic 

processes, emergent feature research and the discovery of global metabolic phenotypes 

are both made possible. This all-encompassing viewpoint offers a thorough 

understanding of cellular metabolism and assists in revealing unrecognized 

connections (Buchweitz et al., 2020) 

iii. Modeling and Prediction: Using computational techniques and experimental data, we 

build metabolic network models. With the use of these models, which replicate how 

metabolic pathways behave, scientists are able to predict metabolic fluxes, patterns of 

food/energy utilization, and the results of genetic or environmental perturbations. Such 

prediction abilities are crucial for comprehending metabolic dynamics and supporting 

attempts to develop new drugs or improve metabolic engineering research (Voit, 2017). 

iv. Disease Processes and Biomarker Discovery: By highlighting changes in metabolic 

pathways linked to diverse sicknesses, metabolic network analysis aids in the 

understanding of disease processes. Researchers can find critical metabolites, enzymes, 

or pathways that are dysregulated by contrasting healthy and sick metabolic states, 

which can lead to the identification of novel diagnostic biomarkers or therapeutic 

targets (Toubiana et al., 2019). Metabolic network analysis has the potential to 

revolutionize personalized treatment. Researchers may create customized metabolic 

models by combining patient-specific data from genetics, metabolomics, and clinical 

data (Surendran et al., 2022). These models can forecast how a person's metabolism 

will react to particular medications or dietary changes, making it easier to create 

personalized treatment plans (Masutin, Kersch, and SchmitzSpanke, 2022). 

Metabolic network analysis helps with the design and optimisation of microbial cell 

factories for biotechnological applications in synthetic biology and biotechnology. 

Researchers can improve the synthesis of desired substances, such as biofuels, medicines, 
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or industrial chemicals, while minimizing undesirable byproducts or maximizing resource 

utilization by analyzing and altering metabolic pathways (Cakmak and Celik, 2021). 

2.3.2 Metabolic Gene Essentiality Prediction 

As efficient alternatives to these exceedingly difficult experimental methodologies for 

discovering essential genes, scientists are increasingly using computational methods that 

rely either on constraint-based techniques, homology mapping, or ML approaches (Acencio 

and Lemke, 2009; Azhagesan, Ravindran, and Raman, 2018; Campos et al., 2022; Zhang, 

Acencio, and Lemke, 2016). The algorithms that are homology-based and used for essential 

gene prediction suggest that essential genes are typically shared by distantly related species, 

will not likely mutate, and tend to remain unchanged (Hua et al., 2016; Schonfeld et al., 

2021). Through comparative genomic research, essential genes in distinct bacterial species 

have been discovered (Aromolaran et al., 2020; Nandi et al., 2020). However, the fact that 

ortholog genes that are conserved across species make up such a small portion of the whole 

genome limits this method. It is also proven that genes that are majorly conserved between 

species are not always essential since the environmental factors that an organism is exposed 

to locally also have an influence on the essentiality of its genes (Nandi et al., 2020). 

FBA and another constraint-based modelling (CBM) method compute steady-state 

metabolic fluxes using genome-scale reconstructed metabolic networks. This method is 

often used to find essential genes by doing a computer-based gene deletion (called an "in-

silico knockout") and looking at how it affects the pathogen’s survival (Plata et al., 2010; 

Wu et al., 2016). However, this approach has limitations since only a small number of 

environmental conditions are considered for a given biomass (or target function) (Wu et al., 

2016). On the other hand, machine learning (ML) techniques are a variety of data-driven 

approaches that create predictions for unlabelled data from a model based on the underlying 

patterns of training data. These machine learning methods may generally be broken down 

into supervised, semi-supervised, and unsupervised procedures. For model training, 

supervised approaches such as Naive Bayes, Decision Tree, and Support Vector Machine 

(SVM) require a significant quantity of labelled data (Hua et al., 2016). In contrast, the 

unsupervised methodology uses clustering methods that don't need labelled data, such as 

K-Means Clustering. 
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Semi-supervised ML systems that provide a hybrid of the benefits of supervised and 

unsupervised ML procedures. Thanks to these strategies, the models may be trained with 

only a small quantity of labelled data (Nandi et al., 2020). For these machine learning 

classifiers to make more accurate predictions, the hyperparameter has to be improved. There 

are several meta-heuristic methods that have been used for hyper-parameter tuning, 

including Genetic Algorithm (GA), Particle Swarm Optimisation (PSO), Grey Wolf 

Optimizer (GWO), Ant Colony Optimisation (ACO), Ant Lion Optimizer (ALO), and 

others (Nandi et al., 2020). 

Based on the availability of labelled data for most genes, researchers are using supervised 

ML and DL algorithms to identify essential genes (Hasan and Lonardi, 2020; Hua et al., 

2016; Schonfeld et al., 2021; Zampieri et al., 2019). These techniques have the capacity to 

accurately describe the hidden information and patterns of a wide variety of biologically 

significant "features," which is their main benefit. These "features" are diverse in nature 

and represent the numerous traits connected to essentiality. Several supervised machine 

learning classifiers have been applied to the problem of predicting whether a gene is 

essential. These include SVM (Cheng et al., 2013), ensemble methods (Yu et al., 2017), 

logistic regression (Cheng et al., 2013), decision tree (Cheng et al., 2013), random forest 

(Nigatu et al., 2017; Yu et al., 2017), and probabilistic Bayesian-based methods. In 

addition, multilayer perceptron network-based DL approaches have been used for the 

essential gene prediction process (Freischem et al., 2022). In most of these studies, the 

researchers have generally relied on simpler optimisation strategies, which investigate the 

whole space of parameters in each possible combination (Hasan and Lonardi, 2020). 

These ML-based classifiers use the traits of genes that were previously annotated, verified 

through experimentation, and categorized as essential or non-essential to make predictions 

about the essentiality of unannotated genes (Nandi et al., 2020). To accomplish this goal, 

the researchers have carefully selected a variety of different feature combinations. Most ML 

techniques either use computed features generated from coding sequences, network 

topology, or both. The phyletic retention (PR), the effective number of codons (ENC), and 

the codon adaptation index (CAI), including the percentage of genetic content that is usually 

inferred from the genomic sequences, are some of the criteria that are known to exist in 
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bacteria and that have been used to determine whether or not a gene is essential (Li et al., 

2019; Nigatu et al., 2017).  

To identify topological network features and classify genes according to their level of 

requirement, protein interaction networks, or PINs, have been used (Aromolaran, Beder, et 

al., 2021; Freischem et al., 2022; Kumar et al., 2018). These techniques, on the other hand, 

are useless for most animals since they contradict the centrality-lethality principle in a PIN, 

which hypotheses that nodes with higher centrality in a network are more likely to produce 

lethal phenotypes on removal compared to nodes with lower centrality (Nandi et al., 2020; 

Raman, Damaraju, and Joshi, 2013). Nevertheless, relatively few studies have classified 

essential genes that have been computed in a specific environmental state using flux-based 

features that were extracted from metabolic network graphs. This is because such 

classifications do not accurately represent a comprehensive set of characteristics (Freischem 

et al., 2022; Nandi et al., 2020, 2017). In a great number of recent pieces of research 

literature, in-depth analyses of the most current machine-learning techniques for evaluating 

the essentiality of genes have been presented (Dusad et al., 2021; Freischem et al., 2022; 

Zampieri et al., 2019). 

2.3.3 Flux Balance Analysis (FBA) 

FBA is one of the primary Linear Programming (LP) approaches utilized in the solution of 

GSMM/s Constraint-Based issues. It works by computing the best steady-state flux 

distribution of a cell; the flux distribution specifies the cell phenotype (Freischem et al., 

2022; Gatto et al., 2015). A GSMN is used as input. The stoichiometric matrix and upper 

and lower constraints on reaction fluxes are used to generate a linear system of equations. 

In addition, the cell objective function Z is specified, which encodes the biological aim of 

the cell (Cuevas et al., 2016; Freischem et al., 2022). This is presumptively predicated on 

the idea that cell metabolism is optimized for maximum cell growth. FBA determines the 

solution vector to the following restricted optimization issue using linear programming: 
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𝑀𝑎𝑥 𝑍 = 𝐶𝑇𝑉               (2.1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑑𝑦

𝑑𝑡
= 𝑆𝑉 = 0                 (2.1a) 

𝑣𝑙 ≤ 𝑣 ≤ 𝑣𝑢                  (2.1b) 

 where 𝐶 encodes the cell objective function 𝑣𝑙  and  𝑣𝑢   are vectors containing the lower 

and upper limits on the fluxes of the reactions involved, respectively. Researchers are able 

to use FBA to determine the flux flow of the cells under different environmental and genetic 

conditions by altering the reaction flux bounds (Martins Conde, Sauter, and Pfau, 2016; 

Yasemi and Jolicoeur, 2021). FBA has been applied primarily in studies of gene essentiality 

prediction via single or double genes and/or reaction deletion(knock-out) through in silico 

simulations.  

One drawback of FBA is the necessity of designing the objective function to be optimized 

to accurately reflect cellular physiology (Raman et al., 2013). Maximizing growth rate is a 

popular choice for any model organism in question, although it is debatable whether this is 

a feasible cellular target for all organisms or under all growth conditions. Other objective 

functions, such as maximizing ATP generation and minimizing substrate absorption rate, 

have been suggested, even though the great majority of FBA investigations focus on the 

maximization of cellular growth (Dusad et al., 2021; Raman et al., 2013). So, the question 

remains, “what if it is not always the case that all the cell needs is to optimize for growth 

under every condition?” 

Secondly, amidst of all the environmental conditions that influence gene essentiality in 

organisms, FBA is only able to consider one experimental condition at a time and is 

computationally expensive especially for performing in-silico analysis; FBA gene/reaction 

knock-out must be performed individually for each candidate reaction, which is known as 

single or double-gene/reaction knockout (Freischem et al., 2022). 

2.3.4 Network-Based Machine Learning Approaches 

In order to comprehend and predict essential metabolic genes primarily through the study 

of various metabolic networks, there has recently been interest in exploring the interface 
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between network science and machine learning (Dusad et al., 2021). Graph-theoretic 

notions such as degree distributions and centrality measurements may disclose structural 

aspects of the connectivity of the overall system, while clustering methods can expose 

substructures that were buried in the network topology. These types of methods may be 

integrated with the examination of perturbations, which can include the removal of network 

nodes or edges (Campos et al., 2022; Dusad et al., 2021).  

These perturbations can reflect changes in the environment, gene knockouts, or medicinal 

medications that target particular metabolic enzymes. In contrast to FBA, which bases its 

analysis on the selection of a particular objective function, network approaches only rely 

on metabolic stoichiometry in order to conduct their calculations. In the case of 

complementing FBA implementation, graph modelling offers the opportunity to overcome 

some of its bottlenecks listed above. Unlike the FBA approach, which needs a crucial 

definition of an objective function that accurately defines a cell's physiological state, the 

network modelling approach can stimulate cell perturbation analysis directly from the 

stoichiometric equation (Campos et al., 2022; Dusad et al., 2021; Freischem et al., 2022). 

2.3.5 Graph Feature Mining 

Graph mining is the practise of drawing patterns, structures, and insights from graph data. 

Graph mining takes into consideration the innate structure of the data itself, as opposed to 

conventional data mining, which concentrates on organized data and frequent data values 

(Brahmaih 2020; Kanti Kumar, Dutta, and Kumar, 2023). 

Since it enables analysis and pattern discovery inside intricate biological systems, graph 

mining becomes especially pertinent in the setting of biological networks (Muzio et al., 

2020). Protein-protein interaction networks, gene regulatory networks, and metabolic 

networks are examples of biological networks that may be represented as graphs, where 

nodes are biological entities (such genes, proteins, or metabolites), and edges are 

interactions or connections between them (Milano, Agapito, and Cannataro, 2022). 

Graph mining algorithms are able to reveal repeating subgraphs that stand in for common 

motifs or functional units within the network while looking for regular chemical structures. 

These patterns may provide light on the structure, operation, and control mechanisms of 

biological systems (Takigawa and Mamitsuka, 2013). 
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Identifying tightly linked communities or groupings inside biological networks is another 

task that may be accomplished using graph mining approaches (Takigawa and Mamitsuka, 

2013). To locate node clusters with robust relationships or functional correlations in 

biological networks, social network analysis concepts may be used (Wang, Wang, and 

Zheng, 2022). Understanding the modular structure of biological systems, recognising 

functional modules or pathways, and discovering possible biomarkers or therapeutic targets 

may all be aided by this approach (Camacho et al., 2018). 

Graph mining is used to convert tabular or flat data into a property graph representation. In 

using graph mining methods, this translation allows the investigation and exploration of 

biological networks. Researchers may also use graph mining algorithms to uncover 

significant patterns, find related groupings, and obtain insights into the underlying 

biological processes by modelling biological data as graphs. Biological network graph 

mining provides strong tools for deciphering and analysing complicated biological data 

(Erciyes 2015; Muzio, O’Bray, and Borgwardt, 2020). It makes it possible to find common 

patterns, identify functional modules, and characterize network structures, all of which 

advance our knowledge of biological systems and make it easier to find new drugs, identify 

biomarkers, and conduct systems biology research. We examine some graph features mined 

from graphs that are of interest to our research into metabolic graph networks. 

A. Major Network topological Features Mine from graphs 

Topological network characteristics have also been accepted as sufficient justification for 

describing metabolic essential genes. Numerous studies have been conducted on the 

relationship between topological structures and biological processes (Li et al., 2019; Wang 

et al., 2022). The centrality-lethality hypothesis in biological networks states that 

particularly central nodes within a network are more likely to be critical or deadly for the 

general wellbeing of the biological system and have had great application in the studies of 

biological networks (Azhagesan et al., 2018). Numerous studies have examined how 

centrality and essentiality—a metric of a node's importance within a network—are related 

in biological networks (Jeong et al., 2001). Thus, nodes with higher centralities are more 

likely to be essential to the network's overall survival. 
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The number of a nodes near neighbours is counted in degree centrality, the most basic 

centrality measure. Other centrality measures, such as betweenness centrality and load 

centrality, evaluate a node's significance by considering its role as a conduit for traffic 

between different network nodes (M. Ashtiani et al., 2018; Jeong et al., 2001; Nandi et al., 

2020; Wang et al., 2022). 

The stability or ability of the system to survive may be dramatically impacted by the loss 

or malfunctioning of crucial nodes (M. Ashtiani et al., 2018). The performance and 

structure of the network are preserved by important nodes. By examining the relationship 

between centrality and essentiality, it is feasible to comprehend the key nodes within 

biological networks and their potential participation in a variety of biological processes 

(Christiansen, 2022). 

Here we discuss some of the popular centrality features that have been applied in metabolic 

network studies for essentiality prediction. 

i. Degree Centrality (DC): 

DC is a well-known and popular feature that has been applied in gene essentiality studies. 

DC, which is based on the number of edges that connect a node to other nodes, is a metric 

for node significance in a network (Naderi Yeganeh et al., 2020; Wang et al., 2022). In 

other words, it represents a node's degree of network connectivity. According to the number 

of processes or metabolites they interact with, degree centrality may be used to determine 

the most crucial metabolites or enzymes in a metabolic network. Due to their numerous 

connections to other nodes in the network, nodes with high degrees of centrality are 

sometimes referred to as "hub" nodes. The given equation serves as a representation of DC. 

𝑣𝑖  𝑎𝑠 𝑛𝑜𝑑𝑒𝑠 𝑜𝑓 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

Where; 

𝑘𝑖 = ∑ 𝑒𝑖|𝑒𝑖,𝑗|

𝑗∈𝑁𝑖

∈ 𝐸 𝑎𝑛𝑑 𝑁𝑖                                               (2.2) 

Corresponding to neighbours sets in 𝑣𝑖. 

Due to the fact that DC can shed light on metabolic pathways and how they are regulated, 

it plays a crucial role in metabolic network analysis (Kim, Ashlock, and Yoon, 2019). For 

example, sustaining metabolic flow or controlling the whole metabolic network may depend 
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on hub metabolites or enzymes. Changes in degree centrality may also be pointers to 

sickness or metabolic disorders. In order to understand the metabolic network more 

thoroughly, degree centrality can also be utilized in conjunction with other network metrics 

like betweenness centrality or closeness centrality. It is important to note that DC alone may 

not be a reliable predictor of network architecture since it only takes into consideration the 

natural surroundings of nodes (Wang et al., 2022). 

ii. Closeness Centrality: 

Closeness centrality is a measure of how quickly information can spread from one node to 

all other nodes in a network. In network science, it is a way of quantifying the importance 

of a node based on its proximity to other nodes in the network. Specifically, closeness 

centrality is defined as the reciprocal of the sum of the shortest path distances between a 

node and all other nodes in the network (M. Ashtiani et al., 2018).  

𝐶𝑐(𝑣) =  
𝑛 − 1 

∑ 𝑑𝑣𝑖𝑖≠𝑣,𝑖∈𝑣
                                                            (2.3) 

Where: 

𝑛 is the number of reaction and 𝑑𝑣𝑖 the sum of the shortest distance from 𝑣 to all other 

nodes.  

In metabolic network analysis, closeness centrality can be used to identify key metabolites 

that are central to the overall network. These central metabolites are likely to be essential 

for the proper functioning of the network, as they are involved in many metabolic pathways 

and can quickly influence the behaviour of other metabolites. Additionally, changes in the 

centrality of specific metabolites can indicate shifts in metabolic activity or the presence of 

regulatory mechanisms that control metabolic fluxes. Therefore, closeness centrality is a 

useful tool for understanding the structure and dynamics of metabolic networks and can aid 

in the discovery of new drug targets and metabolic engineering strategies (Wang et al., 

2022). 

iii. Betweenness Centrality (BC): 

Betweenness centrality is a network science metric that measures the importance of a node 

in a network based on its ability to act as a bridge between other nodes. Specifically, 

betweenness centrality is calculated as the number of shortest paths between all pairs of 

nodes in a network that pass through a given node (M. Ashtiani et al., 2018). Nodes with 
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high BC are considered critical for the flow of information or resources through the 

network. 

The BC of a node i, BC (i), is mathematically represented: 

 

𝐵𝐶(𝑖) = ∑
𝜎𝑗𝑘

𝜎𝑖𝑘
𝑗≠𝑖≠𝑘

                                                                  (2.4) 

Where; 

𝜎𝑗𝑘 is the total number of shortest paths from node 𝑖 to 𝑘 and 𝜎𝑗𝑘(𝑖) is the total number of 

paths passing through node 𝑖. 

In metabolic network analysis, betweenness centrality can be used to identify key metabolic 

pathways and enzymes that are critical for the overall functioning of the network. For 

example, enzymes with high betweenness centrality may be essential for connecting 

different metabolic pathways, regulating metabolic flux, or responding to environmental 

stimuli. By targeting these key nodes, researchers can potentially identify new drug targets 

or metabolic engineering strategies to optimize metabolic pathways in biotechnology or 

healthcare applications. Additionally, betweenness centrality can be used to study the 

robustness and resilience of metabolic networks to perturbations or mutations, which can 

have important implications for evolutionary and ecological dynamics (Ashtiani et al., 

2018; Wang et al., 2022). 

iv. Clustering Coefficient: 

The clustering coefficient is a measure of the degree to which nodes in a network tend to 

cluster together. It quantifies the extent to which nodes in a network are connected to each 

other, and it is defined as the ratio of the number of connections between a node's neighbors 

to the maximum number of such connections that could exist. In other words, it measures 

how tightly connected a node's neighbors are to each other. CC is mathematically 

represented as: 

𝐶𝐶(𝑖) =  
𝑛𝑖

𝑘𝑖(𝑘𝑖 − 1)
                                                              (2.5) 

Where; 

𝑛𝑖  the number of arcs or edges between neighbors of the i node, and 𝑘𝑖 , the number of 

neighbors of node i. 
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In metabolic network analysis, the clustering coefficient is used to study the topological 

properties of metabolic networks. It provides information about the organization and 

structure of metabolic pathways and can reveal important insights into the underlying 

biological processes. High clustering coefficients indicate that nodes in the network tend to 

be highly connected, which suggests that they may be involved in similar metabolic 

functions or pathways. Low clustering coefficients, on the other hand, suggest that nodes 

are more sparsely connected and may be involved in more diverse metabolic processes. By 

analyzing the clustering coefficient of metabolic networks, researchers can identify key 

metabolic hubs, modules, and pathways that play important roles in cellular metabolism. 

This information can be used to predict metabolic fluxes, identify potential drug targets, 

and understand the overall function of metabolic networks (Naderi Yeganeh et al., 2020). 

v. PageRank Algorithm  

This algorithm, developed by Google researchers, has been used to evaluate the significance 

of networks and is being applied in ranking Google webpages (Naderi Yeganeh et al., 

2020). A website's page rank is a numerical indicator of its relative relevance based on the 

quantity of inbound and outgoing connections. Links going to a webpage from the outside 

are known as inbound links (Jone, 2023). Outbound links are those that lead from one 

website to another. The mathematical formula for page rank algorithms is:  

𝑃𝑖 = (1 − 𝑑) + 𝑑 ∑
𝑃𝑖

𝐿(𝑗)
𝑗∈𝑀(𝑖)

                                               (2.6) 

Where 𝑃𝑖 is the Page rank of the webpages, 𝑀(𝑖) is the set of web pages linked to page i, 

𝐿(𝑗) are the outbound linkages, and d serving as the residual probability usually set at 0.85. 

Pagerank algorithms are being proposed and applied in finding the importance of reaction 

nodes in metabolic reaction to reaction networks (Li et al., 2013). 

B.    Network Node Role Analysis 

The practice of identifying and describing the various functional or structural functions that 

nodes (individual entities) perform inside a network is known as node role analysis 

(Henderson et al., 2011). By investigating each node's characteristics, interactions, and 

network placements, node role analysis seeks to identify patterns and correlations among 

nodes (Loem, 2021). By identifying nodes that display similar behaviours or fulfil certain 
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tasks in the larger system, it offers insights into the organization, dynamics, and operation 

of the network. There are various processes involved in the study of node roles, which may 

change based on the particular situation and research goals:  

Extracting Features: Extracting pertinent characteristics or qualities from the nodes and 

their connections is the initial stage. These qualities may be things like a node's degree 

centrality (the quantity of connections), clustering coefficient (a measure of how related a 

node's neighbors are), or any other pertinent metrics that describe the node's characteristics 

in the network. Role Detection: After the characteristics have been recovered, a number of 

techniques may be used to identify the roles present in the network. In order to categorize 

nodes with comparable feature profiles into separate roles or clusters, this may include using 

clustering algorithms, community discovery methods, or other strategies. Role 

Characterization: After roles have been identified, the next stage is to describe and 

interpret the roles in light of their functional or structural importance. Analyzing the 

patterns, traits, and actions shown by nodes within each role is necessary to do this. It could 

include locating key or significant nodes, nodes serving as a bridge or connection between 

various network segments, or nodes with particular features or behaviors. The roles that 

were found must be validated, and their significance must be understood in light of the 

network and the particular study research domain.  

i. ReFeX (Recursive Feature eXtraction)  

ReFeX, an algorithm proposed by (Henderson et al., 2011) is considered as a valuable node 

role analysis approach for directed graph network due to its ability to extract meaningful 

and transferable features from nodes in a graph. By capturing regional information and 

utilizing the graph's structure, ReFeX enables the identification and classification of nodes 

based on their characteristics, which is essential for understanding node roles within a 

network (Henderson et al., 2011, 2012). 

Node role analysis aims to identify distinct functional or structural roles that nodes play 

within a network. It provides insights into the organization and dynamics of the network by 

uncovering patterns and relationships among nodes. ReFeX contributes to node role 

analysis by offering a systematic and effective approach to extract features that help 

distinguish and classify nodes, enabling the identification of their roles within the graph. 
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The algorithm used in ReFeX takes into account three main attributes: local, egonet, and 

recursive features. These attributes provide different perspectives on the nodes and their 

relationships, allowing for a comprehensive analysis of node roles. Local features capture 

properties directly related to the node itself, such as its degree (number of edges connected 

to the node) and the total degree (sum of inward and outward edges). These features reflect 

the node's connectivity within the network and provide insights into its importance and 

centrality. Egonet features focus on subgraphs formed by the node and its neighbouring 

nodes. These features consider the degree and edge count within the subgraph, providing 

information about the node's influence within its immediate neighbourhood. By analysing 

egonet features, researchers can identify nodes that act as hubs or bridges between different 

parts of the network. 

The most significant contribution of ReFeX to node role analysis comes from recursive 

features. These features capture aggregated information computed over a feature value 

among a node's neighbours. They provide a broader perspective on the node's role by 

considering the characteristics and interactions of its neighbouring nodes. By generating 

and pruning recursive features, ReFeX identifies important patterns and dependencies 

within the network, contributing to the understanding of node roles. The transferability of 

the features extracted by ReFeX is another crucial aspect for node role analysis. The features 

should not only help predict properties of the given node but also be applicable to other 

graphs. This transferability allows researchers to compare node roles across different 

networks and gain insights into the general principles governing node functionality and 

behaviour (Henderson et al., 2011, 2012).  

ReFeX as a node role analysis approach offers a systematic and effective method for 

extracting meaningful features from nodes in a directed and weighted graph. By considering 

local, egonet, and recursive features, ReFeX provides a comprehensive view of node 

characteristics, relationships, and dependencies. These features contribute to the 

identification and classification of node roles, enabling a deeper understanding of network 

organization and dynamics. The transferability of the features extracted by ReFeX allows 

for cross-network comparisons and generalization of node roles, providing valuable insights 

into node functionality and behavior (Henderson et al., 2011, 2012). 
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ii. Role eXtraction (RolX) 

Henderson et al., in (2012) introduced Role eXtraction (RolX), an unsupervised method for 

automatically extracting structural roles from directed networks. It employs a mixed-

membership strategy that distributes each node's role among the detected roles. Three 

steps—recursive feature extraction (ReFeX), feature grouping, and model selection—help 

RolX determine node roles. Kaslovsky developed the recursive feature extraction approach 

and a node role extractor (GraphRole) that we will employ in this research based on 

Henderson et al.'s papers (Kaslovsky, 2019). RolX uses a mixed-membership technique to 

mechanically extract roles from a graph.  It also uses non-negative matrix factorization to 

approximate the node-feature matrix V:  

𝑉𝑛×𝑓 ≈ 𝐺𝑛×𝑟 × 𝐹𝑟×𝑓                                                                            (2.7) 

where entries 𝐺𝑖𝑗 quantify the membership of node 𝑛𝑖 in role 𝑟𝑗 and entries 𝐹𝑗𝑘 specify how 

a membership in role 𝑟𝑗  contributes to the value of feature 𝐹𝑗𝑘. Given the number of roles, 

denoted by r, RolX applies. The rank r of this approximation is equal to the total number of 

roles. These two matrices efficiently compress V, supposing that node roles summarize 

node activity in the network. 

2.4 Related Works 

In this session we discuss related works that have being carried out in this domain. Our 

focus is on gene essentiality prediction in Plasmodium falciparum model organism, and the 

application of ML and network science techniques in essentiality studies. 

2.4.1 GSMM Reconstruction: Plasmodium falciparum Model Organism 

For the asexual blood stage of the malaria parasite Plasmodium falciparum, Carey et al. 

(2017) created a model known as iPfal17, which is a refined and expanded version of an 

earlier model known as iTH366 (Carey, Papin, and Guler, 2017). The updated model 

increased species- and stage-specificity and added more reactions, genes, and annotations. 

It included five compartments and had notes for blocked reactions as well as references for 

altered reactions. Their research emphasized the significance of precise metabolic network 

models for comprehending parasite activity and for medication discovery efforts. Overall, 
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their research offered a fresh understanding of parasite biology and artemisinin resistance 

and suggested useful directions for choosing potential therapeutic targets. 

In 2018, Abdel-Haleem et al. developed the iAM-Pf480 metabolic network, which is a 

carefully curated and quality-controlled GSMN model of Plasmodium falciparum (Abdel-

Haleem et al., 2018). Using this model, they were able to explore the capabilities of malaria 

parasites to survive across the many phases of their complex life cycles. P. falciparum 

Malaria Parasite Metabolic Pathway (MPMP) Database (http://mpmp.huji.ac.il/), genome 

annotation from Plasmodium database (Plasmodb.org), and 332 main and review literature 

reference papers on biochemical and genetic characterization were used in the development 

of iAM-Pf480. The cytoplasm, endoplasmic reticulum, apicoplasts that resemble plastids, 

mitochondria, the Golgi apparatus, and lysosomes are all components of PLASMODIUM 

falciparum's metabolic network. It includes 480 genes, 1083 activities, and 617 distinct 

metabolites. The gene-protein rule was found to be connected to 68% of enzymatic 

pathways and 480 genes. The essentiality predictions provided by iAM-Pf480 were 

compared to those made by the GSMN models iTH366 (Plata et al., 2010) and iPfal17 that 

were previously published. These comparisons were made using a wide range of 

experimentally verified targets (Carey et al., 2017). iAM-PF480 has a more advantageous 

genetic composition, a more comprehensive biochemical complement, and improved 

performance. The iAM-Pf480 was the GSMN model that was investigated for this 

investigation. 

2.4.2 Machine Learning for Essentiality Prediction 

Using local network topology, gene homologies, co-expression, and flux balance analysis, 

Plaimas et al. (2008) developed a machine learning technique to evaluate the essentiality of 

metabolic genes. This approach was used to assess essential enzymes in a metabolic 

network. The system was trained and validated with a dataset of knockout mutants of 

Escherichia coli and achieved high accuracy and precision of 0.93 and 0.9, respectively. 

The authors suggested that these features were sufficient for defining essentiality and could 

be applied to less specific media conditions. The approach was tested on predicted drug 

targets and yielded promising results, with several predictions supported by existing 

experimental evidence (Plaimas et al., 2008). 
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In research that was published in 2017, Nandi et al. created a unique support vector ML-

based approach with the aim of finding significant metabolic genes in Escherichia coli K-

12 MG1655. To create the most accurate ML model that is feasible, a strategy was created 

that made use of a well-balanced training dataset, an organism-specific genotype, 

phenotypic characteristics, and optimal parameter features. To enhance classification 

performance, flux-coupled metabolic features, which are subnetwork-based attributes, were 

used. The method that has been proposed is better than those that have been used in the 

past, and it demonstrates that significant genes have high codon use biases, remain 

unchanged across homologous bacterial species with high GC contents, and have high 

levels of gene expression that also serve as physiological flow modules in metabolism 

(Nandi et al., 2017). 

They further improved their work in 2020 (Nandi et al., 2020) by suggesting a novel ML 

framework for predicting important genes in organisms with low experimental data. This 

pipeline is intended to be used for species such as yeast. The pipeline had three stages: 

dimensionality reduction, unsupervised selection of features, and a Laplacian SVM-based 

semi-supervised ML technique. The methodology was tested on both prokaryotes and 

eukaryotes, and it demonstrated a high level of accuracy despite containing just a minimum 

amount of labeled data (auROC > 0.85 with 1% labeled data). The proposed pipeline was 

also utilized for predicting crucial genes in organisms like Leishmania sp., for which there 

is presently inadequate data based on known experiments. The identified possible 

therapeutic targets for the development of medicines and vaccines against disease-causing 

parasites may be found by employing the predicted essential genes, which provide crucial 

hints for gene essentiality prediction. 

In an attempt to leverage computational predictions to provide a prioritized shortlist for 

experimental validation, Azhagesan et al. (2018) undertook research to determine important 

genes across various species using network-based attributes. They found that prior methods 

for predicting essential genes, which combined sequence-based features with sequence, 

network, and biological information, did not adequately take into account network 

organization and the significance of network position in essentiality (Azhagesan et al., 

2018). They suggested finding reliable network-based characteristics to enhance the 
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prediction of important genes across species by capturing network structure. They examined 

the protein-protein interaction (PPI) networks of 27 different bacterial species and assessed 

how well network-based measures performed in comparison to sequence-based features and 

more traditional network metrics like degree centrality and clustering coefficient. 

According to their findings, 27 different species had an AUROC of 0.847 and a precision 

of 0.320. We enhanced the AUROC to 0.857 and the accuracy to 0.335 by adding sequence-

derived features to the whole collection of network characteristics. This demonstrated that 

the suggested network properties outperformed previous approaches and were successful in 

determining important genes across a variety of species.  

The performance was also enhanced by merging network-based features with sequence-

based features. The authors used leave-one-species-out validation to confirm the efficacy 

of their characteristics. The study's overall goals were to understand the role of network 

structure in essentiality prediction and to create better techniques for categorizing essential 

genes using network-based criteria (M. Ashtiani et al., 2018). 

Aromolaran et al. (2021) suggested the use of ML methodologies as an adjunct to 

experimental methods for the purpose of locating important genes. The variables that affect 

the accurate computational prediction of relevant genes, as well as the benefits, drawbacks, 

and other contributing factors, are examined by Aromolaran et al. in their study from 2021. 

Due to the paucity of labeled data, the review emphasizes the limits of machine learning in 

predicting conditionally essential genes and concludes that careful feature selection and ML 

approaches are necessary for the accurate prediction of essential genes. The review also 

highlights the limitations of machine learning in predicting essential genes. They arrived at 

their conclusion by analyzing the performance of five distinct feature categories and 

discovered that topology features had the best discriminatory power, while gene ontology-

based features were the most successful when it came to predicting essentiality. This led 

them to their conclusion. 

2.4.3 Network-based ML for Gene Essentiality Prediction 

In their review, Dusad et al. (2021) examined the link between FBA and graph-based 

investigations of metabolism as well as the complementary viewpoints they contribute to 

the comprehension of gene essentiality prediction in metabolic networks. In particular, the 
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authors focused on how FBA and graph-based analyses of metabolism compared to other 

approaches. Although network science has the potential to offer insight on the emergent 

characteristics of global metabolic connections, FBA is a strong paradigm for forecasting 

metabolic fluxes based on network stoichiometry. They went further to establish the fact 

that there is a need to explore integrated approaches that combine flux optimisation with 

network science to better understand the complexity of metabolism as well as the potential 

for developing such hybrid pipelines (Dusad et al., 2021). 

In an effort to understand global topological properties and the modularity structure of 

reaction graphs, Kim et al., (2019) investigated the topological analysis of directed reaction 

centric metabolic networks of five different species (Kim et al., 2019). They examined 

directed reaction-centric graphs of metabolic networks in several microorganisms, ranging 

from prokaryotes to Saccharomyces Cerevisiae of the eukaryotes, using graph theory and 

centrality metrics. They examined several centrality measures, including those independent 

of the reaction nodes' degree, to better understand the topological roles played by certain 

reaction nodes. Their research sought to discover nodes with global topological significance 

and to comprehend local connectedness inside networks, which is crucial and indicates 

biological relevance. They also created a new statistic called the cascade number to evaluate 

the function of nodes in guiding mass flow. By estimating the proportions of crucial 

reactions predicted by FBA, they could connect the highly related reactions to their 

biological relevance. It needs to be seen if these graph topological properties may provide 

connection features that can be used to define relevant nodes, and if so, using ML models 

would make it simple for predicting essential nodes. This will make it simple to predict 

essential genes and find new medication targets, among other things which remain under 

research. 
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The terms "mass flow graphs" (MFG) and "normal flow graphs" (NFG) were proposed by 

Beguerisse-Diaz and colleagues in 2018 (Beguerisse-Díaz et al., 2018). The MFG 

represented a flux-dependent graph that may integrate environmental factors through 

reaction fluxes found using FBA, in contrast to the NFG, which represented an organism-

wide metabolic organization. Their research addressed the drawbacks of prior graph designs 

by taking directionality into account, preventing over-representation of certain metabolites 

(known as pool metabolites that had great influence on the network topology thereby 

affecting biological inferencing), and taking environmental information into account. Using 

simulations of Escherichia coli and human hepatocyte metabolism, they showed the 

effectiveness of their method and how the graph topology changes in relation to the growth 

factors, offering fresh insights into the organization of the metabolism.Their work did not 

provide insight on how its properties may be used to help identify significant metabolic 

genes in a metabolic network, a topic that was later investigated by Freischem et al., (2022). 

Figure 2.1 shows the flow diagram of the MFG which this study adopts. 

Using graph-based methods and machine learning, Freischem et al.'s study from 2022 

expanded on the work of Beguerisse-Daz et al. (2018) to improve essentiality prediction in 

metabolic genes. Their study centered on creating a machine learning pipeline that forecasts 

important genes using the mass flow graphs' connection properties (Freischem et al., 2022). 

In contrast to computationally expensive techniques like Flux Balance Analysis (FBA) and 

Figure 2.1 Flow diagram showing the NFG and MFG adopted from 

(Beguerisse-Diaz et al., 2018) 
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gene knockout simulations, they used the metabolic network's wild-type flux distribution to 

determine gene essentiality directly. They effectively predicted gene essentiality using data 

from Escherichia coli growth tests by building a mass flow graph to reflect flux distribution 

and training machine learning models based on graph node connections. 

Their study is important because it helps to understand the minimum functional modules of 

an organism and has ramifications for biomedical and biotechnological applications. They 

don't require FBA solutions for deletion strains since their special machine learning 

pipeline, in combination with network science techniques, determines gene essentiality 

straight from the wild-type flux distribution. They used the Beguerisse-Daz et al. (2018) 

MFG-algorithm, projecting the flux distribution onto a mass flow graph, and using graph 

node connections to train machine learning models as a binary classification issue. They 

proved the precision and effectiveness of their method for identifying crucial genes through 

testing using data on Escherichia coli growth (Freischem et al., 2022). 

When tested on the test set, the Random Forest model outperformed the other machine 

learning models in terms of overall accuracy, precision (82.5%), and recall (86.8%). This 

shows that there is enough information in the wild-type flux pattern to anticipate the need 

of metabolic genes. Overall, this work advances our knowledge of intricate biological 

systems and offers a potential framework for predicting gene essentiality. 

2.4.4 Summary of Findings 

Currently, to the best of our knowledge, there are no studies that explore and validate the 

application of FBA and prediction in network science coupled with ML techniques in gene 

essentiality prediction in eukaryotic P. falciparum, which our current research focus seeks 

to address.  
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CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 Preamble 

This chapter outlines the process used to collect the data, Flux Balance Analysis (FBA) and 

Mass Flow Graph Implementation (MFG), data processing and designing, and methodology 

for executing the experiment. We will consider the specifics of training and testing of the 

various machine learning techniques such as random forests, SVM, logistic regression, 

Naïve Bayes and Decision Tree determining their performance. The workflow the 

experiments is shown in Figure 3.1. 

3.2 Dataset 

In this section, we discuss the datasets that was used in this study, which is the genome-

scale metabolic model of Plasmodium falciparum and its genomic content.  

3.2.1 Genome-Scale Metabolic Model (iAM-Pf480) 

As part of this work, the most recent GSMN model of P. falciparum (iAM_pf480) curated 

by Abdel-Haleem et al. (2018) that is publicly available on the BiGG, a knowledge base 

GSMN model (http://bigg.ucsd.edu/) was used. The P. falciparum GSMN model has 480 

genes, 617 distinct metabolites, and 1083 reactions. Gene-protein-reaction (GPR) 

interactions involving 480 genes and 68% of all enzymatic processes was discovered in the 

model (Abdel-Haleem et al., 2018). The iAM_Pf480 is described in Table 3.1. 

 

http://bigg.ucsd.edu/
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Figure 3.1: Workflow Diagram of Experiment 
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Table 3.1: Description of iAM_Pf480 Content 

Metabolites 905 

 Unique Metabolites 617 

 Cytoplasm 531 

 Apicoplast 109 

 Golgi 45 

 Mitochondria 82 

 Endoplasmic Reticulum 26 

 Lysosome 9 

 Extracellular 107 

Reactions 1082 

 Gene-Associated Reactions (Metabolic & 

Transport) 

738 (68%) 

 Exchange Reactions 92 (9%) 

 Non-Gene Associated React (Metabolic) 76 (7%) 

 Non-Gene Associated React (Transport) 160 (15%) 

 Demand and Sink Reaction 16 (1%) 

Genes 409 

  

In Figure 3.2, shows the total number of metabolites, the total number of reactions, the 

number of genes, and the total number of cellular compartments from which the reactions 

occur, which implies gene locations. 

Figure 3.2: Reaction and gene counts in iAM-f480 
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The cytosol, mitochondria, Golgi apparatus, endoplasmic reticulum, food vacuole, and 

apicoplast are the six different subcellular localizations that are represented in the iAM-

Pf480 model, and the enzymes were fetched across all the stages of the development process 

of the model organism. The extracellular compartment is also included in this model. 

Previous existing models of the Plasmodium falciparum species iTH366 (Plata et al., 2010), 

iPfa (Chiappino-Pepe et al., 2021), and iPfal17 (Carey et al., 2017) were compared with 

iAM-PF480, but iAM-Pf480 was shown (Table 3.2) to span a greater variety of genetic 

content and have a bigger biochemical content. In addition to this, when compared to prior 

versions of the P. falciparum model that had been published, it demonstrated superior 

performance on golds standard dataset that was used in their research (Abdel-Haleem et al., 

2018). Presently, iAM-Pf480 outperformed earlier P. falciparum GSMN models in terms 

of functionality and has a wider breadth of genomic material and a more extensive set of 

biochemical data, making it appropriate for the investigation. 

Abdel-Haleem et al. (2018) evaluated the accuracy of the predictions and the capacity to 

correctly identify significant genes by comparing the iAM-Pf480 predictions to a list of 

empirically validated gene knockouts and drug-induced phenotypes in P. falciparum. The 

results showed that, in normal growth conditions, iAM-Pf480 had a 95% accuracy rate for 

single gene knockouts. 

Table 3.2: GSMN models of Plasmodium falciparum 

 iTH366 iPfa iPf17 iAM_pf480 

Reactions 1001 1066 1192 1083 

Metabolites 915 1258 991 617 

Genes 366 318 482 480 

Biomass Component 51 73 82 52 

 

3.3 Flux Balance Analysis (FBA) 

FBA is one of the primary Linear Programming (LP) approaches utilized in the solution of 

GSMM/s Constraint-Based issues. It is a LP technique that computes the best steady-state 

flux distribution of a cell; the flux distribution specifies the cell phenotype (Freischem et 

al., 2022; Gatto et al., 2015; Sahu et al., 2021; Wu et al., 2016). A GSMN is used as input. 

The stoichiometric matrix and upper and lower constraints on reaction fluxes are used to 

generate a linear system of equations. In addition, the cell objective function Z is specified, 

which encodes the biological aim of the cell (Freischem et al., 2022). This is presumptively 
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predicated on the idea that cell metabolism is optimized for maximum growth. FBA 

determines the solution vector to the following restricted optimization issue using linear 

programming: 

𝑀𝑎𝑥 𝑍 = 𝐶𝑇𝑉                                                                                       (3.1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑑𝑦

𝑑𝑡
= 𝑆𝑉 = 0                                                                                      (3.1𝑎) 

𝑣𝑙 ≤ 𝑣 ≤ 𝑣𝑢                                                                                        (3.1𝑏) 

where 𝐶 encodes the cell objective function 𝑣𝑙  and  𝑣𝑢   are vectors containing the lower 

and upper limits on the fluxes of the reactions involved, respectively. Researchers are able 

to determine flux-flow of the cells under different environmental and genetic conditions by 

altering the reaction flux bounds (Martins Conde et al., 2016; Yasemi and Jolicoeur, 2021)  

FBA has been applied primarily in the studies of gene essentiality prediction via performing 

single/double gene and/reaction essentiality in silico simulations.  

3.3.1 FBA Implementation 

Becker et al. (2007) created the COBRA toolbox, a popular software package that provides 

techniques for constraint-based development and analysis of GEMs in MATLAB, in 

response to the growth of GSMN modeling.  

Ebrahim et al. (2013) introduced COBRA for Python (COBRApy) as part of the 

openCOBRA project, a community effort aimed at improving access to and promoting 

constraint-based research by making software openly accessible. COBRApy is a framework 

for object-oriented programming. It includes the capability for reading and writing COBRA 

models as SBML files, as well as executing FBA. COBRApy also offers an interface to 

linear optimization programs. This allows users to tackle FBA issues using current LP 

solvers such as GLPK or Gurobi (Gurobi, 2020). COBRApy's object-oriented architecture 

provides information about GEM reactions and metabolites readily accessible for various 

Flux base analysis. COBRApy (on 16gig RAM and a 64 bit window PC) was used in 

calculating the wild-type flux distribution vector using. 
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3.3.2 FBA Gene Essentiality Analysis 

In order to compare our approach with outcomes of traditional FBA method, the study 

assessed the essentiality of reaction 𝑅𝑖 by measuring its impact on the cell's growth rate 

when knocked out. To achieve this, COBRApy models were deployed to calculate and 

conduct single-reaction deletion simulations on the dataset.  

The study assumes the objective of the biomass component as a maximization problem 

which is interpret as the cell’s aim of maximizing growth rate in the presence of glucose.  

Assume the cell’s objective is given as  

𝑍 = 𝐹𝐵𝐼𝑂𝑀𝐴𝑆𝑆                                                                          (3.2) 

Define reaction’s impact on the objective (growth impact ratio) as.  

∆𝑍𝑅𝑖
=

𝑍𝑅𝑖

𝑍𝑊𝑇
                                                                            (3.3) 

Where 𝑍𝑅𝑖
 is the optimal value of 𝑍 in the cell 𝑅𝑖 is deleted/knocked out and 𝑍𝑊𝑇 is the 

optimal value of 𝑍 in the wild type (Thus, without any knockout). 

Using the growth impact ratio, ∆𝑍𝑅𝑖
, define reaction essentiality as,  

𝑒𝑅𝑖
= 1 − ∆𝑍𝑅𝑖

                                                                        (3.4) 

Where; 

𝑒𝑅𝑖
= {

≥ 0.5 𝐸𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙
< 0.5 𝑁𝑜𝑛𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙

 

The study carried out individual reaction knockouts and ran the computationally demanding 

FBA for each knockout to ascertain the necessity of reactions in the genome-scale metabolic 

model (GEM). In order to compare the predictions with the outcomes of our machine 

learning (ML) approach, we noted the essentiality of each reaction that was represented in 

our dataset (equation 3.4). This gave us the opportunity to compare our method to the 

conventional FBA approach and evaluate the precision and efficacy of our method in 

predicting reaction essentiality over the full metabolic network.  
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3.4 Mathematical Theory of Mass Flow Graphs (MFG) 

MFGs were first proposed by Beguerisse-Díaz et al., (2018) as a way to map flux vectors 

onto a directed graph that can be analyzed with tools from network science. Each node in 

these graphs corresponds to a metabolic process, and two nodes are connected if they both 

utilize the same metabolite as either reactants or products. One of the best things about these 

reaction-centered graphs is that you don't have to get rid of pool metabolites, which are 

things like enzyme cofactors, ions, and other things that show up in many metabolic 

reactions. Pool metabolites are manually eliminated in other methods of graph construction 

to prevent the misleading connections brought about due to the high connectivity they form, 

which tend to dominate and affect the topological structure of the network.   

In the MFG construction, these pool metabolites are not removed manually but they tend to 

map onto weak connections between graph nodes which makes their effectiveness on the 

overall connectivity much smaller. In order to build a MFG, the weight of the link between 

reactions 𝑅𝑖 and 𝑅𝑗 is defined as the total flow of metabolites generated by 𝑅𝑖  and consumed 

by 𝑅𝑗. Mathematically, an MFG's adjacency matrix may be generated directly from the 

stoichiometric matrix S and a wildtype FBA solution vector. First, the flow vector is 

separated into 2 forward and reverse reactions (Freischem et al., 2022): 

𝑉2𝑚
∗ = [𝑣∗+

𝑣∗−] =
1

2
 [

𝑎𝑏𝑠(𝑣) + 𝑣∗

𝑎𝑏𝑠(𝑣) − 𝑣∗]                                        (3.5) 

Then redefine the stoichiometric Matrix resulting from the GSMM construction as  

𝑆2𝑚 = [𝑆 − 𝑆] [
𝐼𝑚 0

0 𝑑𝑖𝑎𝑔(𝑟)
]                                          (3.6) 

Where r, the reversibility vector with m dimensionality representing the reaction’s 

reversibility as initialize during the GSMN construction, thus: 

𝑟𝑗 = {
1 𝑖𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑗 𝑖𝑠 𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒
0 𝑜𝑡ℎ𝑒𝑟𝑠𝑤𝑖𝑠𝑒                              

 

The resulting 𝑆2𝑚 matrix is used to produce the production and consumption stoichiometric 

matrices as: 
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𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛:        𝑆2𝑚
+ =

1

2
(𝑎𝑏𝑠(𝑆2𝑚) + 𝑆2𝑚)          (3.6𝑎) 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛:           𝑆2𝑚
+ =

1

2
(𝑎𝑏𝑠(𝑆2𝑚) + 𝑆2𝑚)           (3.6𝑏) 

The flux vector of consumption and production is computed as: 

𝑗𝑖(𝑣) = 𝑆2𝑚
+ 𝑣2𝑚

∗ = 𝑆2𝑚
− 𝑣2𝑚

∗                                                  (3.7) 

So, considering a metabolite 𝑋𝑖𝑗 , 𝑗𝑖(𝑣)  is the flux in which it is produced and consumed. 

In this case 𝑆2𝑚
+  and 𝑆2𝑚

−  are equal under steady conditions. 

Hence the MFG adjacency matrix is computed as: 

𝑴(𝒗∗) = (𝑺𝟐𝒎
+ 𝑽∗)𝑻𝑱𝒗

𝝉 (𝑺𝟐𝒎
− 𝑽∗)                                          (𝟑. 𝟖) 

Where; 

𝑉∗ = 𝑑𝑖𝑎𝑔(𝑣2𝑚
∗ ) 

𝐽𝑣 = 𝑑𝑖𝑎𝑔(𝑗(𝑣∗)) 𝑎𝑛𝑑 𝜏 = 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑝𝑠𝑒𝑢𝑑𝑜𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 𝐽𝑣 

3.4.1 Binary Classification Problem on Mass Flow graphs 

In supervised machine learning, the core objective of binary classification is to find patterns 

in observations of two classes and use those patterns to automatically classify unseen 

objects. To evaluate whether a gene is essential or not in the environment at hand, the study 

was focus developing automated classifiers that use growth metrics from knock-out tests 

and graph features of nodes in the Flux-weighted Reaction Centric Graph. 

In this case, we have N pairs of data points, where each pair consists of a binary label y(i) 

indicating whether the gene is important or not and a p-dimensional feature vector 

𝑥(𝑖) linked to the 𝑖𝑡ℎ  gene/reaction. These feature vectors and labels are arranged into a 

class label vector (y) and a feature matrix (X). 

Mathematically. 

[(𝑥(1), 𝑦(1)), (𝑥(2), 𝑦(2)), (𝑥(3), 𝑦(3)), … , (𝑥(𝑁), 𝑦(𝑁)) ]                        (3.9) 

where 𝑥(𝑖) ∈ 𝑅𝑝 is a 𝑝 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 vector features associated with the reaction/genes 

and 𝑦(𝑖) ∈ {0,1} is the class label that is associated with the class label of the reaction or 
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gene. We regard non-essential genes as the negative class (0) and essential genes as the 

positive class (1) without loss of generality. 

All of the feature vectors are included in the feature matrix, 𝑋, and the matching class labels 

are represented by the label vector 𝑦. The feature vectors and labels are assembled into a 

feature matrix 𝑋 and a vector of class labels 𝑦: 

𝑋 =  [𝑥(1), 𝑥(2), 𝑥(3), … , 𝑥(𝑗)] 

𝑦 =  [𝑦(1), 𝑦(2), 𝑦(3), … , 𝑦(𝑗)] 

Using this data, a classification algorithm is trained to discover patterns in the input data 

and predict labels in the output data. Once trained, the system may use the feature vectors 

of unseen samples to automatically identify their labels. 

There are several categorization model types that may be used, and each one makes a 

different assumption about how the feature space is shaped. Support vector machines, 

decision trees, neural networks, and logistic regression are examples of common models 

that will be used. The job and dataset at hand determine which model should be used. In a 

typical machine learning pipeline, cross-validation studies are performed alongside model 

training to minimize overfitting and to conduct model selection, making sure the selected 

model works well on untrained datasets. 

3.5 Graph Feature Extraction 

In research conducted by Freischem et al., (2022), they implemented the mass flow graph 

theoretical framework that was proposed by Beguerisse-Díaz et al., (2018). They developed 

MFGpy, a python package for the automatic generation, analysis, and visualization of 

MFGs from a COBRA model. The GSMN model (iAM_Pf430) that was downloaded from 

the BiGG database was utilized to construct the graph network using this software.  

The study adopted MFGpy, a Python package created by Freischem et al. in 2022. 

According to their study (Freischem, Barahona, and Oyarzn, 2022) the package merges 

COBRApy with Mass Flow Graphs (MFGs). For automating MFG generation from 

GSMMs (Genome-Scale Metabolic Models), this methodology provides a number of 

(3.10) 
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functionalities. Additionally, it makes it easier to analyse MFGs and export them as numpy 

and CSV files for future study. 

Table 3.3: UML of MFG python class 

The study updated the MFGpy class model to include an automatic centrality feature 

extraction from the resulting MFG to aid in further graph analysis. Hence, in the machine 

learning stage, the extracted centrality features—clustering coefficient, proximity 

centrality, betweenness centrality, and degree centrality—can be exported as a node feature 

matrix and stored as a CSV file. 

The COBRA model that corresponds to the MFGpy is stored in the model. This allows 

running the GSMM through a Flux Balance Analysis (FBA). The production and 

consumption stoichiometric matrices are kept in 'S2m_plus' and 'S2m_minus', respectively, 

while the FBA analysis's output flux vector is stored in 'v'. 'v', 'S2m_plus', and 'S2m_minus' 

are used to create the adjacency matrix as indicated in equation (3.6). 

MFGpy also enables network visualisation and clustering analysis using the NetworkX 

Python library (Hagberg et al., 2008). MFG then include export() which allows the resulting 

graph to be exported as a numpy file for additional analysis as well as a CSV file containing 

nodes and edge weights Table. Graph visualisation tools like Gephi 0.10 and Cytoscape 

(Paul Shannon et al., 1971) can be used to visualise the CSV file. 

The study performed the FBA of iAM-Pf480 to calculate the wild-type flux vector using 

COBRApy considering glucose as energy source; then implemented the MFG algorithm 
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with a written code in python 3.9.7 language and NetworkX library on a Linux operating 

system, AMD core, 750 HD and 16 Gigabyte RAM. The flux-weighted graph created using 

MFG contains 505 reactions with 6217 edges and is viewed using Gephi 0.10 software as 

shown in Figure 3.2. 

(A. Shows flux-weighted graph of iAM_Pf480 GSMM (when the graph is unweighted) 

and B. shows the graph with it edge weight.) 

3.5.1 Centrality-based Features 

From the flux-weighted network of iAM_Pf480, the researcher extracted six topology-

based metrics, including PageRank, PageRank Percentage, Betweenness centrality, 

Closeness centrality, Clustering Coefficient, and degree using MFG_updatepy written in 

python which were exported in the form of a CSV file. The feature matrix has 330 rows and 

6 columns, each row representing one of the 330 reactions and each column indicating one 

of the feature values associated with that reaction. After that, we used this feature matrix as 

an input for the machine learning model to train and make prediction on gene essentiality. 

3.5.2 Node Role Analysis 

In this section, we discuss features that are extracted based on the role of nodes in the 

network graphs.  

  

A 
B 

Figure 3.2: Mass Flow graph of iAM-Pf480 view in Gephi 0.10 
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A. Recursive Feature Extraction Algorithm (ReFeX) and Role eXtraction (RolX) 

Regional features of nodes are computed recursively by the Recursive Feature eXtraction 

algorithm (ReFeX) as discussed in chapter 2. Neighbourhood features, which include local 

and egonet properties, are computed to initialize the algorithm. The egonet of a node 

consists of the node itself, all its neighbours, and all edges within this group of nodes; 

ReFeX also considers the egonet's incoming and outgoing edges. Node degree is measured 

by local features. They include weighted in-, out-, and total degrees for a weighted digraph. 

Egonet features are the weighted, directed number of edges that are present inside, entering, 

and exiting the egonet. The advantage of ReFeX features is its scalability and effectiveness 

in discovering regional information in large network graphs.  

B. Implementation of ReFeX and RolX 

The ReFeX and RolX algorithms both was implemented as GraphRole module that is 

available via the PyPi project (Kaslovsky, 2019) which was adopted for research. The 

development of these algorithms, which is covered in more depth in Chapter 2 of the 

dissertation proposed by Henderson and colleagues (Henderson et al., 2011, 2012). 

GraphRole includes methods that implements Recursive Feature eXtractor for the ReFeX 

algorithm and Role Extractor for the RolX algorithm when called on a graph. 

The ReFeX and RolX methodologies depend on graph definitions used in NetworkX, which 

is a Python programme developed for the generation, modification, and investigation of 

complex networks. The multi graph definitions generated by NetworkX are used as input 

by the GraphRole module throughout the process of implementing the ReFeX and RolX 

algorithms (Kaslovsky, 2019). The output that is generated by these algorithms are stored 

as a data frame file which is exported as a ReFeX and RolX feature matrix in csv. The 

experiment resulted in extracting a ReFeX feature matrix of 330 rows reactions and 31 

feature columns whereas for RolX, the study extracted a feature matrix of 330 rows and 5 

columns (From the Flux-weighted reaction-centric graph resulting from Equation 3.8).  

3.5.3 Adjacency Features 

As a result of the large number of reactions in FBA solution vectors that do not transport 

flux, these reactions are mapped onto disjointed nodes in the Mass Flow Graphs, which 

means that they are non-essential genes. The adjacency matrix resulting from the MFG can 
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be used as a node feature matrix and used to train the machine learning models testing their 

predictive power in essentiality prediction (Freischem et al., 2022). 

Mathematically:   

Given the adjacency matrix 𝑀𝑚, of (𝑚 × 𝑚) size of metabolites m, let the nonzero nodes 

be k, all zero nodes are removed from 𝑀𝑚   to form (𝑚 − 𝑘) a reduced 𝑀𝑘. Hence the 

feature matrix X in formed by the form.   

𝑋𝑚 = [𝑀𝑘  𝑀𝑘
𝑇]                                                                     (3.11) 

In all, applying GraphRole on the graph, it used a mixed-membership assignment strategy 

to group the nodes into five separate roles (𝑟1, 𝑟2, 𝑟3, . . . , 𝑟5). These roles are denoted by 

the letters r1, r2, r3, …, and r5. A percentage number, representing the node's contribution 

to each role, was ascribed to each individual node. In addition, topological parameters 

including PageRank, PageRank Percentile, Degree, Clustering Coefficient (CoC), 

Betweenness Centrality (BC), and Closeness Centrality (CC) were used in the investigation. 

In addition, the adjacency features (F1, ..., F1010) were recovered from the adjacency 

matrix that was produced by the graph that was created. 

3.6 Essentiality Labelling 

The research study made use of the OGEE database to extract Plasmodium falciparum 

essential genes saved as a csv file. The Online GEne Essentiality (OGEE) database is a 

comprehensive source that specializes in essentiality data. It acts as a database of essential 

and non-essential genes that have undergone experimental verification. These genes have 

been collected from numerous sources and acquired via a variety of experimental 

techniques (Gurumayum et al., 2021). 

The OGEE database compiles information from several research papers that cover a variety 

of species and experimental techniques. It comprises data on the relevance of certain genes 

for the survival and functioning of the organism gleaned via genetic knockout tests, RNA 

interference (RNAi) investigations, transposon mutagenesis, and other approaches(Hagberg 

et al., 2008). 

A collection of experimentally confirmed essential genes unique to Plasmodium falciparum 

from the OGEE database was downloaded and used in this research study. This data 
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provides a critical starting point for additional research and analysis aimed at elucidating 

the fundamental biological mechanisms and possible therapeutic targets present in the 

Plasmodium falciparum genome. This essentiality information was used as essentiality 

labels for the reaction nodes following Gene-Protein Reaction (GPR) rules that are 

contained in the genome scale metabolic model (iAM_Pf480).  

3.7 Data Preprocessing 

In MFG algorithm, poorly linked reactions are automatically removed using the flux vector 

from the flux balance analysis (FBA), thus, showing their non-essential status (Beguerisse-

Díaz et al., 2018). As a result, the iAM_Pf480 Genome-Scale Metabolic Model (GSMM)'s 

initial 1082 reactions were reduced in our experiment to 505 reactions. It produced a graph 

with 6217 edges. We also removed reactions from the graph which are not linked to any 

genes (non-gene associated genes). Since there are no gene connections for these reactions, 

their essentiality or non-essentiality cannot be identified. Consequently, we were able to 

identify 330 reactions, of which 258 were essential and 72 were not (Figure 3.3).  

Hence, dataset is made up of 78.2% essential reactions (175 essential reactions) and 21.8% 

essential reactions (155 non-essential reactions). 

3.8 Data Normalization 

In machine learning, normalization is a crucial preprocessing step, especially when working 

with classification algorithms that depend on calculating the distances between feature 

 
Figure 3.3: Pie chart of Essential and Nonessential reactions 
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vectors. The size of the features may have an impact on distances like Euclidean or cosine 

distances, which can cause bias or portray the real connections between samples incorrectly. 

Before training the classification model, we conducted feature matrix X normalization to 

solve this problem and avoid issues brought on by feature scaling. By bringing all features 

to a comparable scale, the normalization procedure seeks to prevent any dominance or 

distortion brought on by different feature value ranges. 

In this scenario, a particular normalization technique that protects the feature matrix's sparse 

nature was used. We concentrated just on scaling the features to have unit variance rather 

than removing the feature mean and scaling to unit variance (mean normalization). This 

method achieves the necessary scaling effect while preserving the original distribution and 

connections between the features. Each element in the feature matrix 𝑋 is divided by the 

standard deviation of the accompanying feature j to normalize the matrix shown in equation 

(3.12). A normalized entry 𝑥𝑖𝑗 that represents the feature's scaled value is created because 

of this operation. Based on the training data, the standard deviations 𝜎𝑗  are determined, and 

the normalization factors are saved for use in reliably converting additional input data in 

the future. 

�̃�𝑖𝑗 =  
𝑥𝑖𝑗

𝜎𝑗
                                                                  (3.12) 

We reduce any bias or distortion that can be brought about by different feature scales by 

using this normalization procedure. As a result, the classification algorithm is no longer 

swayed by the scales of the features individually but instead concentrates on their relative 

relevance and linkages. The resilience and efficacy of the classification model in correctly 

identifying the patterns and producing accurate predictions are enhanced by this 

normalization phase. 

3.9 Machine Learning Models 

The study developed a machine learning pipeline as shown in Figure 3.4 in order to train 

binary classifiers that can predict the essentiality labels based on characteristics collected 

from the mass flow graphs, using python programming language and Scikit-learn library. 

Various ML algorithms such Support Vector Machine (SVM), Logistic Regression (LG), 
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Random Forest (RF), Decision Tree (DT), k-Nearest Neighbourhood (kNN) and Naive 

Bayes (NB) were deployed and their performance on the various datasets were evaluated. 

The study looked at the best performing ML algorithm and the features sets that gave the 

highest accuracy of prediction.  

i. Support Vector Machine (SVM) Binary Classifier 

A Support Vector Machine (SVM) finds a hyperplane which separates the two classes in 

the feature space. It aims to maximize the margin that separates the classes which reduces 

the risk of false classification. SVMs are memory efficient and versatile classifiers which 

can be used for binary as well as multi-class classification (Shmilovici, 2005). 

ii. Logistic Regression Binary Classifier 

The objective of the classification technique known as logistic regression is to establish a 

connection between feature frequencies and the likelihood of a specific outcome. In contrast 

to linear regression, which produces a straight line to represent the class probability, logistic 

regression produces a sigmoidal curve. The sigmoid function, which generates an S-shaped 

curve with a range of 0 to 1, transforms discrete or continuous numerical data (x) into a 

single numerical value (y), determines this curve. The main benefit of this strategy is that 

probabilities are restricted to the range between 0 and 1 (they cannot be less than 0 or larger 

than 1). It can either be binomial, with just two potential results, or multinomial, with three 

or more 𝑦 =
1

1−𝑒𝑥 outcomes conceivable (Tiwari, 2020). Logistic Regression uses a logistic 

Figure 3.4: Machine Learning Pipeline 
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sigmoid function as transformation to linear output labels to model a binary output variable. 

The resulting outputs are between 0 and 1 and are interpreted as the probability of a sample 

to be in class 1. Maximum likelihood estimation is used to find weights that maximize the 

probability of the data. 

iii. Random Forest Binary Classifier 

The Random Forest method is a widely used machine learning algorithm for classification 

and regression tasks (Schonlau and Zou, 2020). It creates a "forest" of trees by combining 

different decision trees, resulting in a random subset of characteristics. The trees train using 

various subsets of training data, and the final prediction is made by combining the data from 

each tree's unique forecasts. The most frequent prediction is selected for classification tasks, 

while the average or weighted average is used for regression tasks. Random Forest can 

handle high-dimensional datasets with many attributes, recording intricate interactions and 

non-linearities between characteristics and target variables (Donges, 2021; Schonlau and 

Zou, 2020). 

It also manages missing values without imputation and offers built-in feature significance 

measurements for feature selection and understanding of underlying connections. However, 

it can be computationally costly to train many trees, difficult to understand due to its 

intricacy and ensemble nature and may be biased towards the dominant class in unbalanced 

class distributions. Despite these drawbacks, Random Forest remains a useful tool in many 

machine learning applications due to its ability to manage complicated data and provide 

reliable predictions (Aleryani, Wang, and de la Iglesia, 2020). 

iv. k-Nearest Neighbourhood (kNN) Binary Classifier 

Originally created by Evelyn Fix and Joseph Hodges in 1951 and then enhanced by Thomas 

Cover, the k-nearest neighbours’ algorithm (k-NN) is a non-parametric supervised learning 

technique (Cover and Hart, 1967). For both classification and regression problems, it is a 

straightforward and understandable machine learning technique. k closest neighbours in the 

training data are used by the kNN algorithm to identify the class or value of a new data 

point. How many neighbours are considered depends on the value of k. The new data point 

is classified by being given the class that has most of the k closest neighbours. As the 

projected value in regression, the k closest neighbours’ values are averaged or weighted to 
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provide an average. Assumptions concerning the distribution of the underlying data are not 

made by kNN since it is non-parametric. But since it involves figuring out how far every 

training sample is from every new data point; it may be computationally costly for huge 

datasets. 

v. Decision Tree Binary Classifier 

A Decision Tree is a well-liked machine learning model that is utilized for both 

classification and regression applications. It provides a structure that resembles a flowchart, 

where each leaf node is a class label or a projected value, and each inside node is a decision 

based on a particular characteristic. Decision trees divide the data depending on the 

attributes that divide the dataset most effectively, trying to minimize impurity or maximize 

information gain. The split criteria, like Gini impurity or entropy, rely on the algorithm 

being utilized. Decision trees have the benefit of being comprehensible and capable of 

capturing non-linear connections. However, they are prone to overfitting and might be 

sensitive to little variations in the training data (Tiwari, 2020). 

vi. Naive Bayes Binary Classifier 

Naive Bayes is a probabilistic machine learning method Based on Bayes' theorem. It is often 

used for classification jobs, notably spam filtering and text categorization. Naive Bayes 

makes the strong but more straightforward assumption that the characteristics are 

conditionally independent given the class label. Given the feature values, it calculates the 

likelihood of each class and chooses the class with the greatest probability as the predicted 

class. Even with a lot of features, Naive Bayes is computationally efficient. However, it 

may struggle with unusual occurrences or classes with unbalanced data, and its performance 

may suffer when the independence assumption is broken (Camacho et al., 2018). 

3.10  Evaluation Metrics 

We measured the performance of ML binary classifiers using the evaluation metrics 

discussed below: 

i. Accuracy 

Accuracy is one of the performance matrices calculated using the confusion matrix. It 

accounts for the percentage of outcomes that have been predicted correctly.  



49 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                               (3.13) 

 

where TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative.  

Accuracy is the most suiTable for cases of perfectly balanced data that must prove 

misleading in situations where our data is imbalanced. 

ii. Precision 

Precision is a measure of how many of the predicted positive outcomes are actually positive. 

It shows how many correct positive predictions there are compared to the total number of 

positive predictions. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                      (3.14) 

iii. Recall/Specificity 

Recall shows how many of all the actual positive values are also predicted to be positive. It 

shows how many correct positive predictions there are compared to how many positive 

cases there are in the entire dataset. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                            (3.15) 

iv. F1 Score 

It is a balance between recall and accuracy. Its interval is [0,1]. This statistic often informs 

us of the classifier's precision (number of cases properly classified) and robustness (absence 

of significant number of missed instances). 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑅𝑒𝑐𝑎𝑙𝑙

                                  (3.15) 

3.11 Summary of Experimentation 

A weighted reaction centric graph with 505 reactions as nodes and 6217 edges was 

constructed from the Genome-scale metabolic model. Amidst this reaction may include 

reactions that are not associated with any gene and will not have any essentiality label. 
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Hence, we dropped all these reactions after extracting the graph features resulting is 330 

reactions remaining.  

ReFeX features (ReFeX), RolX features (RolX), Adjacency matrix features, and 

Topological/Centrality features are four separate sets of response features that were 

extracted from the graph. These feature sets were pooled, and many machine learning 

algorithms were tested and trained using them. The objective was to evaluate how well 

these algorithms performed in foretelling the essentiality of nodes which have been labelled. 

Based on the matching forecast, every node was classified as either vital or non-essential. 

Table 3.4 reports details on the various data sets that were extracted from the graph. 

Table 3.3: Various feature sets used in Experiment. 

Dataset No of Features 

RolX 5 

ReFeX 31 

Topological Features 6 

Adjacency Features 1010 

ReFeX&RolX 36 

Topology&ReFeX 37 

Topology&RolX 11 

Topology&ReFeX&RolX 42 

 

3.11.1 Computational Power 

All of the experiments in this project were carried out in Python 3 and made use of a variety 

of libraries, including scikit-learn (Pedregosa et al., 2011), networkX (Hagberg et al., 

2008), MFG_updatepy (a modified version of MFGpy (Freischem et al., 2022) for 

automated generation of MFG graphs and their centrality featutures), GraphRole (used for 

automated Recurrent Feature Extraction and node role analysis) (Kaslovsky, 2019), and the 

COBRApy (Ebrahim et al., 2013) libraries. The algorithms and scripts were run on a 

personal computer with an AMD Core CPU running at 2.70GHz and 16 GB of RAM. The 

script form MFG implementation used for this project is included in the appendix B, and 

we intend to make it publicly available on GitHub at https://github.com/stephen-bin. 

 

  

https://github.com/stephen-bin
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CHAPER FOUR 

RESULTS AND DISCUSSION 

4.1 Preamble 

In this chapter, we discuss results that we obtained from our experiments. We show the 

resulting flux-weighted reaction centric graph and evaluate the performance of ML 

algorithms across the graph-based features that we extracted in predicting gene essentiality. 

The iAM-Pf480 GSMM used in the flux-weighted reaction-centric (FWRC) graph was 

adopted from BiGG database as a systems biology mark-up language (SBML) file and their 

essentiality labels were acquired from Ogee databased as a csv file and used train a 

supervised machine learning model to predict reaction essentiality. We utilized the iAM-

Pf408 GSM Model to create the dataset. The resulting FWRC graph is shown in Figure 4.1.  

4.2 Results 

To begin, we trained six distinct models for binary classification. To ensure optimal 

performance, we utilized 5-fold cross-validation to fine-tune the hyperparameters of each 

model. Cross-validation involves dividing the data into five subsets, or folds, and training 

the model on four folds while evaluating its performance on the remaining fold. This 

Figure 4.1: FWRC graph of iAM-Pf480 model viewed with Gephi 0.10 
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process is repeated five times, each time using a different fold as the evaluation set. By 

doing so, we obtain a more reliable estimate of the model's performance. We evaluated the 

performance of the models using five commonly used evaluation metrics: Area under the 

Receiver Operating Characteristic curve (AuROC), Accuracy, Precision, Recall, and F1-

score. These metrics provide valuable insights into the model's ability to correctly classify 

the data.  Considering the imbalanced nature of the datasets, where one class has 

significantly more instances than the other, we employed a weighted average record for 

values of precision, recall, and the F1-score. This weighting accounts for the uneven 

distribution of classes, giving equal importance to both classes and ensuring a balanced 

evaluation of the model's performance. The results of the model evaluations, including the 

optimized hyperparameters, are summarized in Table 4.1. These results reflect the 

performance of the models trained on 80% of the available reactions. The remaining 20% 

of reactions were reserved as a held-out/test set, allowing for an unbiased assessment of the 

models' generalization ability on unseen data.  

Table 4.1: Performance evaluation of ML methods on various feature sets 
A. Adjacency Features 

ML Model AuROC Accuracy Precision Recall F1 - Score Accuracy 5-Cross Val (5) 

LogReg 0.41 0.64 0.57 0.64 0.6 [0.79, 0.79, 0.79, 0.77, 0.77] 

KNN 0.48 0.74 0.59 0.74 0.66 [0.68, 0.64, 0.77, 0.77, 0.76] 

Random Forest 0.52 0.73 0.67 0.73 0.69 [0.77, 0.74, 0.74, 0.76, 0.76] 

SVM 0.5 0.77 0.6 0.77 0.67 [0.79, 0.79, 0.79, 0.77, 0.77] 

Decision Tree 0.51 0.68 0.66 0.68 0.67 [0.80, 0.77, 0.62, 0.71, 0.74] 

Naive Bayes 0.56 0.79 0.76 0.79 0.73 [0.77, 0.62, 0.79, 0.77, 0.77] 

B. Topological Features 

ML Model AuROC Accuracy Precision Recall F1 - Score Accuracy 5-Cross Val (5) 

LogReg 0.46 0.71 0.59 0.71 0.64 [0.79, 0.79, 0.79, 0.77, 0.77] 

KNN 0.58 0.74 0.71 0.74 0.72 [0.82, 0.74, 0.73, 0.79, 0.71] 

Random Forest 0.69 0.82 0.8 0.82 0.81 [0.85, 0.76, 0.77, 0.74, 0.77] 

SVM 0.5 0.77 0.6 0.77 0.67 [0.79, 0.79, 0.79, 0.77, 0.77] 

Decision Tree 0.59 0.77 0.74 0.77 0.75 [0.71, 0.74, 0.73, 0.77, 0.74] 

Naive Bayes 0.47 0.68 0.61 0.68 0.64 [0.73, 0.80, 0.79, 0.77, 0.77] 

C. ReFeX 

ML Model AuROC Accuracy Precision Recall F1 - Score Accuracy 5-Cross Val (5) 

LogReg 0.62 0.82 0.82 0.82 0.78 [0.79, 0.67, 0.76, 0.77, 0.77] 

KNN 0.57 0.77 0.73 0.77 0.73 [0.77, 0.74, 0.68, 0.77, 0.77] 

Random Forest 0.69 0.85 0.85 0.85 0.83 [0.85, 0.76, 0.74, 0.74, 0.77] 

SVM 0.53 0.79 0.83 0.79 0.71 [0.79, 0.79, 0.79, 0.77, 0.77] 

Decision Tree 0.6 0.82 0.85 0.82 0.77 [0.67, 0.76, 0.76, 0.76, 0.79] 

Naive Bayes 0.63 0.58 0.74 0.58 0.61 [0.44, 0.58, 0.39, 0.5, 0.56] 
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D. RolX 

ML Model AuROC Accuracy Precision Recall F1 - Score Accuracy 5-Cross Val (5) 

LogReg 0.5 0.77 0.6 0.77 0.67 [0.79, 0.79, 0.79, 0.77, 0.77] 

KNN 0.49 0.65 0.64 0.65 0.65 [0.74, 0.82, 0.76, 0.68, 0.59] 

Random Forest 0.55 0.77 0.72 0.77 0.72 [0.79, 0.76, 0.79, 0.77, 0.74] 

SVM* 0.56 0.79 0.76 0.79 73 [0.77, 0.79, 0.79, 0.77, 0.77] 

Decision Tree 0.49 0.76 0.56 0.76 0.67 [0.74, 0.76, 0.80, 0.77, 0.77] 

Naive Bayes 0.49 0.76 0.59 0.76 0.67 [0.79, 0.71, 0.80, 0.62, 0.77] 

E. ReFeX and RolX 

ML Model AuROC Accuracy Precision Recall F1 - Score Accuracy 5-Cross Val (5) 

LogReg 0.66 0.83 0.83 0.83 0.8 [0.79, 0.67, 0.76, 0.77, 0.77] 

KNN 0.59 0.8 0.79 0.8 0.76 [0.77, 0.74, 0.68, 0.77, 0.77] 

Random Forest 0.68 0.83 0.82 0.83 0.81 [0.83, 0.76, 0.74, 0.74, 0.74] 

SVM 0.5 0.77 0.6 0.77 0.67 [0.79, 0.79, 0.79, 0.77, 0.77] 

Decision Tree 0.62 0.82 0.82 0.82 0.78 [0.74, 0.77, 0.74, 0.77, 0.76] 

Naive Bayes 0.65 0.61 0.75 0.61 0.64 [0.44, 0.56, 0.39, 0.5, 0.56] 

F. TopologyReFeX 

ML Model AuROC Accuracy Precision Recall F1 - Score Accuracy 5-Cross Val (5) 

LogReg 0.62 0.77 0.75 0.77 0.76 [0.89, 0.74, 0.76, 0.79, 0.76] 

KNN 0.62 0.82 0.82 0.82 0.78 [0.79, 0.74, 0.68, 0.77, 0.77] 

Random Forest 0.69 0.85 0.85 0.85 0.83 [0.82, 0.77, 0.74, 0.76, 0.76] 

SVM 0.53 0.79 0.83 0.79 0.71 [0.79, 0.79, 0.79, 0.77, 0.77] 

Decision Tree 0.63 0.79 0.76 0.79 0.77 [0.74, 0.74, 0.73, 0.76, 0.77] 

Naive Bayes 0.63 0.58 0.74 0.58 0.61 [0.44, 0.62, 0.39, 0.52, 0.56] 

G. TopologyRolX 

ML Model AuROC Accuracy Precision Recall F1 - Score Accuracy 5-Cross Val (5) 

LogReg 0.46 0.71 0.59 0.71 0.64 [0.79, 0.79, 0.79, 0.77, 0.77] 

KNN 0.66 0.8 0.78 0.8 0.79 [0.82, 0.76, 0.73, 0.79, 0.71] 

Random Forest 0.67 0.82 0.8 0.82 0.8 [0.82, 0.71, 0.74, 0.73, 0.77] 

SVM 0.52 0.77 0.72 0.77 0.7 [0.79, 0.79, 0.79, 0.77, 0.77] 

Decision Tree 0.61 0.8 0.78 0.8 0.77 [0.76, 0.77, 0.76, 0.77, 0.77] 

Naive Bayes 0.48 0.67 0.63 0.67 0.65 [0.73, 0.79, 0.73, 0.65, 0.70 ] 

H. TopologyReFeXRolX 

ML Model AuROC Accuracy Precision Recall F1 - Score Accuracy 5-Cross Val (5) 

LogReg 0.61 0.76 0.74 0.76 0.74 [0.89, 0.74, 0.76, 0.79, 0.76] 

KNN 0.59 0.8 0.79 0.8 0.76 [0.79, 0.74, 0.68, 0.77, 0.77] 

Random Forest 0.66 0.83 0.83 0.83 0.8 [0.83, 0.72, 0.74, 0.74, 0.77] 

SVM 0.53 0.79 0.83 0.79 0.71 [0.79, 0.79, 0.79, 0.77, 0.77] 

Decision Tree 0.63 0.79 0.76 0.79 0.77 [0.74, 0.77, 0.73, 0.77, 0.77] 

Naive Bayes 0.65 0.61 0.75 0.61 0.64 [0.42, 0.56, 0.39, 0.5, 0.56] 

 

The study aimed to find the best model for binary classification tasks and the best dataset 

on which this model performs after model training, hyperparameter optimisation, and 

prediction. The Table above shows the experimental results of the performance of each ML 

model on the various Feature sets. 
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4.3 Discussion 

In this section, we discuss the performance of the various ML models across all the datasets 

used in the experiment. 

A. Adjacency Features (Table 5A) 

We extracted the adjacency matrix from the mass flow graph and used it as 330 nodes by 

1010 features matrix traced to the consumption and production stoichiometric matrix 

(Chapter 3 Equation 3.11). We observed that the ML models had poor predictive power on 

this dataset. Naïve Bayes achieved the highest performance with auROC of 0.56, accuracy 

and f1-score, 0.79 and 0.73 respectively, and this is probably due to its ability to work best 

on high dimensional dataset. Random Forest performed reasonably well with an auROC 

and accuracy of 0.52 and 0.73 respectively. The accuracy in the 5-fold CV was consistent 

across all the ML Models. 

B. Topological Dataset (Table 5B) 

We extracted six centrality/topological features from the mass flow graph and used it to 

train the ML models. We saw that there was improvement in the predictive power across 

the various ML models compared to adjacency features. Random Forest outperformed other 

models with an AuROC of 0.69 and Accuracy of 0.82. All models achieved relatively 

improved Accuracy and F1-Score values, indicating good overall performance. The 

accuracy in 5-fold cross-validation varies slightly across models but generally falls in the 

range of 0.74 to 0.85. 

C. ReFeX Feature Set (Table 5C) 

We extracted 31 feature sets from mass flow graph using GraphRole. When trained with 

the ML models, we observed, all models improved performance on this feature sets. 

Random Forest had the highest AuROC (0.69) and Accuracy (0.85) among all models, 

indicating its effectiveness with ReFeX features. Logistic Regression and Decision Tree 

also showed reasonable performance with AuROC values around 0.62 and Accuracy above 

0.80. Naive Bayes had a relatively low performance with an AuROC of 0.63 and an 

Accuracy of 0.58. 
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D. RolX Feature Set (Table 5D) 

We generated a set of 5 features based on role clustering of the ReFeX features with 

GraphRole Algorithm and trained ML models on them. Naive Bayes achieved the highest 

AuROC (0.56), Accuracy (0.79), and F1-Score (0.73). Random Forest and SVM also 

showed reasonable performance with AuROC values of 0.55 and 0.56, respectively. The 

accuracy in 5-fold cross-validation is relatively consistent for all models, with scores mostly 

around 0.74 to 0.79. 

E. ReFeX and RolX Feature Set (Table 5E) 

We combined ReFeX and RolX features set to form a new dataset which we used for ML 

training. Random Forest achieved the highest AuROC (0.68) and Accuracy (0.83) among 

all models, indicating its effectiveness in utilizing the combined features and performing 

well on the dataset. Logistic Regression, Decision Tree, and KNN also showed reasonable 

performance with AuROC values around 0.66, 0.62, and 0.59, respectively. Naive Bayes 

had the lowest Accuracy (0.61) among all models. While it achieved a relatively high 

Precision (0.75), its Recall (0.61) and F1-Score (0.64) were lower, indicating that it may 

struggle to correctly identify positive instances. 

F. TopologyReFeX Feature Set (Table 5F) 

We combined Topological and ReFeX feature sets to form a new dataset 

(TopologyReFeX). Random Forest achieved the highest AuROC (0.69) and Accuracy 

(0.85) among all models, indicating its strong performance on the dataset with 

TopologyReFeX features. KNN also performed well with an AuROC of 0.62 and an 

Accuracy of 0.82, demonstrating its capability to handle the data effectively. Logistic 

Regression, Decision Tree, and Naive Bayes showed moderate performance, with AuROC 

values between 0.62 and 0.63 and Accuracies ranging from 0.58 to 0.79. SVM had the 

lowest AuROC (0.53) and Accuracy (0.79) compared to other models on this dataset. 

G. TopologyRolX Feature Set (Table 5G) 

We combined Topological and RolX datasets to form a new dataset as TopologyRolX. 

KNN achieved the highest AuROC (0.66) and Accuracy (0.80) among all models, 

indicating its strong performance on the dataset with TopologyRolX features. Random 
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Forest and Decision Tree also showed competitive performance with AuROC values 

around 0.67 and Accuracies of 0.82. Logistic Regression, SVM, and Naive Bayes had 

relatively lower performance, with AuROC values between 0.46 and 0.52 and Accuracies 

ranging from 0.67 to 0.77. 

H. TopologyReFeXRolX Dataset (Table 5H) 

We finally combined the three-feature set, Topological, ReFeX and RolX features to form 

a new dataset. Random Forest achieved the highest AuROC (0.66) and Accuracy (0.83) 

among all models, indicating its strong performance on the dataset with 

TopologyReFexRolX features. Logistic Regression, Decision Tree, and KNN also showed 

competitive performance with AuROC values around 0.61 to 0.63 and Accuracies ranging 

from 0.76 to 0.80. Naive Bayes had a higher AuROC (0.65) compared to other datasets, 

but it showed the lowest Accuracy (0.61) and F1-Score (0.64). SVM had the lowest 

AuROC (0.53) and performed relatively lower in terms of Accuracy (0.79) and F1-Score 

(0.71) on this dataset. 

Overall, Random Forest classifier with 500 trees and a maximum depth of 42 was found to 

provide the best results across various feature sets and overall best in ReFeX feature set 

after the experiment. Information gain was the criteria used to determine the best tree splits, 

and all feature sets except Adjacency and RolX utilized log2 (2k) features. As shown in 

Table 4.2, the model's test set assessment demonstrated an overall accuracy of 85%. The 

model also showed an 85% accuracy rate and an 83% recall rate when the ReFeX and 

Combined Topological&ReFeX, and Topological&ReFeX&RolX feature sets were 

considered. However, we realize ReFeX has a significant impact on how RF performs on 

each of the combinations that contain the ReFeX feature set. A heatmap shown in Figure 

4.2 shows the record of the Accuracy of the ML models across the different datasets. 
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Figure 4.2: Heatmap of Accuracy of ML models across different dataset 

Table 4.2: Performance evaluation for Random Forest over eight datasets 

Random Forest 

Dataset AuROC Accuracy Precision Recall F1-score 

Adjacency 0.52 0.73 0.67 0.73 0.69 

Topological 0.69 0.82 0.8 0.82 0.81 

ReFeX 0.69 0.85 0.85 0.85 0.83 

RolX 0.55 0.77 0.72 0.77 0.72 

ReFeX and RolX 0.68 0.83 0.82 0.83 0.81 

Topological and RolX 0.67 0.82 0.8 0.82 0.8 

Topological and ReFeX 0.69 0.85 0.85 0.85 0.83 

TopologicalReFeXRolX 0.69 0.85 0.85 0.85 0.83 

Table 4.2 shows performance matrix of Random Forest (RF) on the various feature sets, 

Adjacency, ReFeX, RolX, Topological Features and the combinations of ReFeX&RolX, 

Topology&ReFeX, Topology&RolX and Topological&ReFeX&RolX. The Model was 

trained on 80% of the nodes of the MFG and the reported performance metrics were 

computed on a held-out dataset with 20% of nodes. A heatmap in Figure 4.3 shows the 

performance of RF model across various datasets and performance evaluation metrics.  
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Figure 4.3: The Heatmap representing the Performance of RF across Different 

datasets and evaluation metrics. 

We examined the confusion matrix (Figure 4.4A), and it suggested that the classifier is 

relatively bad at predicting the non-essential reactions (with an accuracy of 40%), but it 

shows near state-of-the-art accuracy for essential genes (with an accuracy of 98.04%). This 

discrepancy could be explained by the fact that the non-essential reactions are not as well 

represented in the dataset as the essential reactions are. 

            A       B 

Figure 4.4: Gene essentiality prediction in Plasmodium Falciparum (iAM_Pf480) 
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 (A) Confusion Matrix of Random Forest on ReFeX Features and (B) Precision-Recall 

Curve of Random Forest. We see AUC = 0.7 indicates that the model's ability to 

differentiate between the positive and negative classes is of moderate strength. 

The thorough classification report shown in Table 4.3 shows that for ReFeX features, the 

model obtains equivalent accuracy values for both essential and non-essential classes. The 

Recall and F-Score for essential reactions, however, are much higher than those for non-

essential reactions. The macro or class average, which reflects the unweighted average of 

precision, recall, and F-Score for each class, is lower than the weighted average in recall 

and F1-Score but produces the same precision score. This suggests that although the model 

failed to accurately identify certain non-essential reactions, it fared noticeably better on 

those essential reactions. This resulted in lower recall and F1 scores for that class of 

reactions. The number of samples in each class is taken into consideration by the weighted 

average, which results in a more balanced evaluation of overall performance. 

Table 4.3: Detail Classification Report of RF on ReFeX features on the test dataset. 

Random Forest (Binary Classifier) 

 Precision Recall f1-Score Support 

Essential 0.85 0.98 0.91 51 

Non-Essential 0.86 0.4 0.55 15 

Accuracy   0.85 66 

Macro Avg 0.85 0.69 0.73 66 

Weighted Avg 0.85 0.85 0.83 66 

 

AuROC of (A). Naive Bayes (NB), (B). Decision Tree (DC), (C). Support Vector Machine 

(SVM), (D). k-nearest neighbour (kNN), (E). Logistic regression (LogReg) and (F). 

Random Forest (RF). We observed high AuROC scores for ReFeX features or Any of its 

combinations. RF records highest AuROC of 0.69 in Topological Features set, ReFeX 

feature set, combination of Topological Feature set and combination of Topological & 

ReFeX & RolX but will record lower AuROC in Adjacency Features. A heatmap plot of 

AuROC of the various ML models across all datasets is shown in Figure 4.5. These findings 

suggest that the Random Forest model performed particularly well in identifying essential 

and nonessential genes when using the ReFeX characteristics. 
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 Figure 4.5: Plot of Area Under the Receiver Operating Characteristic (AuROC) of 

Binary Classifiers over the various feature sets. 

 

4.4 Comparative Analysis with FBA 

In this work, we used the COBRApy library tool to conduct Single Reaction Deletion 

analysis on the Genome-Scale Metabolic (GSM) model of Plasmodium falciparum. This 

study' primary goal was to determine how well Flux Balance study (FBA) could predict the 

set of reactions that were noted on the Flux-weighted reaction centric graph. 

In a confusion matrix, which offers a thorough breakdown of the performance of FBA 

predictions compared to the actual labels of the reactions in the dataset, we reported the 

findings of this investigation. True positive (TP), True Negative (TN), False Positive (FP), 

and False Negative (FN) are the four categories that the confusion matrix displays (Table 

4.4). 
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Table 4.4: Confusion Matrix on FBA Predictions on the dataset 

  Predicted 

T
ru

e L
a
b

els 

 Essential Non-Essential 

Essential 138 120 

Non-Essential 17 55 

Accuracy  0.59 

According to the stated accuracy of FBA predictions, which was 0.58, 138 out of the 258 

essential reactions in the dataset were accurately recognised by FBA as being essential (TP). 

But it also mislabelled 55 non-essential reactions as essential (FP) and 120 essential 

reactions as non-essential (FN). When predicting the essentiality of responses, the machine 

learning (ML) model used in this research performed better, with an accuracy of 0.85. This 

indicates that the ML model fared better than the FBA model in terms of accuracy, since 

more accurate predictions were created on the dataset. 

The findings show that while FBA may provide some insight into the need for responses, it 

may not be as precise as the ML model used in this work. The ML model's improved 

accuracy suggests that it has the ability to more accurately classify and predict essential 

genes, which is critical for comprehending the metabolic behaviour of the organism under 

investigation. Overall, the results imply that integrating both FBA and ML techniques might 

provide a more thorough and accurate examination of metabolic essentiality, assisting 

researchers in gaining deeper insights into how the metabolic network in the organism 

functions. 

4.5 Interesting Biological Findings 

Comparing the ML model prediction to the label, we identified 9 genes that were labelled 

nonessential but predicted as essential (False Positives) and hence decided to search in 

literature and acquire more insight into these genes, seeking to find experimental evidence 

of its essentiality in literature and these genes have been listed in Table 4.5.  
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Table 4.5: List of False Positive Prediction (Genes Labeled as non-essential but 

predicted as essential) 

Reaction Gene Binary labels ML Prediction 

ACONTb PF3D7_1342100 NE E 

MAN6PI PF3D7_0801800 NE E 

PPPGO6m PF3D7_1028100 NE E 

PYNP2r PF3D7_0513300 NE E 

TMPPP PF3D7_0614000 NE E 

THBPT4ACA

MDASE 

PF3D7_1108300 NE E 

CITtcm PF3D7_1223800 NE E 

DHORTS PF3D7_1472900 NE E 

SUCOAS1m 

(PF3D7_1437700 

or 

PF3D7_1431600) 

and 

PF3D7_1108500 

NE E 

 

We present a discussion of experimental evidence found in the literature regarding specific 

genes and their potential applications in malaria drug discovery: 

1. Gene PF3D7_1342100 encodes for Aconitase, an enzyme responsible for catalyzing 

the stereo-specific isomerization of citrate to isocitrate via cis-aconitate in the 

tricarboxylic acid cycle. A study conducted by Ke et al. in 2015 revealed that this 

gene plays a crucial role in the Tricarboxylic Acid Cycle in the mitochondrion of 

Plasmodium falciparum. Knocking out this gene resulted in the parasite's inability 

to fully utilize glucose nutrients in the TCA cycle, affecting its carbon source. As a 

consequence, the parasite could not mature into gametocytes, hindering gamete 

formation. This study provides valuable experimental evidence to investigate 

further (Ke et al., 2015). 

2. Gene PF3D7_0801800 codes for mannose-6-phosphate isomerase, which is 

currently under investigation in Plasmodium berghei, a pathogen responsible for 

cerebral malaria. Lv et al. (2022) found that administering D-mannose to 

Plasmodium berghei-infected mice resulted in weight loss and reduced parasitemia 

without noticeable side effects, suggesting a potential role of this gene in malaria 

pathogenesis (Lv et al., 2022). 
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3. Gene PF3D7_1028100 encodes for protoporphyrinogen oxidase (PfPPO), localized 

in the mitochondria and active under anaerobic conditions. PfPPO depends on 

electron transport chain (ETC) acceptors for its activity. Notably, ETC inhibitors, 

such as atovaquone and antimycin, inhibit the enzyme's function. Atovaquone, a 

known parasite dihydroorotate dehydrogenase inhibitor, inhibits heme synthesis in 

P. falciparum culture and has been used to design Atovaquone-proguanil, an 

antimalarial drug (Nagaraj et al., 2010; Nixon et al., 2013) 

4. Gene PF3D7_0513300 encodes for purine nucleoside phosphorylase (PfPNP), 

representing a potential target for antimalarial drug design. Inhibition of PfPNP has 

been shown to effectively kill malaria parasites both in vitro and in vivo (Dziekan 

et al., 2019). However, currently known inhibitors, immucillins, are orally available 

and exhibit low toxicity to animals and humans. Yet, none of these compounds have 

entered clinical trials for malaria treatment (Holanda et al., 2020; Kagami et al., 

2017). 

5. For the remaining genes (PF3D7_0614000, PF3D7_1108300, PF3D7_1223800, 

PF3D7_1472900, PF3D7_1437700 (or PF3D7_1431600), and PF3D7_1108500), 

there is no literature evidence suggesting their direct biological relevance in malaria 

drug discovery. Further research is required to gain insight into their potential roles 

in the malaria parasite's metabolism and pathogenesis. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Summary 

This research focused on the challenging task of predicting metabolic important genes in 

eukaryotes, with a specific focus on the pathogenic organism Plasmodium falciparum, 

which causes malaria. Previous studies in this area primarily dealt with prokaryotes, and 

their methods often failed to adequately represent the weighted, directed nature of 

metabolite transport in metabolic networks (Freischem et al., 2022; Kim et al., 2019). 

To address this issue, we designed a Network-based Machine Learning framework that 

explored various network properties in Plasmodium falciparum using the Genome-Scale 

Metabolic Model (iAM_Pf480) collected from the BiGG database and essentiality data 

from the Ogee Database. By considering the direct weighted structure of the metabolic 

network and employing advanced network-based features, the machine learning framework 

achieved a significant improvement in the accuracy of gene essentiality, achieving state-of-

the-art results in the study of metabolic genes in Plasmodium falciparum eukaryote. 

5.2 Contribution to knowledge 

This study has enhanced our understanding of the complexity of metabolic networks and 

their role in determining gene essentiality. Notably, we identified key genes labelled as non-

essential in the Ogee database but were predicted as essential by our model. Many of these 

genes had been previously identified as potential drug targets for malaria treatment, 

suggesting promising avenues for further investigation. 

5.3 Limitations and Recommendation 

The limitation of this study lies in its focus on Plasmodium falciparum alone which prevents 

it generalizability, hence, necessitating further exploration of this approach in other 

eukaryotic pathogens. Additionally, the quality of Genome-Scale Metabolic Models 

significantly influences metabolic essentiality predictions and should be considered in 

future research. 
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Appendix A: Gene/Reaction list resulting from our Flux-weighted reaction centric 

graph of Pf GSM model 

Reaction Gene 
Ogee 

labels 

ML 

Prediction 
FBA 

3DSPHR PF3D7_0409500 E E E 

3HAD100c PF3D7_1323000 E E NE 

3HAD120c PF3D7_1323000 E E NE 

3HAD140c PF3D7_1323000 E E NE 

3HAD160c PF3D7_1323000 E E NE 

3HAD40c PF3D7_1323000 E E NE 

3HAD60c PF3D7_1323000 E E NE 

3HAD80c PF3D7_1323000 E E NE 

3OAR100c PF3D7_0922900 NE NE NE 

3OAR120c PF3D7_0922900 NE NE NE 

3OAR140c PF3D7_0922900 NE NE NE 

3OAR160c PF3D7_0922900 NE NE NE 

3OAR40c PF3D7_0922900 NE NE NE 

3OAR60c PF3D7_0922900 NE NE NE 

3OAR80c PF3D7_0922900 NE NE NE 

3OAS100c PF3D7_0626300 NE NE NE 

3OAS120c PF3D7_0626300 NE NE NE 

3OAS140c PF3D7_0626300 NE NE NE 

3OAS160c PF3D7_0626300 NE NE NE 

3OAS60c PF3D7_0626300 NE NE NE 

3OAS80c PF3D7_0626300 NE NE NE 

ACCOAC 

(PF3D7_1460000 or 

PF3D7_1469600) and 

PF3D7_1026900 

E E NE 

ACCOACc 

(PF3D7_1460000 or 

PF3D7_1469600) and 

PF3D7_1026900 

E E NE 

ACCOAtm PF3D7_1036800 NE NE NE 

ACGAMPM PF3D7_1130000 E E E 

ACGPID_18_0_18_1 
PF3D7_0911000 or 

PF3D7_0624700 
E E E 

ACOATAc PF3D7_0211400 NE NE NE 

ACONTa PF3D7_1342100 NE NE NE 

ACONTb PF3D7_1342100 NE E NE 

ADA PF3D7_1029600 E E NE 

ADEt PF3D7_1347200 E E NE 
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ADK1 

PF3D7_1008900 or 

PF3D7_0110900 or 

PF3D7_0305800 or 

PF3D7_0816900 

E E NE 

ADK3m PF3D7_0415600 NE NE E 

ADNt PF3D7_1347200 E E NE 

ADSL1r PF3D7_0206700 E E NE 

ADSS PF3D7_1354500 E E NE 

AGPAT1_16_0_16_0 PF3D7_1444300 E E E 

AGPAT1_16_0_18_0 PF3D7_1444300 E E E 

AGPAT1_16_0_18_1 PF3D7_1444300 E E E 

AGPAT1_16_0_18_2 PF3D7_1444300 E E E 

AGPAT1_18_0_18_0 PF3D7_1444300 E E E 

AGPAT1_18_0_18_1 PF3D7_1444300 E E E 

AGPAT1_18_1_18_1 PF3D7_1444300 E E E 

AGPAT1_18_1_18_2 PF3D7_1444300 E E E 

AGPAT1_18_2_18_2 PF3D7_1444300 E E E 

AHCi PF3D7_0520900 E E E 

AKGCITtm 
PF3D7_0823900 or 

PF3D7_1223800 
E E NE 

AKGMALtm PF3D7_0823900 E E NE 

AKGtm PF3D7_0823900 E E NE 

ALASm PF3D7_1246100 E E E 

ALAt5r 

PF3D7_0629500 or 

PF3D7_1208400 or 

PF3D7_1231400 or 

PF3D7_0209600 or 

PF3D7_0515500 or 

PF3D7_1132500 

E E NE 

AMETtm PF3D7_1241600 E E E 

ARGt5r 

PF3D7_0629500 or 

PF3D7_1208400 or 

PF3D7_1231400 or 

PF3D7_0209600 or 

PF3D7_0515500 or 

PF3D7_1132500 

E E NE 

ASNt5r 

PF3D7_0629500 or 

PF3D7_1208400 or 

PF3D7_1231400 or 

PF3D7_0209600 or 

PF3D7_0515500 or 

PF3D7_1132500 

E E NE 

ASPCT PF3D7_1344800 E E E 
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ATPS4m 

PF3D7_0217100 and 

PF3D7_0703600 and 

PF3D7_0705900 and 

PF3D7_1147700 and 

PF3D7_1005800 and 

PF3D7_1235700 and 

PF3D7_1310000 and 

PF3D7_1311300 and 

PF3D7_0715500 

E E NE 

ATPt 
PF3D7_1004800 or 

PF3D7_1037300 
E E NE 

ATPtm2 

PF3D7_1037300 or 

PF3D7_0108400 or 

PF3D7_1368700 

E E NE 

CDIPTr_16_0_16_0 PF3D7_1315600 E E E 

CDIPTr_16_0_18_0 PF3D7_1315600 E E E 

CDIPTr_16_0_18_1 PF3D7_1315600 E E E 

CDIPTr_18_0_18_0 PF3D7_1315600 E E E 

CDIPTr_18_0_18_1 PF3D7_1315600 E E E 

CDIPTr_18_1_18_1 PF3D7_1315600 E E E 

CDPMEKc PF3D7_0503100 E E E 

CDS_16_0_16_0 PF3D7_1409900 E E E 

CDS_16_0_18_0 PF3D7_1409900 E E E 

CDS_16_0_18_1 PF3D7_1409900 E E E 

CDS_18_0_18_0 PF3D7_1409900 E E E 

CDS_18_0_18_1 PF3D7_1409900 E E E 

CDS_18_1_18_1 PF3D7_1409900 E E E 

CEPTC_16_0_16_0 PF3D7_0628300 E E E 

CEPTC_16_0_18_1 PF3D7_0628300 E E E 

CEPTC_16_0_18_2 PF3D7_0628300 E E E 

CEPTC_18_1_18_1 PF3D7_0628300 E E E 

CEPTC_18_1_18_2 PF3D7_0628300 E E E 

CEPTC_18_2_18_2 PF3D7_0628300 E E E 

CEPTE_16_0_16_0 PF3D7_0628300 E E E 

CEPTE_16_0_18_1 PF3D7_0628300 E E E 

CEPTE_16_0_18_2 PF3D7_0628300 E E E 

CEPTE_18_1_18_1 PF3D7_0628300 E E NE 

CEPTE_18_1_18_2 PF3D7_0628300 E E E 

CEPTE_18_2_18_2 PF3D7_0628300 E E E 

CHLPCTD PF3D7_1316600 NE NE E 

CHOLK PF3D7_1401800 E E NE 

CHORS PF3D7_0623000 E E E 

CITFUMtm PF3D7_1223800 NE NE NE 



77 

 

CPPPGO PF3D7_1142400 E E E 

CSmr 
PF3D7_1022500 or 

PF3D7_0609200 
E E NE 

CTPS2 PF3D7_1410200 E E E 

CYOOm2 

PF3D7_1430900 and 

PF3D7_0927800 and 

PF3D7_0928000 and 

PF3D7_1361700 and mal_mito_2 

and mal_mito_1 and 

PF3D7_1475300 and 

PF3D7_1010300 

E E NE 

CYOR-mqn4m 

PF3D7_0523100 and 

PF3D7_1426900 and 

PF3D7_0933600 and 

PF3D7_1012300 and 

PF3D7_1462700 and 

PF3D7_1439400 

E E NE 

CYStec 

PF3D7_0629500 or 

PF3D7_1208400 or 

PF3D7_1231400 or 

PF3D7_0209600 or 

PF3D7_0515500 or 

PF3D7_1132500 

E E NE 

CYTK1 PF3D7_0111500 E E E 

DGATpf_16_0_18_0_stcoa PF3D7_0322300 E E E 

DGATpf_18_1_18_2_lnlccoa PF3D7_0322300 E E E 

DHFR PF3D7_0417200 E E E 

DHFS PF3D7_1324800 E E E 

DHORD10m PF3D7_0603300 E E NE 

DHORtm PF3D7_1432100 E E E 

DHPTt 
PF3D7_1116500 or 

PF3D7_0828600 
NE NE NE 

DMATT PF3D7_1128400 E E E 

DMPPSyc PF3D7_0104400 NE NE NE 

DMQMTm 
PF3D7_0724300 or 

PF3D7_0916600 
E E E 

DOL12PMT PF3D7_1141600 E E NE 

DTMPK PF3D7_1251300 E E E 

DXPRIic PF3D7_1467300 E E E 

DXPSc PF3D7_1337200 E E E 

EAR100xc PF3D7_0615100 E E NE 

EAR120xc PF3D7_0615100 E E NE 

EAR140xc PF3D7_0615100 E E NE 

EAR160xc PF3D7_0615100 E E NE 

EAR40xc PF3D7_0615100 E E NE 
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EAR60xc PF3D7_0615100 E E NE 

EAR80xc PF3D7_0615100 E E NE 

ENO PF3D7_1015900 E E E 

ETHAK PF3D7_1124600 E E NE 

FACOAL160i 

PF3D7_1372400 or 

PF3D7_0731600 or 

PF3D7_1477900 or 

PF3D7_1479000 or 

PF3D7_0215000 or 

PF3D7_0215300 or 

PF3D7_0301000 or 

PF3D7_0401900 or 

PF3D7_0525100 or 

PF3D7_0619500 or 

PF3D7_1238800 or 

PF3D7_1253400 or 

PF3D7_1200700 or 

PF3D7_0605900 

E E NE 

FACOAL180i 

PF3D7_1372400 or 

PF3D7_0731600 or 

PF3D7_1477900 or 

PF3D7_1479000 or 

PF3D7_0215000 or 

PF3D7_0215300 or 

PF3D7_0301000 or 

PF3D7_0401900 or 

PF3D7_0525100 or 

PF3D7_0619500 or 

PF3D7_1238800 or 

PF3D7_1253400 or 

PF3D7_1200700 or 

PF3D7_0605900 

NE NE NE 

FACOAL181i 

PF3D7_1372400 or 

PF3D7_0731600 or 

PF3D7_1477900 or 

PF3D7_1479000 or 

PF3D7_0215000 or 

PF3D7_0215300 or 

PF3D7_0301000 or 

PF3D7_0401900 or 

PF3D7_0525100 or 

PF3D7_0619500 or 

PF3D7_1238800 or 

PF3D7_1253400 or 

PF3D7_1200700 or 

PF3D7_0605900 

NE NE NE 
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FACOAL1821i 

PF3D7_1372400 or 

PF3D7_0731600 or 

PF3D7_1477900 or 

PF3D7_1479000 or 

PF3D7_0215000 or 

PF3D7_0215300 or 

PF3D7_0301000 or 

PF3D7_0401900 or 

PF3D7_0525100 or 

PF3D7_0619500 or 

PF3D7_1238800 or 

PF3D7_1253400 or 

PF3D7_1200700 or 

PF3D7_0605900 

NE NE E 

FACOAL204i 

PF3D7_1372400 or 

PF3D7_0731600 or 

PF3D7_1477900 or 

PF3D7_1479000 or 

PF3D7_0215000 or 

PF3D7_0215300 or 

PF3D7_0301000 or 

PF3D7_0401900 or 

PF3D7_0525100 or 

PF3D7_0619500 or 

PF3D7_1238800 or 

PF3D7_1253400 or 

PF3D7_1200700 or 

PF3D7_0605900 

NE NE E 

FBA PF3D7_1444800 E E E 

FCLTm PF3D7_1364900 NE NE NE 

FE2t1 PF3D7_0609100 E NE E 

FMNAT PF3D7_1015000 NE NE E 

FPGS PF3D7_1324800 E E E 

FRTT PF3D7_1147500 E E E 

FRUt1 PF3D7_0204700 E E NE 

G3PD1 PF3D7_1216200 E E NE 

G3PD2m PF3D7_0306400 NE NE NE 

G3Pthr 
PF3D7_0530200 and 

PF3D7_0508300 
E E E 

GAPD PF3D7_1462800 E E E 

GFUCS PF3D7_1014000 E E E 

GGTT PF3D7_0202700 E E E 

GHMT2r 
PF3D7_1235600 or 

PF3D7_1456100 
E E E 

GK1 
PF3D7_0928900 or 

PF3D7_1251300 
E E E 

GLCt1 PF3D7_0204700 E E NE 



80 

 

GLUt5r 

PF3D7_0629500 or 

PF3D7_1208400 or 

PF3D7_1231400 or 

PF3D7_0209600 or 

PF3D7_0515500 or 

PF3D7_1132500 

NE NE NE 

GLYK PF3D7_1351600 NE NE NE 

GLYt 

PF3D7_0629500 or 

PF3D7_1208400 or 

PF3D7_1231400 or 

PF3D7_0209600 or 

PF3D7_0515500 or 

PF3D7_1132500 

NE NE NE 

GMAND PF3D7_0813800 E E E 

GPAM_pf_16_0 
PF3D7_1212500 or 

PF3D7_1318200 
E E E 

GPAM_pf_18_0 
PF3D7_1212500 or 

PF3D7_1318200 
E E E 

GPAM_pf_18_1 
PF3D7_1212500 or 

PF3D7_1318200 
E E E 

GPAM_pf_18_2 
PF3D7_1212500 or 

PF3D7_1318200 
E E E 

GPIAT_18_0_18_1_16_0 PF3D7_0615300 E E E 

GPIMT12er PF3D7_1341600 E E NE 

GRTT PF3D7_1128400 E E E 

GSNt PF3D7_1347200 E E NE 

GTHOrc 
PF3D7_1419800 or 

PF3D7_0923800 
NE NE NE 

GUAPRTr PF3D7_1012400 E E NE 

H2Ot PF3D7_1132800 E E NE 

HBZOPTm PF3D7_0607500 E E E 

HCO3E PF3D7_1140000 E E E 

HEPTT PF3D7_0202700 E E E 

HEX1 PF3D7_0624000 E E NE 

HEX4 PF3D7_0624000 E E NE 

HEX7 PF3D7_0624000 E E NE 

HEXTT PF3D7_0202700 E E E 

HISt5r 

PF3D7_0629500 or 

PF3D7_1208400 or 

PF3D7_1231400 or 

PF3D7_0209600 or 

PF3D7_0515500 or 

PF3D7_1132500 

E E NE 

HMBSc PF3D7_1209600 E E NE 

HMPK1 PF3D7_0520500 NE NE NE 
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HXPRTr PF3D7_1012400 E E NE 

ICDHyrm PF3D7_1345700 E E NE 

ILEtec 

PF3D7_0629500 or 

PF3D7_1208400 or 

PF3D7_1231400 or 

PF3D7_0209600 or 

PF3D7_0515500 or 

PF3D7_1132500 

E E NE 

INSt PF3D7_1347200 E E NE 

IPDPSyc PF3D7_0104400 NE NE NE 

KAS14c 
PF3D7_0626300 or 

PF3D7_0211400 
NE NE NE 

LEUtec 

PF3D7_0629500 or 

PF3D7_1208400 or 

PF3D7_1231400 or 

PF3D7_0209600 or 

PF3D7_0515500 or 

PF3D7_1132500 

E E NE 

LIPAMPLm 
PF3D7_0923600 or 

PF3D7_1314600 
E E E 

LIPATPTm 
PF3D7_0923600 or 

PF3D7_1314600 
E E E 

LYSt5r 

PF3D7_0629500 or 

PF3D7_1208400 or 

PF3D7_1231400 or 

PF3D7_0209600 or 

PF3D7_0515500 or 

PF3D7_1132500 

E E NE 

MAN1PT PF3D7_1420900 E E E 

MAN6PI PF3D7_0801800 NE E NE 

MANt1 PF3D7_0204700 E E NE 

MCOATAc PF3D7_1312000 E E NE 

MDH7m PF3D7_0616800 NE NE NE 

MECDPDH2yc PF3D7_1022800 E E E 

MECDPSc PF3D7_0209300 E E E 

MEPCTc PF3D7_0106900 E E E 

METAT PF3D7_0922200 E E E 

METtec 

PF3D7_0629500 or 

PF3D7_1208400 or 

PF3D7_1231400 or 

PF3D7_0209600 or 

PF3D7_0515500 or 

PF3D7_1132500 

E E NE 

MI3PP 
PF3D7_0802500 or 

PF3D7_0705500 
E E E 

MI3PS PF3D7_0511800 NE NE E 
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NADH2-mq4m PF3D7_0915000 NE NE NE 

NADK PF3D7_0913300 E E E 

NADS2 PF3D7_0926700 NE NE E 

NAMNPP PF3D7_0629100 NE NE E 

NDPK1 
PF3D7_0605600 or 

PF3D7_1366500 
E E NE 

NDPK2 
PF3D7_1366500 or 

PF3D7_0605600 
E E E 

NDPK3 
PF3D7_1366500 or 

PF3D7_0605600 
E E E 

NDPK4 
PF3D7_1366500 or 

PF3D7_0605600 
E E E 

NDPK5 
PF3D7_1366500 or 

PF3D7_0605600 
E E E 

NDPK7 
PF3D7_1366500 or 

PF3D7_0605600 
E E E 

NDPK8 
PF3D7_1366500 or 

PF3D7_0605600 
E E E 

NH4t PF3D7_1132800 E E NE 

NNAT PF3D7_1327600 NE NE E 

OHPHMm 
PF3D7_0724300 or 

PF3D7_0916600 
E E E 

OMBZLMm 

PF3D7_0204900 or 

PF3D7_0407100 or 

PF3D7_1455200 

E E E 

OMPDC 
PF3D7_1023200 or 

PF3D7_0512700 
E E E 

OMPHHXxm PF3D7_0815300 E E NE 

ORNTAr PF3D7_0608800 NE NE NE 

P5CRyr PF3D7_1357900 E E NE 

PEPthr 
PF3D7_0530200 and 

PF3D7_0508300 
E E E 

PETHCT PF3D7_1347700 E E E 

PFK 
PF3D7_1128300 or 

PF3D7_0915400 
E E E 

PGI PF3D7_1436000 E E NE 

PHEtec 

PF3D7_0629500 or 

PF3D7_1208400 or 

PF3D7_1231400 or 

PF3D7_0209600 or 

PF3D7_0515500 or 

PF3D7_1132500 

E E NE 
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PIACGT_18_0_18_1 

PF3D7_0618900 or 

PF3D7_1032400 or 

PF3D7_0935300 or 

PF3D7_1141400 

E E E 

PIt2m_2 PF3D7_1202200 E E NE 

PMPK PF3D7_0520500 NE NE NE 

PPAP_16_0_16_0 
PF3D7_0303200 or 

PF3D7_0805600 
E E E 

PPAP_16_0_18_0 
PF3D7_0303200 or 

PF3D7_0805600 
E E E 

PPAP_16_0_18_1 
PF3D7_0303200 or 

PF3D7_0805600 
E E NE 

PPAP_16_0_18_2 
PF3D7_0303200 or 

PF3D7_0805600 
E E E 

PPAP_18_0_18_0 
PF3D7_0303200 or 

PF3D7_0805600 
E E E 

PPAP_18_0_18_1 
PF3D7_0303200 or 

PF3D7_0805600 
E E NE 

PPAP_18_1_18_2 
PF3D7_0303200 or 

PF3D7_0805600 
E E E 

PPAP_18_2_18_2 
PF3D7_0303200 or 

PF3D7_0805600 
E E E 

PPAc 

PF3D7_0316300 or 

PF3D7_1235200 or 

PF3D7_1456800 

E E E 

PPAm 

PF3D7_0316300 or 

PF3D7_1235200 or 

PF3D7_1456800 

E E E 

PPBNGSc PF3D7_1440300 E E NE 

PPC PF3D7_1426700 NE NE NE 

PPM PF3D7_1012500 NE NE NE 

PPPGO6m PF3D7_1028100 NE E NE 

PPTT PF3D7_0202700 E E E 

PRPPS 
PF3D7_1327800 or 

PF3D7_1325100 
E E E 

PSCVT PF3D7_0206300 NE NE E 

PSD_18_1_18_1 PF3D7_0927900 E E NE 

PSSA_18_0_18_1 PF3D7_1366800 E E E 

AGPAT1_18_0_20_4 PF3D7_1444300 E E E 

CDS_18_0_20_4 PF3D7_1409900 E E E 

PSSA_18_0_20_4 PF3D7_1366800 E E E 

PSSA_18_1_18_1 PF3D7_1366800 E E E 

PSSA_18_1_20_4 PF3D7_1366800 E E E 

PSSA_20_4_20_4 PF3D7_1366800 E E E 
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PUNP3 PF3D7_0513300 NE NE NE 

PUNP5 PF3D7_0513300 NE NE NE 

PYDXK PF3D7_0616000 E E NE 

PYK PF3D7_0626800 E E NE 

PYKc PF3D7_1037100 E E E 

PYNP2r PF3D7_0513300 NE E NE 

PYRt2m 
PF3D7_1470400 or 

PF3D7_1340800 
E E NE 

RBFK PF3D7_1359100 NE NE E 

RNDR1 

PF3D7_1437200 and 

PF3D7_1405600 and 

PF3D7_1015800 and 

PF3D7_1457200 

E E NE 

RNDR2 

PF3D7_1437200 and 

PF3D7_1405600 and 

PF3D7_1015800 and 

PF3D7_1457200 

E E NE 

RNDR3 

PF3D7_1437200 and 

PF3D7_1405600 and 

PF3D7_1015800 and 

PF3D7_1457200 

E E NE 

RNDR4 

PF3D7_1437200 and 

PF3D7_1405600 and 

PF3D7_1015800 and 

PF3D7_1457200 

E E NE 

RPE PF3D7_1219900 E E NE 

RPI PF3D7_0514600 E E NE 

SERPT PF3D7_1415700 E E E 

SHKK PF3D7_0206300 NE NE E 

SUCOASm 

(PF3D7_1437700 or 

PF3D7_1431600) and 

PF3D7_1108500 

NE NE NE 

THMP PF3D7_0715000 NE NE NE 

THRt5r 

PF3D7_0629500 or 

PF3D7_1208400 or 

PF3D7_1231400 or 

PF3D7_0209600 or 

PF3D7_0515500 or 

PF3D7_1132500 

E E NE 

TKT1 PF3D7_0610800 E E NE 

TKT2 PF3D7_0610800 E E NE 

TMDS PF3D7_0417200 E E E 

TMPKr PF3D7_1251300 E E NE 

TPI 
PF3D7_1439900 or 

PF3D7_0318800 
E E NE 
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TRPt 

PF3D7_0629500 or 

PF3D7_1208400 or 

PF3D7_1231400 or 

PF3D7_0209600 or 

PF3D7_0515500 or 

PF3D7_1132500 

E E NE 

TYRt 

PF3D7_0629500 or 

PF3D7_1208400 or 

PF3D7_1231400 or 

PF3D7_0209600 or 

PF3D7_0515500 or 

PF3D7_1132500 

E E NE 

UAGDP 
PF3D7_1343600 or 

PF3D7_0517500 
E E E 

UMPK PF3D7_0111500 E E E 

UPP3Sc PF3D7_1209600 E E NE 

UPPDC1c PF3D7_0607300 NE NE NE 

URIt PF3D7_1347200 E E NE 

VALtec 

PF3D7_0629500 or 

PF3D7_1208400 or 

PF3D7_1231400 or 

PF3D7_0209600 or 

PF3D7_0515500 or 

PF3D7_1132500 

E E NE 

CBPSam PF3D7_1308200 E E NE 

PIt2r PF3D7_1340900 E E NE 

FRD_mt 

PF3D7_1034400 and 

PF3D7_1212800 and 

PF3D7_0611100 

E E NE 

GTHOXti 
PF3D7_0112200 or 

PF3D7_1229100 
NE NE NE 

SERGLYexR 

PF3D7_0629500 or 

PF3D7_1208400 or 

PF3D7_1231400 or 

PF3D7_0209600 or 

PF3D7_0515500 or 

PF3D7_1132500 

E E NE 

DSAT_pmtcoa 
PF3D7_0508200 or 

PF3D7_1403700 
NE NE E 

DSAT_stcoa 
PF3D7_0508200 or 

PF3D7_1403700 
NE NE E 

DSAT_lignocoa 
PF3D7_0508200 or 

PF3D7_1403700 
NE NE E 
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FACOAL240i 

PF3D7_1372400 or 

PF3D7_0731600 or 

PF3D7_1477900 or 

PF3D7_1479000 or 

PF3D7_0215000 or 

PF3D7_0215300 or 

PF3D7_0301000 or 

PF3D7_0401900 or 

PF3D7_0525100 or 

PF3D7_0619500 or 

PF3D7_1238800 or 

PF3D7_1253400 or 

PF3D7_1200700 or 

PF3D7_0605900 

NE NE E 

SMSg_18_1_18_0_pchol_18_1_18_1 
PF3D7_0625100 or 

PF3D7_0625000 
E E NE 

SMSg_18_1_24_0_pchol_18_2_18_2 
PF3D7_0625100 or 

PF3D7_0625000 
E E NE 

CDS_18_1_20_4 PF3D7_1409900 E E E 

AGPAT1_18_1_20_4 PF3D7_1444300 E E E 

CDS_20_4_20_4 PF3D7_1409900 E E E 

AGPAT1_20_4_20_4 PF3D7_1444300 E E E 

PSD_20_4_20_4 PF3D7_0927900 E E NE 

AGPAT1_16_0_20_4 PF3D7_1444300 E E E 

PPAP_16_0_20_4 
PF3D7_0303200 or 

PF3D7_0805600 
E E E 

CEPTC_16_0_20_4 PF3D7_0628300 E E E 

GPAM_pf_20_4 
PF3D7_1212500 or 

PF3D7_1318200 
E E E 

CEPTC_16_0_18_0 PF3D7_0628300 E E E 

PGPPT_pf PF3D7_0820200 E E E 

CLPNSm_pf PF3D7_0609400 E E E 

THZPSN 

(PF3D7_0716600 or 

PF3D7_0727200) and 

(PF3D7_1365400 or 

PF3D7_1333200) 

E E NE 

FAS180COA 

PF3D7_0920000 or 

PF3D7_0605900 or 

PF3D7_0109300 

E E NE 

TMPPP PF3D7_0614000 NE E NE 

PDH_like_mediated_by_BCKDH 

PF3D7_0504600 and 

PF3D7_1232200 and 

PF3D7_0303700 and 

PF3D7_1312600 

E E NE 

DGATpf_18_0_18_1_pmtcoa PF3D7_0322300 E E E 

DGATpf_18_0_18_0_ocdcea PF3D7_0322300 E E E 
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SMSg_18_1_16_0_pchol_18_1_18_2 
PF3D7_0625100 or 

PF3D7_0625000 
E E NE 

THBPT4ACAMDASE PF3D7_1108300 NE E NE 

ACS PF3D7_0627800 E E NE 

AKGOAAtm PF3D7_0823900 E E NE 

ASPTA PF3D7_0204500 NE NE NE 

CITtcm PF3D7_1223800 NE E NE 

DHORTS PF3D7_1472900 NE E E 

GLNt5r 

PF3D7_0629500 or 

PF3D7_1208400 or 

PF3D7_1231400 or 

PF3D7_0209600 or 

PF3D7_0515500 or 

PF3D7_1132500 

NE NE NE 

GLUDyc 
PF3D7_1416500 or 

PF3D7_1430700 
NE NE NE 

GLYCt PF3D7_1132800 E E NE 

GTHOrh PF3D7_1419800 E E NE 

GTHP_api 
PF3D7_1212000 or 

PF3D7_0729200 
E E NE 

GUAt PF3D7_1347200 E E NE 

HYXNt PF3D7_1347200 E E NE 

L-LACt2r 
PF3D7_0926400 or 

PF3D7_0210300 
E E NE 

LDH_L 
PF3D7_1325200 or 

PF3D7_1324900 
E E NE 

MDH PF3D7_0618500 E E NE 

NNAMr PF3D7_0320500 E E NE 

ORPT 
PF3D7_0512700 or 

PF3D7_1023200 
E E E 

PGK PF3D7_0922500 E E E 

PGM 
PF3D7_0413500 or 

PF3D7_1120100 
E E E 

PLPS1 
PF3D7_1116200 and 

PF3D7_0621200 
E E NE 

PMANM PF3D7_1017400 E E E 

PROt5r 

PF3D7_0629500 or 

PF3D7_1208400 or 

PF3D7_1231400 or 

PF3D7_0209600 or 

PF3D7_0515500 or 

PF3D7_1132500 

NE NE NE 

SUCOAS1m 

(PF3D7_1437700 or 

PF3D7_1431600) and 

PF3D7_1108500 

NE E NE 
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THD1m PF3D7_1453500 E E NE 

THIORDX 

PF3D7_1212000 and 

((PF3D7_0802200 and 

PF3D7_1457200) or 

PF3D7_1457200 or 

PF3D7_1438900) 

E E NE 

URAt PF3D7_1347200 E E NE 

URIDK2r PF3D7_1251300 E E NE 

orottm PF3D7_1432100 E E E 

PYDXDH 
PF3D7_1364600 or 

PF3D7_1409100 
E E NE 

PPKr PF3D7_1230200 NE NE NE 

 

 

 

  

 

 

 

 

 

 


