ETHNOBOTANY AND GENETIC DIVERSITY ASSESSMENT OF Telfairia occidentalis HOOK F. (FLUTED PUMPKIN) IN SOUTHERN NIGERIA

AWORUNSE, OLUWADUROTIMI SAMUEL (17PCO01624)

JUNE, 2023

ETHNOBOTANY AND GENETIC DIVERSITY ASSESSMENT OF Telfairia occidentalis HOOK F. (FLUTED PUMPKIN) IN SOUTHERN NIGERIA

BY

AWORUNSE, OLUWADUROTIMI SAMUEL (17PCO01624) B.Sc Plant Biology and Biotechnology, University of Benin, Benin City M.Sc Cell Biology and Genetics (Molecular Biology), University of Lagos, Akoka

A THESIS SUBMITTED TO THE SCHOOL OF POST GRADUATE STUDIES IN PARTIAL FUFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF DOCTOR OF PHILOSOPHY (Ph.D) IN BIOLOGY IN THE DEPARTMENT OF BIOLOGICAL SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

ACCEPTANCE

This is to attest that this dissertation has been accepted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy in Biology in the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, **AWORUNSE, OLUWADUROTIMI SAMUEL (17PCO01624)** declare that this research was carried out by me under the supervision of Prof. Olawole O. Obembe and Dr. Jacob O. Popoola of the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Nigeria. I attest that this thesis has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this thesis are duly acknowledged.

AWORUNSE, OLUWADUROTIMI SAMUEL

Signature and Date

CERTIFICATION

We certify that this thesis titled **"ETHNOBOTANY AND GENETIC DIVERSITY ASSESSMENT OF** *Telfairia occidentalis* **HOOK F. (FLUTED PUMPKIN) IN SOUTHERN NIGERIA"** is an original research work carried out by **AWORUNSE**, **OLUWADUROTIMI SAMUEL (17PCO01624)**, in the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. Olawole O. Obembe and Dr. Jacob O. Popoola. We have examined and found this work acceptable as part of the requirements for the award of Doctor of Philosophy (Ph.D) degree in Biology.

Prof. Olawole O. Obembe (Supervisor)

Dr. Jacob O. Popoola (Co-Supervisor)

Prof. Solomon U. Oranusi (Head of Department)

Prof. Benjamin E. Ubi (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) **Signature and Date**

DEDICATION

This work is dedicated to my late parents, Chief Japheth Moyo Aworunse and Mrs. Rhodes Abike Aworunse of blessed memory.

ACKNOWLEDGEMENTS

I want to express my most profound gratitude to the Almighty God, the intelligent first cause, the one who holds my life in His hands. You have greatly helped me through the difficult times that came my way in the pursuit for knowledge. Thank you for making this achievement a reality.

Thanks to the Chancellor and Chairman Board of Regents of Covenant University, Dr. David O. Oyedepo, for providing an enabling postgraduate training platform. You are a visionary indeed! I acknowledge the Covenant University Management including the Vice-Chancellor, Prof. Abiodun H. Adebayo and the Acting Registrar, Mrs Regina A. Tobi-David, for the support rendered during the course of this project. I must not fail to recognise the Dean, School of Postgraduate Studies, Prof. Akan B. Williams; the Sub-Dean, School of Postgraduate Studies, Dr. Emmanuel O. Amoo; the Dean, College of Science and Technology, Prof. Timothy A. Anake and the Dean of Student Affairs, Covenant University, Mrs. Olushola E. Coker for the significant roles played at various times. Very special thanks to the International Foundation for Science (IFS), Stockholm, Sweden for supporting this work through a grant (No. C/6317-1) awarded to me.

I would like to express my most sincere gratitude to the Head of the Department of Biological Sciences, Prof. Solomon U. Oranusi for his consistent moral support throughout the period of this project. I would like to appreciate my Main supervisor, Prof. Olawole O. Obembe and Co-supervisor, Dr. Jacob O. Popoola, for the intellectual expertise and fine contributions made towards the successful completion of this work. Thank you both for the encouragement and confidence reposed in me even when I doubted my ability to finish this work. I am grateful for the mentorship, friendship, field trip, discussions, and invaluable academic training I have received. I could not have asked for a better supervisory team. I must not fail to mention that I appreciate the gift of Prof. Obembe's and Dr. Popoola's Ph.D theses, which has greatly influenced the writing of this project.

To my dearly beloved wife, Janet, I thank you for your unwavering support, sacrifices and constant enquiry about the progress of this work. I am grateful!

I am indebted to my sisters (Mrs. Ayoleyi McGrey, Mrs. Olametan Aina, Mrs. Folayemi Kalu, Ms. Omolayo Aworunse, Ms. Iremofe Aworunse and Ms. Damilola Aworunse) and brothers, Mr. Ajiboyede Aworunse and Dr. Oluwaseun Aworunse. You all have been an immense source of encouragement to me. I appreciate your prayers and support.

I acknowledge the contributions of all the respondents who participated in the interview or filled a questionnaire during the ethnobotanical survey. Your time, willingness and sincerity are very much appreciated. Many thanks to Prof. Olubanke O. Ogunlana of the Department of Biochemistry, Covenant University, Ota and Dr. Angela O. Eni of the Department of Biological Sciences, Covenant University, Ota for the show of concern and assistance rendered during the field planting part of this work. I am grateful to Mr. Matthew Andofa for the inputs at the experimental farm. I would like to acknowledge the brilliant suggestions of Prof. Joseph A. Olugbuyiro of the Department of Chemistry, Covenant University, Ota, Dr. Rajneesh Paliwal of the International Institute of Tropical Agriculture (IITA) Ibadan, Dr. Lawrence S. Fayeun of the Department of Cell Biology and Genetics, University of Lagos. The technical personnel at IITA, Ibadan have been brilliant! Many thanks to Mrs. Yemi Fajire, Mrs. Adetutu Udofia and Mrs. Temitope Shonde. You all were never tired of my many questions and were always willing to assist when I needed one.

Lastly, I would like to thank the present and erstwhile Postgraduate Programme Coordinators (Dr. Olayemi O. Akinnola and Dr. Opeyemi I. Ayanda, respectively) in the Department of Biological Sciences, Covenant University, for their push and guidiance. Extra thanks to Dr. Paul A. Akinduti, Dr. Patrick O. Isibor, Dr. Eze F. Ahuekwe, Dr. Akpoyovware S. Ejoh, Dr. Margaret I. Oniha, Dr. Oluwakemi A. Bello, Mr. John O. Oyewale, Dr. Yemisi D. Obafemi, Dr. Elizabeth A. Benson, Mrs. Ibukun Ajiboye, Mr. Olusola L. Oyesola, Miss Ena Olomukoro, Mr. Taiwo S. Olugbenga, Mrs. Bosede T. Adekeye, Miss Alice O. Kuye, Mrs Olufisayo A. Awotoye, Mr. Bode A. Onilere and other colleagues for your kind gestures at various times.

TABLE OF CONTENTS

CONTENT	PAGES
COVER PAGE	i
TITLE PAGE	ii
ACCEPTANCE	iii :
CERTIFICATION	IV V
DEDICATION	vi
ACKNOWLEDGEMENTS	vii
TABLE OF CONTENTS	ix
LIST OF TABLES	xiv
LIST OF PLATES	XVI VViii
LIST OF ABBREVIATIONS	xix
ABSTRACT	xxii
CHAPTER ONE: INTRODUCTION	1
	1
1.2 Statement of the problem	3
1.3 Research questions	4
1.4 Aim and objectives of the study	5
1.5 Justification for the study	3
1.6 Scope of the study	6
CHAPTER TWO: LITERATURE REVIEW 2.1 The Cucurbitaceae family	7 7
2.2 The genus: <i>Telfairia</i>	8
2.3 Taxonomy, aspects of botany and reproductive biology of <i>T. occidentalis</i>	8
2.4 Cytogenetics and karyotyping of <i>T. occidentalis</i>	10
2.5 Origin and Geographical Distribution of <i>T. occidentalis</i>	10
2.6 Local landraces, propagation and cultivation of T. occidentalis	13
2.7 Ecophysiology of T. occidentalis	14
2.8 Harvest and post-harvest handling of T. occidentalis	14
2.9 Nutritional composition of leaf and seed of T. occidentalis	15
2.10 Economic relevance of <i>T. occidentalis</i>	16
2.11 Industrial potentials of <i>T. occidentalis</i>	18
2.12 Ethno-uses and pharmacotherapeutic activities of T. occidentalis	19
2.13 Underutilised status of <i>T. occidentalis</i>	19
2.14 The concept of biodiversity	21

2.15 Genetic Diversity	24
2.16 Morphological markers	25
2.17 Cytological markers	28
2.18 Biochemical markers	28
2.19 DNA markers	29
2.20 Hybridisation-based molecular markers	31
2.20.1 Restriction fragment length polymorphism (RFLP)	31
2.21 Polymerase chain reaction (PCR)-based molecular markers	32
2.21.1 Random amplified polymorphic DNA (RAPD)	33
2.21.2 Amplified fragment length polymorphism (AFLP)	35
2.21.3 Simple sequence repeats (SSRs)	36
2.21.4 Inter simple sequence repeat (ISSR)	38
2.21.5 Start codon targeted (SCoT) polymorphic marker	39
2.22 Sequence-based markers	39
2.22.1 Single nucleotide polymorphism (SNP) and diversity arrays technology sequencing	
derived single nucleotide polymorphism (DArTseq-SNP)	40
2.23 Research gaps identified in literature	42
CHAPTER THREE: MATERIALS AND METHODS 3.1 Materials	44 44
3.1.1 Primary plant material employed in this study	44
3.1.2 Consumables and reagents used in this study	44
3.1.3 Equipment used in this study	44
3.2 Ethnobotany Methods	45
3.2.1 Ethical consideration	45
3.2.2 Climatic, geo-ethnographic, and socio-economic characteristics of the study location	45
3.2.3 Field survey and data compilation	46
3.2.4 Use categories	50
3.2.5 Data analysis	50
3.3 Morphological Evaluation Methods	52
3.3.1 Germplasm collection	52
3.3.2 Experimental site and climatic condition	52
3.3.3 Land preparation, experimental design and layout	56
3.3.4 Cultivation and management	56

3.3.5 Data collection	56
3.3.6 Morphological data analysis	57
3.4 Genetic diversity based on SCoT markers	60
3.4.1 Collection and preparation of tissue sample	60
3.4.2 Isolation of DNA from leaf tissue	60
3.4.3 Preparation of agarose gel	61
3.4.4 DNA quality check and quantification	61
3.4.5 SCoT-polymerase chain reaction (PCR) optimisation	61
3.4.6 SCoT-polymerase chain reaction (SCoT-PCR)	62
3.4.7 Gel electrophoresis of SCoT-PCR amplification products	62
3.4.8 SCoT data analysis	62
3.5 Genetic diversity based on DArTseq-SNP markers	65
3.5.1 Genomic library preparation and genotyping	65
3.5.2 SNP filtering and quality control	66
3.5.3 DArtseq-SNP data analysis	66
CHAPTER FOUR: RESULTS 4.1 Result of Ethnobotany	68 68
4.1.1 Local names of <i>T. occidentalis</i> in the studied areas	68
4.1.2 Use categories	68
4.1.3 Fidelity level (FL)	68
4.1.4 Use knowledge variation of <i>T. occidentalis</i> (UV _k and OUV)	72
4.1.5 Plant part value (PPV) of <i>T. occidentalis</i>	72
4.1.6 Mode of preparation of <i>T. occidentalis</i> phytoremedies	72
4.1.7 Route of administration of <i>T. occidentalis</i> phytoremedies	75
4.1.8 Ethno-pharmacological use diversity of T. occidentalis in Southern Nigeria	75
4.1.9 Ethno-knowledge on origin, local landraces and preferred local landrace for cu	ltivation
and traits for improvement in T. occidentalis from Southern Nigeria	75
4.2 Result of morphological evaluation of <i>T. occidentalis</i> landraces	87
4.2.1 Analysis of variance (ANOVA) and Shannon-Weaver diversity index (H')	87
4.2.2 Principal component analysis (PCA)	95
4.2.3 Cluster analysis	98
4.2.4 Pearson's correlation coefficient	102
4.2.5 Qualitative morphological traits' variation	103

4.3 Result of Genetic diversity of the <i>T. occidentalis</i> landraces based on SCoT markers	106
4.3.1 DNA quality check	106
4.3.2 SCoT marker diversity	106
4.3.3 Cluster analysis	106
4.3.4 Principal component analysis	114
4.3.5 Population Structure	114
4.3.6 Population genetic diversity	117
4.3.7 Population genetic differentiation: Analysis of molecular variance (AMOVA)	117
4.4 Result of genetic diversity of the <i>T. occidentalis</i> landraces based on DArTseq-SNP	
markers	121
4.4.1 Polymorphic information content (PIC), minor allele frequency (Maf), SNP allele	type
and frequency	121
4.4.2 Population genetic diversity: Expected and observed heterozygosities	121
4.4.3 Principal component analysis and discriminant analysis of principal components	127
4.4.4 Genetic differentiation: Fixation index (Fst) and geneflow (Nm) and analysis of	
molecular variance (AMOVA)	131
4.4.5 Cluster analysis	131
4.4.6 Comparative analyses of morphology and molecular-based clustering	131
CHAPTER FIVE: DISCUSSION	137
5.1 Eumodotatical survey 5.1 Lecel nemes of $T_{\rm considentalia}$	137
5.1.2 Lise entropy and fidelity level	137
5.1.2 Use category and indenty level $5.1.2$ Ethno largerula dae variation of $T_{\rm eff}$ and $t_{\rm eff}$ that the value (UV) and everall use value	157
(OVV)	120
(00 v) 5.1.4 Plant part value (PDV) of T accidentalia	139
5.1.4 Plant part value (PPV) of <i>T. occidentalis</i>	140
5.1.5 Modes of preparation of <i>T. accidentalis</i> phytoremedies	140
5.1.6 Routes of administration of <i>1. occidentalis</i> phytoremedies	141
5.1.7 Ethnopharmacological use pattern diversity of <i>1. occidentalis</i>	141
5.1.6 Eulio-knowledge variation on origin, local landraces, preferred landrace for cultiv	ation
5.2 Marrhalagical evolution of the Transit of the lands	144
5.2 Information of the <i>L</i> occidentalis landraces	145
5.2.1 Analysis of variance and Shannon-Weaver diversity index (H ²) for quantitative tra	ıts

5.2.2 Principal component analysis (PCA)	147
5.2.3 Cluster analysis	148
5.2.4 Pearson's correlation coefficient	150
5.2.5 Qualitative morphological traits' variation of the T. occidentalis landraces	152
5.3 Genetic diversity of the T. occidentalis landraces based on SCoT markers	152
5.3.1 SCoT marker diversity	152
5.3.2 Cluster analysis	153
5.3.3 Principal component analysis (PCA)	154
5.3.4 Population structure	154
5.3.5 Population genetic diversity, Nei's genetic distance and identity	155
5.3.6 Population genetic differentiation: Analysis of molecular variance (AMOVA)	156
5.4 Genetic diversity of the T. occidentalis landraces based on DArTseq-SNP	156
5.4.1 Polymorphic information content (PIC), minor allele (Maf), SNP allele type and	
frequency	156
5.4.2 Population genetic diversity: Expected and observed heterozygosities	157
5.4.3 Population structure: Principal component analysis (PCA) and discriminant analysis	s of
principal components (DAPC)	158
5.4.4 Population differentiation: Fixation index (Fst), geneflow (Nm) and analysis of	
molecular variance (AMOVA)	159
5.5 Comparative analysis of morphology- and molecular-based dendrograms	161
CHAPTER SIX: SUMMARY, CONCLUSION AND RECOMMENDATIONS 6.1 Summary	163 163
6.2 Conclusion	165
6.3 Contributions to knowledge	167
6.4 Recommendations	167
6.4.1 Limitations of the study	169
REFERENCES APPENDICES	170 218

APPENDICES

LIST OF TABLES

TABLES	TITLE OF TABLES	PAGES
2.1:	Research gap identified in literature	43
3.1:	Geographic coordinates of survey ethnobotanical survey areas	47
3.2	Demographic characteristics of informants $(n = 295)$	51
3.3:	Passport data of the Telfairia occidentalis landraces from southern	53
	Nigeria	
3.4:	Description of traits used for the morphological assessment of the	58
	Telfairia occidentalis landraces from southern Nigeria	
3.5:	SCoT primer sequence information and % GC content	63
4.1:	Vernacular names of Telfairia occidentalis in Southern Nigeria	69
4.2:	Fidelity level of the use categories of Telfairia occidentalis in	71
	Southern Nigeria based on demographic characteristics	
4.3:	Use value (UVk) and overall use value (OUV) of Telfairia	73
	occidentalis in Southern Nigeria based on demographic	
	characteristics	
4.4:	Ethnomedicinal use diversity of Telfairia occidentalis in Southern	78
	Nigeria	
4.5:	Ethno-knowledge variation on origin, local landraces, preferred local	86
	landrace for cultivation and traits for improvement in Telfairia	
	occidentalis in Southern Nigeria	
4.6a:	Summary statistics and Shannon-Weaver's diversity index of floral	89
	and vegetative quantitative traits across the Telfairia occidentalis	
	landraces from Southern Nigeria	
4.6b:	Summary statistics and Shannon-Weaver's diversity index of	91
	vegetative quantitative traits across the Telfairia occidentalis	
	landraces from Southern Nigeria	
4.6c:	Summary statistics and Shannon-Weaver's diversity index of	93
	vegetative, seed and pod quantitative traits across the Telfairia	
	occidentalis landraces from Southern Nigeria	
4.7:	Eigenvalues, proportion of variance and cumulative variance of	96
	quantitative characters influencing the first five principal components	
	in the Telfairia occidentalis landraces from Southern Nigeria	

4.8:	Cluster means of quantitative traits across the landraces of	101
	Telfairia occidentalis from Southern Nigeria	
4.9:	Pearson's correlation matrix for the quantitative characters of the	104
	Telfairia occidentalis landraces from Southern Nigeria	
4.10:	Total number of bands, number of polymorphic bands, polymorphism	112
	percentage, number of alleles per locus, allele number, gene diversity	
	and polymorphic information content of the SCoT markers	
4.11:	Population-wise genetic diversity parameters of the Telfairia	118
	occidentalis landraces from Southern Nigeria based on the SCoT	
	markers	
4.12:	Nei's pairwise genetic distance and identity of the Telfairia	119
	occidentalis landraces from Southern Nigeria based on the SCoT	
	markers	
4.13:	Molecular variance for the three populations of Telfairia occidentalis	120
	landraces from Southern Nigeria based on the SCoT marker	
4.14:	Genomic SNP variation in the Telfairia occidentalis landraces from	124
	Southern Nigeria	
4.15:	Observed and expected heterozygosities of the populations of	126
	Telfairia occidentlis landraces from Southern Nigeria	
4.16:	DArTseq-SNP-based pairwise estimate of Fst among populations of	132
	the Telfairia occidentalis landraces from Southern Nigeria	
4.17:	DArTseq-SNP-based molecular variance among the landraces of	133
	Telfairia occidentalis landraces from Southern Nigeria	
4.18:	Comparative analysis of morphology-based and SCoT clustering of	135
	the Telfairia occidentalis landraces from Southern Nigeria	
4.19	Comparative analysis of morphology-based and DArTseq-SNP	136
	clustering of the Telfairia occidentalis landraces from Southern	
	Nigeria	

LIST OF FIGURES

FIGURES	TITLE OF FIGURES	PAGES
2.1:	Diploid chromosome number of Telfairia occidentalis at mitotic	12
	metaphase	
3.1:	Survey areas for ethnobotanical study	49
3.2:	Collection areas of the Telfairia occidentalis landraces from	54
	Southern Nigeria	
4.1:	Fidelity level of use categories for Telfairia occidentalis in Southern	70
	Nigeria	
4.2:	Plant parts of Telfairia occidentalis used in the preparation of	74
	phytoremedies in Southern Nigeria	
4.3:	Modes of preparation of Telfairia occidentalis phytoremedies in	76
	Southern Nigeria	
4.4:	Route of administration of <i>Telfairia occidentalis</i> phytoremedies in	77
	Southern Nigeria	
4.5:	Two-dimensional scatter plot of PC1 versus PC2 based on	97
	quantitative trait vector loadings of the Telfairia occidentalis	
	landraces from Southern Nigeria	
4.6:	Cluster dendrogram of the Telfairia occidentalis landraces from	99
	Southern Nigeria based on Brays-Curtis similarity coefficient.	
4.7:	Percentage distribution of the qualitative traits in the landraces of	105
	Telfairia occidentalis	
4.8:	Relationships among the Telfairia occidentalis landraces from	113
	Southern Nigeria based on the SCoT markers	
4.9:	SCoT marker-based PC1 versus PC2 clustering of the Telfairia	115
	occidentalis landraces from Southern Nigeria	
4.10:	SCoT marker-based PC1 versus PC3 clustering of the Telfairia	115
	occidentalis landraces from Southern Nigeria	
4.11:	Estimated membership fraction for $K = 3$ in the landraces of	116
	Telfairia occidentalis from Southern Nigeria based on the SCoT	
	markers	

4.12:	Membership coefficients of the Telfairia occidentalis landraces	116
	from Southern Nigeria determined at K = 3 in STRUCTURE	
	analysis based on the SCoT markers	
4.13:	Frequency distribution of polymorphic information content (PIC)	122
	for 18,469 polymorphic DArTseq-derived SNPs generated from the	
	Telfairia occidentalis landraces from Southern Nigeria.	
4.14:	Frequency distribution of minor allele frequency (Maf) for 18,469	123
	polymorphic DArTseq-derived SNPs generated from the Telfairia	
	occidentalis landraces from Southern Nigeria	
4.15:	Frequency of occurrence of transition and transversion SNP allele	125
	types in the Telfairia occidentalis landraces from Southern Nigeria	
	based on 18,469 DArTseq-derived SNPs	
4.16:	DArTseq-SNP-based PC1 versus PC2 clustering of the Telfairia	128
	occidentalis populations from Southern Nigeria	
4.17:	DArTseq-SNP-based PC1 versus PC3 clustering of the Telfairia	128
	occidentalis populations from Southern Nigeria	
4.18:	Discriminant analysis of principal components scatter plot for the	129
	Telfairia occidentalis populations from Southern Nigeria	
4.19:	DAPC analysis-derived posterior membership probability bar plot	130
	for the Telfairia occidentalis landraces from Southern Nigeria	
4.20:	Genetic relationships between the Telfairia occidentalis landraces	134
	from Southern Nigeria based on pairwise Identity-by-state (IBS)	
	dissimilarity matrix derived from the 18,469 DArTseq SNP markers	

LIST OF PLATES

PLATES	TITLE OF PLATES	PAGES
2.1:	Flowers and fruit of Telfairia occidentalis	11
2.2:	Edible parts of Telfairia occidentalis	17
3.1:	Experimental site for morphological assessment of the Telfairia	55
	occidentalis landraces from Southern Nigeria	
4.1:	Confirmation of extracted DNA samples on 1% (w/v) agarose gel	107
4.2a:	Amplification profile for SCoT-1	107
4.2b:	Amplification profile for SCoT-13	108
4.2c:	Amplification profile for SCoT-16	108
4.2d:	Amplification profile for SCoT-22	109
4.2e:	Amplification profile for SCoT-28	109
4.2f:	Amplification profile for SCoT-33	110
4.2g:	Amplification profile for SCoT-35	110
4.2h:	Amplification profile for SCoT-36	111

LIST OF ABBREVIATIONS AND SYMBOLS

AFLP	Amplified fragment length polymorphism
AMOVA	Analysis of molecular variance
AP-PCR	Arbitrarily primed polymerase chain reaction
cDNA	Complementary DNA
CTAB	Cetyl trimethyl ammonium bromide
CV	Coefficient of variation
DAF	DNA amplification fingerprinting
DAPC	Discriminant analysis of principal components
DArTseq	Diversity array technology sequencing
DBI	Days to female flower bud initiation
DFFL	Days to 50% female flowering
DFB	Days to 50% female flower bud initiation
DFF	Days to first female flowering
DFPSF	Defatted fluted pumpkin seed flour
DFR	Days to first fruiting
DGM	Days to germination
DMSO	Dimethyl sulphoxide
DNA	Deoxyribonucleic acid
DNA	Deoxyribonucleic acid
dNTP	Deoxynucleotide triphosphate
DFFR	Days to 50% fruiting
DRP	Days to 95% ripe pod
ESTs	Expressed sequence tags
FAO	Food and Agricultural Organisation
FL	Fidelity
FLC	Flower colour
FLW	Fresh leaf weight
Fst	Fixation index
GBS	Genotyping by sequencing
gSSRs	Genomic simple sequence repeats
Н	Nei's gene diversity
Ι	Shannon-Weaver's diversity index

IBS	Identity-by-state
INL	Internode length
IPGR1	International Plant Genetic Resources Institute
ISSR	Intersimple sequence repeat
LAPS	Leaf apex shape
LFA	Leaf area
MAF	Major allele frequency
Maf	Minor allele frequency
Max.	Maximum
MCMC	Markov Chain Monte Carlo
Min.	Minimum
MLY	Marketable leaf yield
Na	Number of different alleles
NBP	Mean number of branches per plant
Ne	Effective number of alleles
NGS	Next generation sequencing
NLP	Number of leaves per plant
Nm	Gene flow
NMB	Number of monomorphic bands
NPB	Number of polymorphic bands
NPP	Number of pods per plant
NSP	Number of seeds per pod
NVP	Number of vines per plant
OUV	Overall use value
PAST	Paleontological statistics software package for education and data analysis
PCA	Principal component analysis
PCR	Polymerase chain reaction
PDC	Pod circumference
PDL	Pod length
PDW	Pod weight
PFP	Pod formation period
PGR	Plant genetic resources
PIC	Polymorphic information content
PPB	Percentage of polymorphic bands

PPC	Pulp colour
PPV	Plant part value
PstI	Providencia stuartii strain I
PTL	Petiole length
QTL	Quantitative trait loci
RAPD	Random amplified polymorphic DNA
RCBD	Randomised complete block design
RFLP	Restriction fragment length polymorphism
RNA	Ribonucleic acid
RNAse	Ribonuclease
Rpm	Revolutions per minute
SCoT	Start codon targeted marker
SDC	Seed colour
SDW	10 seeds weight
Sig.	Significance
SNP	Single nucleotide polymorphism
SNP	Single nucleotide polymorphism
SphI	Streptomyces phaeochromogenes strain I
SPSS	Statistical package for social sciences
SSR	Simple sequence repeats
Taq	Thermus aquaticus
TBE	Tris Borate Ethylenediamine Tetraacetic Acid
TE	Tris EDTA (Ethylenediamine Tetraacetic Acid)
TNB	Total number of bands
UPGMA	Unweighted pair group method with arithmetic averages
UV	Ultra violet
UV	Use value
VND	Vine diameter
VNL	Vine length 6 weeks after planting
VPG	Vine pigmentation
w/v	Weight by volume
WHO	World Health Organisation
WPS	Weeks post sowing

ABSTRACT

The cultivation of *Telfairia occidentalis* constitutes a significant source of revenue for several small-holder farmers in Southern Nigeria. However, a decline in the indigenous knowledge and limited information on genetic diversity are major constraints to developing improved varieties in the species. The aim of the study was to evaluate indigenous knowledge variation, and phenotypic and genetic diversity of T. occidentalis in Southern Nigeria. Two hundred and ninety-five (295) respondents across four ethnic groups were interviewed. Uses cited by the respondents were grouped into categories. Quantitative ethnobotanical indices including fidelity level (FL %), use value (UV), and overall use value (OUV) of the different use categories were computed. Thirty-two (32) T. occidentalis landraces were evaluated for variability in 26 quantitative and 5 qualitative traits. The landraces were also assessed for molecular diversity using 8 start codon targeted (SCoT) primers and 18,469 single nucleotide polymorphism diversity array technology sequencing (DArTseq-SNP) markers. Six (6) use categories were identified, with utilisations as food and medicine exhibiting 100 % fidelity levels. The UVs differed significantly (p < 0.05) among the ethnic groups, gender, age group, and occupation, with the Efik/Ibibio linguistic group, females, aged respondents, and farmers possessing better ratings on local knowledge. The landraces displayed significant variability (p < 0.05) in all the quantitative traits evaluated except for the number of pods per plant and number of vines per plant. Principal component analysis (PCA) involved floral and vegetative traits as distinguishing characters that accounted for higher variabilities across the landraces. Cluster analysis based on the quantitative traits partitioned the landraces into five heterogeneous groups. A comparison of the cluster means revealed that ToIm002, ToIm003, ToOn002, ToIm002, ToRv003, ToRv001, ToRv002, and ToOn003 were early flowering and maturing landraces. Genetic diversity assessment using the SCoT markers amplified 66 fragments across the T. occidentalis genomes with an average polymorphic information content (PIC) of 0.77. A SCoT-based hierarchical clustering and principal component analysis (PCA) assembled the landraces into four clusters. Population-based genetic diversity using the SCoT markers showed a Nei's gene diversity of 0.28 ± 0.01 , indicating that the landraces were of a narrow genetic base. This was further corroborated by a high genetic identity and close genetic distance between the populations. The 18,469 DArTseq-SNPs exhibited a mean PIC value of 0.17. The mean observed heterozygosity (0.13) of the populations was lower than the expected (0.18), suggesting a low genetic diversity. Discriminant analysis of principal components (DAPC), analysis of molecular variance (AMOVA) and fixation index (Fst) estimates revealed no evidence for genetic differentiation and population structure between populations of the landraces. A DArTseq-SNP cluster analysis stratified the landraces into three admixed groups without reference to the collection regions. Overall, the study showed that the indigenous knowledge and use of T. occidentalis are structured along gender, age group, and occupation lines. Furthermore, both SCoT and DArTseq-SNP markers revealed a narrow genetic base for the plant, despite evidence of high morphological diversity. The results of this study have significant implications in the characterisation, conservation, improvement and utilization of fluted pumpkin.

Keywords: Telfairia occidentalis, ethnobotany, genetic diversity, SCoT and DArTseq-SNP