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Abstract 

To improve the utilization of lignin, much effort has been devoted to lignin depolymerization 
with the aim to decrease waste and enhance profitability. Here, a dual property (acid and 
base) catalyst, namely S2O8

2−–K2O/TiO2, was carefully researched. Upon loading S2O8
2− and 

K2O onto TiO2, acid and base sites emerged, and S2O8
2− and K2O mutually enhanced the acid 

and base strengths of the catalyst enormously; this indeed facilitated lignin depolymerization. 
Under appropriate conditions, the yields of liquid product, petroleum ether soluble (PE-
soluble) product and total monomer products were 83.76%, 50.4% and 28.96%, respectively. 
The constituents of the PE-soluble fraction, which are mainly monomers and dimers, can be 
used as liquid fuels or additives. In addition, after the catalyst was modified by Ni, better 
results were obtained. Surprisingly, it was found that the Ni enhanced not only the 



hydrogenation capacity but also the acidity. The highest high heating value (HHV) of the 
liquid product (33.6 MJ kg−1) was obtained, and the yield of PE-soluble product increased 
from 50.4 to 56.4%. The product can be utilized as a fuel additive or be converted to bio-fuel. 
This catalysis system has significant potential in the conversion of lignin to bio-fuel. 

 

1. Introduction 

Increasing awareness of global environmental protection and the finiteness of petroleum-
based fuels are among key reasons for seeking a series of promising alternatives to traditional 
fossil fuels. Biomass, the only carbon-neutral energy source, is renowned as a promising 
source of synthetic liquid fuels and fine chemicals.1 However, the scale of the biomass 
industry is not as large as it should be for many reasons. In China, for example, the lack of 
proper handling methods of the abundant agricultural crop residues causes many problems; 
therefore, finding efficient handling methods has drawn much attention.2,3 Lignocellulosic 
biomass contains cellulose, hemicellulose and lignin.4 Cellulose and hemicelluloses can be 
easily converted into fuels or other useful products.5–9 However, the complex, three-
dimensional, amorphous polymeric structure of lignin10 prevents its wide usage in industrial 
fine chemical production. In fact, little lignin, a byproduct of the paper industry, is efficiently 
utilized.11 Therefore, the lignin research community is unrelenting in its quest to find efficient 
methods of lignin depolymerization. Depolymerization is an important method for utilizing 
lignin well as it can convert lignin into aromatic monomers,12,13 which can serve as valuable 
precursors to obtain further biopolymers or additives for biofuels.14,15 

The major thermochemical routes for catalytic lignin transformation are pyrolysis, 
solvolysis, and hydrothermal catalytic processes.16,17 Pyrolysis takes place at high 
temperatures (over 500 °C), usually with zeolite catalysts, to obtain liquid fuels and 
aromatics.18–20 However, high temperature affords low-value char (20 to 40 wt%) and low 
yields of aromatics.21 Lignin solvolysis generates a wide range of monomer products; 
however, their yields cannot be compared with those obtained by other 
methods.23 Hydrothermal catalytic processes for lignin depolymerization have many 
advantages, such as moderate reaction conditions, high depolymerization efficiency and high 
conversion rate.22,23 Hence, such a process was considered in this work. According to the 
phase of a catalyst, the catalytic process can be simply divided into two categories, namely 
homogeneous and heterogeneous catalysis.23 Homogeneous catalysts generally afford higher 
production yields; however, due to the difficulty of separation, they are less desirable.24–

26 Because heterogeneous catalysts can be more easily recycled in most conditions, 
researchers have paid more attention to heterogeneous catalytic depolymerization of 
lignin.27 The heterogeneous catalytic process mainly includes acid catalysis, base catalysis, 
hydroprocessing and oxidation.22 Past studies have mostly focused on the use of mono-



functional catalysts in depolymerization processes. For example, X. Zhang reported a method 
of hydrodeoxygenation of lignin-derived phenolic compounds over Ni/SiO2–
ZrO2 catalysts.28 M. Grilc and B. Likozar employed a series of Ni–Mo catalysts for lignin 
hydrodeoxygenation.29,30 Y. Ye used Ru/C to selectively produce 4-ethylphenolics from 
lignin.31 A. K. Deepa and Paresh L. Dhepe carried out solid acid-catalyzed lignin 
depolymerization to obtain value-added aromatic monomers.32 A. Toledano reduced lignin 
repolymerization by improving base-catalyzed depolymerization.33 However, in recent years, 
researchers have found that combining various catalytic methods at the same time can afford 
better lignin depolymerization results. S. Riyang employed an acid catalyst, CrCl3, and a 
hydrogenation catalyst, Pd/C, together to convert lignin into low molecular weight 
products.34 H. Ma employed Ni/ZrP in his work.35 Y. Fei used MoC1−x and Cu–MgAlOz in 
lignin depolymerization.36 Limarta used Ru/C and MgO/ZrO2 and L. Jinxing used Ru/C and 
NaOH in lignin degradation.37,38 In the above examples, the researchers combined acid 
catalysis and hydroprocessing,34,36 and other studies combined base catalysis and 
hydroprocessing.37,38 There are reports of joint use of acid catalysis and oxidation39,40 and the 
use of base catalysis and oxidation.41,42 Some of these results are shown in Table 
S8.† Compared with this work, our work has some unique advantages (as shown in Part 3.7). 

From previous work, it is known that both acid and base catalytic methods are helpful in 
lignin depolymerization, and the combination of different catalytic methods may be more 
effective for lignin depolymerization.23,35,37 However, there have been few studies about 
utilizing combined acid and base catalysts for lignin depolymerization. In this work, acid and 
base catalysts were combined in a synthesized catalyst, S2O8

2−–K2O/TiO2. The effects of the 
acid and base sites, temperature, and reaction time were investigated. However, in this bond 
breaking process, many highly reactive carbon intermediates were produced, which can 
easily polymerize. Because hydroprocessing is known to reduce repolymerization, it was 
employed in this study after S2O8

2−–K2O/TiO2 was modified by Ni. The effects of the solvent 
type were also studied in this work because the solvent greatly affects these kinds of 
studies.43,44 
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