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a b s t r a c t

Researchers have become enthralled with using natural fiber, which is a waste product

from industrial processes, as an additive in cement-based materials. This is due to the fact

that natural fiber is inexpensive, has principal carbon neutrality, and is obtainable in large

quantities. Additionally, this fiber is made from a renewable resource. Hence it has a low

density and is amenable to undergoing chemical alteration. The idea of this investigation is

to discover the reactivity of raffia (raphia vinifera) fiber (RF) in low-density foamed concrete

(FC). FC density of 950 kg/m3 was utilized. Workability, density, thermal conductivity, SEM

analysis, compressive, bending, and tensile strengths were the parameters that were

quantified and assessed. Based on the outcomes, it has been determined that the me-

chanical properties and thermal conductivity of FC-RF composites may be enhanced by

using RF with an ideal reinforcing fraction content of 6%. Slump flow gradually decreased

from 2% to 8% RF fraction content. The lowest slump flow was achieved by adding RF to the

FC mixture at a fraction content of 8%. The density of FC-RF composites shows a devel-

oping tendency, likely because of the RF's comparatively high specific gravity and

increasing fraction content. The addition of RF to FC considerably enhances the material's

compressive, bending, and tensile strength. The optimal strength characteristics emerged
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when 6% RF was added to FC. Besides, the FC thermal conductivity improves as the weight

percent of RF increases because the porous structure of FC with RF allows it to absorb heat.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Foamed concrete (FC) is an eminent building material that

facilitates the design and construction of lightweight con-

structions [1]. As a result of the elimination of coarse material

from FC combinations, it is possible to create highly workable

mixtures [2,3]. FC possesses a great extent of fluidity, which is

achieved by combining amortar slurry, including cementwith

a prefabricated foam [4,5]. Such concrete combinations can be

advantageous for construction in places with difficult soil,

where the stress on building foundations is often minimal

[6e10]. However, environmental deterioration caused by the

emission of toxic compounds and sustainability concerns

related to the discovery of natural aggregates might impede

the growth of FC technology [11e14]. Utilizing natural fibers to

improve the characteristics of low-fluorinated compounds in

concrete manufacturing has yielded many possibilities [15].

Depending on the optimization of the mixture, FC can be

utilized as a non-load-bearing component, a semi-structural

component, or a structural component in applications such

as wall panels, partitions, and lightweight blocks [16e19]. The

unit weight of FC can substantially influence the material's
attributes [20]. FC has density differs from 350 to 1850 kg/m3

[21,22]. In addition to being fire-resistant, FC is thermally and

acoustically insulating, making it ideal for floor and roof

insulation and void filling. Additionally, it can be used to

reinstate trenches. Besides, FC is also suitable for pipeline

annular filling, precast blocks, prefabricated panels, cast-in-

place walling, insulation roof screeds, insulation boards and

hollow blocks [23,24].

It is important to note that FC has encountered several

impediments in its development as a material for building

construction, the most notable of which are brittleness, lower

bending and tensile strengths, high drying shrinkage, high

water absorption capacity and a poor capacity to control

fractures. In addition, brittleness has been a major issue

[25e28]. A lack of mechanical strength and durability limits

the use of FC to applications not involving structural load-

bearing construction [29]. Concerns related to FC's low frac-

ture toughness are alleviated when the material is strength-

ened with polymer fibers derived from various sources

[30e34]. As a result of evenly distributing natural and syn-

thetic fibers throughout a fiber composite, a weak matrix can

be significantly strengthened [35e38]. Due to this, FC behaves

more like a composite material than an unreinforced FC

[39,40].

It should be pointed out that synthetic fibers are the most

often used forms of fiber to strengthen concrete. Nevertheless,

natural plant fibers are becoming increasingly popular [41].

There has been a growing concern regarding materials rein-

forced with natural plant fibers. Natural plant fibers are

essential since they are sustainable, renewable, and biode-

gradable [42e45]. Due to the larger environmental impact of
synthetic fibers, these natural plant fibers could be used in

their place. Cement-based composites reinforcedwith natural

fibers like coconut, jute, flax, hemp, sisal, and leaf fibers have

been the subject of several scientific investigations. Consis-

tent with the findings when polymer fibers are employed as

reinforcement, these investigations have found that fiber

reinforcement increases the durability of cement-based

compounds and enhances the tensile, bending, impact, and

compressive strengths [46e49]. Due to the alkalinity of the

cementitious matrix, natural fibers degrade, and their elas-

ticity and deformation ability is reduced. When exposed to

extremely alkaline conditions, natural fiber cell walls can

degrade due tominimal lignin and hemicellulose stability [50].

It is of the utmost importance to determine the fraction con-

tents of fibers, binder, filler, water, and surfactant that are

included inside the mixture. Natural fibers are superior to

synthetic fibres in several respects, including their ability to

decompose naturally, low density, and their resistance to

melting at high temperatures [51]. Cementitious materials

may be strengthened with the presence of natural fibers,

which are especially useful in the production and develop-

ment of construction materials. Several researchers put

considerable effort into determining the FC durability prop-

erties that were strengthened with natural and synthetic fi-

bers. Othuman Mydin et al. [52] executed research on the

application of coir fiber in FC. They found that inserting coir

fiber in FC diminishes diffusivity and conductivity while

increasing the compounds' heat capacity.
Awang and Ahmad [53] started investigating the differ-

ences between natural and synthetic fibers when the fraction

content was 0.25% and 0.40%. They used steel, glass, kenaf, oil

palm, and polypropylene fibers. In terms of thermal qualities,

they discovered that polypropylene fiber performed the best,

followed by kenaf fiber, oil palm fiber, glass fiber, and finally,

steel fiber in that order. According to the research findings,

there was a correlation between an increase in the fiber vol-

ume percentage and an enhancement in the thermal attri-

butes of FC. According to Raj et al. [54], FC reconstituted with

coir fibers and polyvinyl alcohol fibers could improve the

effectiveness of FC. It has been observed that coir fiber-

reinforced FC outperformed coir fiber-reinforced FC rein-

forced with polyvinyl alcohol fiber, which outperformed FC

reinforced with a hybrid composite of coir and polyvinyl

alcohol fibers.

A limited number of research were done to establish the

effects of adding RF to concrete. Akpokodje et al. [55] explored

the impact of RF inclusion on the strength properties of con-

crete. According to the investigation findings, RF volume

fraction added to concrete significantly impacted the concrete

strength properties. The flexural strength of the concrete

reduced from 5.6 MPa in the control sample to 2.2 MPa when

reinforced with a 3% volume fraction of RF (30 mm in length).

Additionally, the flexural modulus diminished from 920 MPa
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Table 1 e OPC physicochemical properties.

Elements Percentage (%)

Calcium oxide 64.63

Silicon dioxide 16.02

Aluminium oxide 4.51

Magnesium oxide 1.19

Sulfur trioxide 3.88

Ferric oxide 6.91

Sodium oxide 0.52

Unsolvable excess 1.06

LOI 1.28

Initial and final setting time 175/220

Surface area (cm2/g) 3320

Specific gravity 3.11

Compressive Strength (MPa) 53.4
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in the control sample to 153 MPa in the reinforced specimen.

Concrete absorbsmorewater as the RF volume fraction and RF

length increase. The water absorption rate was 8% for the

control specimen (unreinforced) but rocketed to 13% when RF

was increased to 3%. In light of the study's findings, RF could

be used as low-volume reinforcement in construction com-

ponentswithout significantmoisture exposure. Thematerial's
ductility will increase, despite the decrease in flexural

strength.

Similarly, In their study of mortar strength, Aho and

Ndububa [56] assessed its compressive and flexural strengths

reinforced with 2%, 4%, 6%, and 8% RF volume fractions. The

specimens' flexural strength increased as the RF volume

fraction increased, whereas their compressive strength

decreased. The average flexural strengths were 4.2 MPa and

4.3 MPa for bothmix ratios and curing durations. There was a

decrease in density when there was a greater proportion of

RF in the mortar. The results are similar to those of other

studies conducted on concrete reinforced with rice husk,

coconut fiber and sawdust. Esegbuyota et al. [57] also

researched the influence of numerous RF volume fractions

on solid concrete block compressive strength. The blocks

were 120 mm wide, 120 mm high, and 100 mm in size, with

RF, added in volume fractions of 1%, 2%, and 3%. According to

the results of this study, block compressive strength and

sorptivity were not significantly affected by RF fraction

content.

Hence, this research was driven by a dearth of knowledge

regarding FC reinforced with natural fiber. FC might be

employed as a lightweight construction material for low-rise

construction. Furthermore, no single research has been per-

formed on the employment of RF to reinforce cement-based

materials, notably FC, compared to studies on other types of

natural plant fibers. RF is an appealing alternative for value-

added applications in concrete. As a cement composite rein-

forcement, RF has economic potential. The utilization of RF in

cement composites will offer several advantages, some

related to mechanical and thermal properties. Another

advantage of thematerial is its low cost [58]. RF is an excellent

example of readily available natural fiber.

1.1. Research significance

So far, little research has been conducted on the influence of

natural fiber on FC properties. In particular, RF utilization in

FC has not been studied yet. Some studies have been con-

ducted on the addition of other natural fibers to FC. However,

there are still some uncertainties regarding themechanism by

which natural fibers might change FC properties. It is impor-

tant to clarify this ambiguity. In light of this, it is essential to

investigate the effects of RF modification on the properties of

FC. Enhanced mechanical properties of the material are veri-

fied by the microstructure analysis of the material using a

Scanning Electron Microscope (SEM).

1.2. Research objectives

This investigation aims to address this need by conducting a

planned inquiry to determine how RF affects FC properties.

This study is intended to determine the strength, thermal and
durability properties of FC influenced by the addition of RF.

The SEM study has confirmed that the FC properties have been

enhanced. Workability, bulk density, thermal conductivity,

SEM analysis, compressive, bending, and tensile strength of

the material were the parameters evaluated. The study is

further extended to investigate the relationship between FC

mechanical properties. Establishing relationships is necessary

for several reasons, including a reduction in research and

development costs and a reduction of time required to com-

plete projects.
2. Materials and methods

2.1. Materials

Fivemain ingredients were required to produce FC specimens,

including ordinary Portland cement as a binder, fine aggregate

as a filler, water and a protein foaming agent as a surfactant.

RF was employed as an additive in the FC base mix.

2.1.1. Binder
The mixtures were prepared using Portland cement (OPC)

according to the specifications of BS197-1 [59]. The strength

grade of ordinary Portland cement is 53.4MPa, the setting time

is 45 min, and the soundness is 10 mm. In Table 1, OPC's
physicochemical properties are summarized.

2.1.2. Filler
The local distributor supplied Fine river sand as a filler in this

study. Fine river sand was chosen because its cohesiveness,

large surface area, and gradation properties contribute

significantly to the workability of FC. Depending on the spe-

cific surface area, particles of decreasing size should gradually

reduce their workability. Additionally, fine filler assists in

compacting FC mixtures. A physical property of sand can be

found in Table 2.

2.1.3. Water
As per BS-3148 [60], potable water is employed tomix and cure

the FC, which is free of impurities. The pH ranges from 6.5 to

8.0. The pH ranges from 6.5 to 8.0.
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Table 2 e Physical properties of sand.

Elements Percentage (%)

Oven dry specific gravity 2.53

Saturated surface dry specific gravity 2.59

Cu 4.24

Cc 1.46

D60 (mm) 0.85

D30 (mm) 0.50

D10 (mm) 0.20

Absorption (%) 2.24

Table 3 e Properties of Noraite PA-1 foaming agent.

Components Properties

Density (g/cm3) 1.21

pH 6.1

Presence Brown

Specific gravity 1.07

Molar mass 262 g/mol

Concentration proportion 1:34
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2.1.4. Surfactant
Protein-based surfactant known as Noraite PA-1 was imple-

mented. The surfactant was mixed up with water at a ratio of

one part foaming agent to thirty-four parts water. Foam so-

lutions were capable of achieving a density of 63.0 ± 10.0 kg/

m3 after being aerated. It should be brought to your attention

that the pre-foaming processwas utilized to produce the foam

by using a foam generator TM-1. Table 3 summarizes the

properties of Noraite PA-1 surfactant.

2.1.5. Raffia fiber (RF)
The RF was supplied by Shantou Co. Ltd., China. Fig. 1 shows

the RF used in this research as an additive in FC. The length of

the chopped RF was approximately 15e18mm. The raffia fiber

was cleaned correctly in distilled water and dried under the

sun. Tables 4 and 5 display the mechanical properties and

chemical compositions of RF. From Table 4, we can see that RF

has an excellent elongation at break and tensile modulus.

2.2. Mix design

In this investigation, five FC mixtures were fabricated: RF0%,

RF2%, RF4%, RF6% and RF8% mixtures. The mix design for FC

containing 2e8% of treated SBF was denoted by the notation

RF2%-RF8%. In addition, a control FC (RF0%) was also produced

so that the results could be compared. The ratio of cement to

sand used was 1:1.5 across the board for all the mixtures. The

proportion of water to cementwas predetermined to be 0.45. By

keeping the fresh density at around 1084 ± 20 kg/m3, it was

possible to control the density of the FC such that it fell within

the range of 950 ± 20 kg/m3. The FC mix design is shown in

Table 6, which includes various fraction contents of RF.

2.3. Tests methods

2.3.1. Compressive strength test
A 100 mm cube was evaluated for its compressive strength.

The specimens were evaluated based on BS 12390-3 [61]

standards. Fig. 2 visualized the setup for the compression test.

The force applied to the two sides of the FC specimen, and the

maximum compression it can sustain prior to failure are

recorded. For each curing period, three cubes were examined.

A calculationwas thenmade to ascertain the average strength

of the three cubes.

2.3.2. Bending strength test
Tests were conducted on 100 � 100 � 500 mm FC prisms to

determine their bending strength. The BS 12390-5 [62]
specifications were adhered to when conducting the tests on

the FC prisms. The loading assembly used to determine the

bending strength of the sample is displayed in Fig. 3. The

bending test setup is indicated in Fig. 4. The bending strength

of each FC mix and curing period (7, 28 and 56 days) was

evaluated using three different prisms.

2.3.3. Tensile test
This experiment was conducted per BS 12390-6 [63] standard.

For each mix, three identical samples were made into cylin-

ders with a 100 mm diameter and a 200 mm height. Fig. 5

demonstrates the setup for the tensile strength test. These

were used to test the samples at 7, 28, and 56 days.

2.3.4. Thermal properties test
To determine the FC thermal properties with varying fraction

contents of SBF, guarded-hot-plate apparatus was imple-

mented in line with ASTM C177 [64]. As shown in Fig. 6, the

hot disk thermal analyzer measured thermal conductivity,

heat capacity, and diffusivity. The 30 mm � 30 mm x 10 mm

FC sample size was evaluated. Two composite discs were

layered above the sensor, and two more were stacked un-

derneath it, doubling the sample's thickness. The Hot

Guarded Plate apparatus is used to measure steady-state

heat flow through the foamed concrete specimens. The hot

plate is sandwiched between two foamed concrete samples,

with the samples' thicknesses, areas, and densities as iden-

tical as possible. The hot plate is embedded in the guard. The

electric heater generates a fixed rate of heat flow. Because

the hot plate and the guard are always at the same temper-

ature, no heat transfer occurs between them. The heat

source nor the sample dissipates heat to the surrounding

area. The heat produced by the plate is only transferred

through the sample. Thus, unidirectional heat flow is

generated. After reaching a steady state, the heating and

cooling plates have stable temperatures. Then, the thermo-

couples measure the resulting temperature difference over

the sample. The thermal conductivity was calculated by

using the heat input, the thickness of the sample, the area of

the heating plate, and the temperature difference through

the sample.

The Fourier heat flow equation is used to calculate the

specimen's average thermal conductivity, k:

Thermal conductivity; k¼W
A

�
1 x

d
DT

�
(1)

Where W is the main heater's electrical power input, A is the

surface area, T is the temperature difference, and d is the

depth of the FC specimen.
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Fig. 1 e RF employed in this study (a) raw RF, (b) cleaned and dried RF.
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3. Results and discussion

3.1. Workability

Fig. 7 reveals the slump flow results of FC-RF different mix-

tures. The FC-RF composite slump flow diameter mixtures

ranged from215 to 240mm. The control FC (RF0%) attained the

highest slump flow readings. The control mix recorded a

slumpflowof 248mm. As the fiberwas attached to the FC base

mix, the slump flow gradually decreased when the RF fraction

content increased from 2% to 8%. The smallest slump flow

was achieved for the FC mix by inserting an 8% fraction con-

tent of RF. The value logged was 219 mm. The addition of RF

increases the flow resistance and decreases flowability by

expanding the intertwining and resistance between the RF

and filler, which results in a significant reduction in slump

flow diameter [65]. It was discovered that as the RF fraction

content increased, the workability of the mixture decreased.

This is probably because there was a more fraction content of

RF, and they have a higher internal resistance in fresh FC

mixtures [66]. Fig. 8 illustrates the measurement of the

workability of FC-RF varying mixes. A higher restriction effect

is brought about by stiffer mixtures, as shown in Fig. 8(c),
Table 4 e RF engineering properties.

Component Value

Tensile strength (MPa) 101e145

Elongation at break (%) 5.8e6.1

Specific gravity 0.89e0.91

Young's modulus (MPa) 12,125e12755

Average Diameter (mm) 1.05

Average length (mm) 18

Aspect ratio (L/D) 17.14

Thickness (um) 35e38
which have a higher fraction of RF. The randomdistribution of

the RF in the FC caused a collective filler barrier to build, which

decreased the workability. The rise in RF in FC reduced the

mixture's capacity to deform. The RF was placed around the

mortar slurry in the freshly formed concrete, and they had a

tendency to produce an RF-filler interlock, which prevented

the filler (fine sand) from shifting [67]. Since the RF distribution

was not homogenous, the FC either spread in a manner that

was not homogenous or failed to correctly form a circular

pattern, as presented in Fig. 8(b) and (c). It had a less circular

form on the FC spread, which resulted in a smaller spread

diameter. A greater RF fraction content caused a greater re-

striction on the FC flow, leading to a higher spread diameter

loss.

3.2. Dry density

The FC dry density is illustrated in Fig. 9 for numerous RF

fraction contents. Generally, it can be observed from Fig. 9 that

there was a slight trend of increased density with RF fraction

content increment. However, the difference was not signifi-

cant. In that order, the control FCmixture recorded the lowest

density value of 951, 955 and 959 kg/m3 on days 7, 28 and 56.

While the highest recorded density was accomplished with

the inclusion of an 8% RF. The values were 968, 972 and 977 kg/

m3 on days 7, 28 and 56, respectively. When FC was combined

with higher fraction contents of RF, self-compactionwasmore

difficult to be achieved, leading to a decreased density of the

composite samplewhenmatched to the control sample due to

the porous nature of FC. Overall, the densities attained for

entire FC-RF mixtures fall within the permitted range of

±50 kg/m3. On day 28, the deviations in final dry densities from

the desired density were ±5, ±9, ±14, ±18 and ± 22 kg/m3 for

fraction contents of RF0%, RF2%, RF4%, RF6% and RF8%,

correspondingly. The final density will have a significant

impact on FC's attributes. Therefore, it is crucial to achieve the

https://doi.org/10.1016/j.jmrt.2023.07.225
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Table 5 e RF chemical composition.

Constituents Value

Lignin (%) 26.31

Cellulose (%) 56.49

Hemicellulose (%) 15.77

Extractives (%) 1.43
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desired FC density accurately and ensure it is within the

previously indicated permitted range.

3.3. Compressive strength

Compressive strength results with various RF fraction con-

tents are depicted in Fig. 10. The compressive strength of FC

was investigated on days 7, 28 and 56. Due to the hydration

process, the FC compressive strength progressively increased

with curing age. When the curing period was lengthened from

7 to 28 days, the development rate of compressive strength

increased significantly with the addition of RF. On day 28, the

control specimen achieved compressive strengths of 3.17MPa.

Adding 6% RF to FC resulted in the highest compressive

strength. On day 28, the measured compressive strength was

4.86 MPa. The percentage of strength enhancement was about

53.3% compared to the control specimen. The FC compressive

strengths increased by an average of 15.7% and 30.5% on days

28 and 56, respectively, compared to day 7. According to Serri

et al. [68], the use of fibers has been proven to enhance the

compressive strength of cementitious fiber cement by pre-

venting crack propagation within the cementitious fiber

cement. Compared to the control FC with the same density,

the FC containing coir fiber increased its compressive strength

by 46%. Mahzabin et al. [69] concluded that the perfect bond

between the natural fibers (kenaf) and the FC cement matrix

was important in compressive strength development. RF's
high water retention capacity can be attributed to this

improvement in mechanical performance because it absorbs

water during FC mixing and releases it gradually in the sur-

rounding area. It aids in hydrating the particles of cement that

aren't hydrated [70,71]. A dispersion of RF within the matrix is

necessary for this internal curing agent to function effectively

[72]. As a result of the high interface between the FC and RF-

based matrix, the fiber may also help improve the transfer of

stress.

At an 8% fraction content of RF in FC, the compressive

strength dropped dramatically to 3.00 MPa on day 28, which

was lower than the control sample. This may be because balls

are easily formed when the RF fraction content exceeds the

crucial fiber fraction content. Since hydrated cement products

have higher surface energy, they tend to cluster closer to RF
Table 6 e Mix design of FC.

Specimen Density (kg/m3) RF (%) RF (kg/m3) Binder

RF0% 950 0 e 3

RF2% 950 2 21.7 3

RF4% 950 4 43.4 3

RF6% 950 6 65.1 3

RF8% 950 8 86.7 3
when uniformly distributed in FC at the correct proportion. RF

properties help reduce specified tensile stress and improve

fracture resistance by enticing tensile energy at the RF-FC

matrix interface in response to FC contractions [73]. After

achieving their optimal compressive strength with a 6% frac-

tion content of RF, FC-RF composites could not resist the

increasing stresses applied to the specimen reinforced with a

higher fraction content of RF. The micro-spaces between the

fiber increase when the RF fraction content exceeds 6%,

resulting in RF agglomeration that results in inadequate load

distribution and failure. In turn, this results in a reduction in

the bond strength between the FC cementitious matrix and

fibers, reducing the compressive strength of FC-RF compos-

ites. Furthermore, the agglomeration resulted in defects and

voids between fibers and the matrix. For instance, at an RF

fraction content of 8%, there was insufficient interfacial

interaction between the RF and matrix material. Agglomera-

tion also disrupted the concentration of stress.

3.4. Bending strength

The bending strength findings of FC-RF composites at various

RF fraction contents are shown in Fig. 11. The bending test was

executed for each mixture on days 7, 28, and 56. The findings

revealed that FC bending strength gradually increased with

age. At 7 and 28 days, the bending strength achieved roughly

31.9% and 13.1% of the 56 days strength, respectively. At 56

days, the bending strength was between 0.7 and 1.4 N/mm3.

When the FC curing period was increased from 7 to 28 days,

there was a discernible improvement in the bending strength

of 16.6% on average. On the other hand, there was a moderate

rise of 13.1% on average between the ages of 28 and 56 days.

FC-RF composite mixtures with 6% RF inclusion exhibited

optimal bending strength. Bending strengths measured on

day 28 with 6% of RF was 1.26 MPa. In contrast to the control

FC specimens, which obtained a bending strength of 0.61 MPa,

the observed result was 107% greater. The results obtained in

this study are in linewith the findings by Odera et al. [74]. They

found that reinforcing cement mortar with RF increases its

flexural strength bymore than twice. Additionally, they found

that RF-reinforced fiber-mortar roof tiles performed reason-

ably well. RF was recommended as an ideal ceiling and roofing

material for low-cost homes as a cost-effective alternative to

more expensive fibrous materials. Aho & Ndububa [56]

investigated the flexural strength of cement mortar stabilized

with RF. Their study revealed that flexural strength signifi-

cantly improved with increased RF proportion. As a result of

their findings, mortar stabilized with RF is suitable for use in

civil engineering work as a light load-bearing member. The

bending strength of FC significantly decreased at an 8%
(kg/m3) Filler (kg/m3) Water (kg/m3) Foam (kg/m3)

57 535 161 32

57 535 161 32

57 535 161 32

57 535 161 32

57 535 161 32
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Fig. 2 e Compression test was achieved on a

100 £ 100 £ 100 mm sample.

Fig. 4 e The bending test was executed on a

100 £ 100 £ 500 mm prism.
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fraction content of RF, as was seen in the compressive

strength result. An interfacial transition zone is often formed

between RF and foam cement slurry [75]. When RF is added in

excess, it will cause an increase in the ITZ zone of FC, resulting

in a decrease in bending strength. It will also be difficult to

scatter the RF uniformly because of the high fraction content

of RF in the cementitious matrix, which would produce fiber

agglomeration. The presence of RF fully reverses the bonding

intensity inside the FC matrix, resulting in the progressive

expulsion of the RF [76]. Even if the matrix collapses, the basic

structure may remain intact.

3.5. Tensile strength

FC-RF composite mixture tensile strength test findings on 7,

28, and 56 days for various fraction contents of RF are shown

in Fig. 12. The results indicated that the tensile strength

steadily rose with an increase in the curing age and had a

trend that was comparable to that of the compressive and

flexural strengths. Tensile strength at 7 and 28 days was

approximately 30.9% and 12.9% of the strength at 56 days,

respectively. Tensile strength ranged between 0.43 and 0.98 N/

mm3 at 56 days. When the FC curing period was extended

from 7 to 28 days, there was an average 15.9% improvement in

bending strength. Between the ages of 28 and 56 days, how-

ever, there was a moderate rise of 13.0% on average. The

tensile findings strongly suggest that adding RF to FC mixes

improves the overall tensile strength improvement. On day
Fig. 3 e Diagram of the three-point bending test

arrangement.
28, the control FC specimen's tensile strength was 0.38 MPa.

The FC mixture's greatest tensile strength was accomplished

with the insertion of 6% RF. On day 28, the tensile strengthwas

0.88 MPa. In comparison to the control FC sample, there was

an approximate 132% improvement in tensile strength. When

RF is added to FC mixes, it assures that it will act as a fastener

when the FC develops microcracks. Therefore, when the

direct boundary strain is attained, the matrix elastic modulus

does not instantly decrease to zero. When fractures first

appear, the RF will absorb all strain before gradually trans-

mitting it to the binder matrix. At 8% fraction content of RF,

however, the tensile strength of FC decreased substantially. If

a substantial proportion of RF is in FC, the composites will

exhibit an uneven fiber distribution [77]. The loose fibrils on

the rugged surface augment the surface area required for
Fig. 5 e The tensile test was accomplished on a 100 mm in

diameter x 200 mm in height prism.
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Fig. 6 e Setup for a thermal conductivity test.

Fig. 7 e Slump flow of FC-RF composites.

Fig. 8 e Workability of FC with va
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effective interfacial bonding between the RF surface and

binder matrix, as well as mechanical intertwining and

bonding response.

3.6. Microstructure analysis

Themicrostructures of control FC and FC-RF composites were

investigated via scanning electron microscopy (SEM). Fig. 13

compares the SEM micrographs of 950 kg/m3 densities con-

trol FC with the specimen with the addition of a 6% fraction

content of RF. It is obvious that the control FC specimen has

larger voids, as shown in Fig. 13(a). The FC pore structure in-

cludes gel pores, micropores, and air voids. As FC is self-

flowing and self-compacting, it is unlikely to trap air since it

contains no coarse material. The size of voids has been

reduced by adding 6% RF to FC, as seen in Fig. 13(b). The binder

matrix and RF were interracially bonded when the RF was

embedded in the cementitious matrix. Fibrillated processes

and interfacial adhesion usually result in a dense matrix

around RF. In FC, the voids in thematrix producemicroporous

surfaces, which reduce interfacial bonding. Due to this, the

presence of RF in FC helps bridge force-crossing cracks and

prevent microcracks resulting from these cracks from form-

ing. Moreover, incorporating natural cellulose fiber into

cementitious matrixes increases the composite compaction

density and diminishes the growth and development of cracks

owing to their alteration of composite interface characteris-

tics and pore arrangement [78] and their function as stress

transference bridges when cracking occurs [79]. In contrast to

the composite reinforced with 6% RF (Fig. 13(b)), the unrein-

forced composite exhibits a low-compaction microstructure

and many cracks and pores. By introducing and dispersing

fibers into the base matrix, voids are filled. Therefore, the wall

effect is reduced when the presence of fine particles (sand)

establishes further cavities. Cementitious composites that are

reinforced with cellulose fiber have been reported to exhibit

similar behaviour [42].

3.7. Relationships between the strength's properties

Figs. 14e16 illustrate the relationships between compressive-

bending strengths, tensile-compressive strengths, and

bending-tensile strengths. These three figures demonstrate a
rying fraction contents of RF.
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Fig. 9 e Dry density of FC-RF composites.
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remarkable correlation between the strength characteristics

of FC reinforced with RF based on the data distribution. R-

squared values of 0.94 for compressive-bending strengths,

0.95 for compressive-tensile strengths, and 0.99 for tensile-

bending strengths indicate a significant linear relationship.

The finding of the correlation between the results is very

important to find the formula for a strong relationship with

high R2. A quantitative characterization relationship between

the strength parameters of the material can be obtained,

which further enriches the development of FC theory. On the
Fig. 10 e Compressive streng
other hand, most building codes present formulas for finding

concrete strengths theoretically, such as ACI. As well as, there

were many researchers focused on using theoretical formu-

lations to find the strengths and compare the outcomes from

the practical and theoretical formulations [80].

3.8. Thermal conductivity

FC thermal conductivity with several weight percentages of RF

is depicted in Fig. 17. With the addition of RF to FC, it is possible
th of FC-RF composites.
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Fig. 11 e Bending strength of FC-RF composites.
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to reduce its thermal conductivity. The optimal thermal con-

ductivity result was achievedwith an RF fraction content of 6%.

Control specimen thermal conductivities were 0.2362W/mK. In

the presence of 6% RF, the thermal conductivity of FC was

drastically lowered to 0.1857W/mK by adding 6% RF. Due to the

porous structure of FC with RF, which enables it to absorb heat,

the material conductivity reduces as the weight percent of RF

increases [81,82]. The incorporation of RF also adds to the
Fig. 12 e Tensile strength
reallocation and creation of smaller consistent void sizes, both

ofwhich contribute to FC's extremely low thermal conductivity.

Additional explanations for improving the thermal conductiv-

ity of FC-RF composites with the increase in RF fraction con-

tents include the redistribution and development of a smaller

uniform pore void due to the addition of the RF. Because of this

effect, more isolated pores were produced in the FC cementi-

tious matrix compared to the control, which contains no fiber
of FC-RF composites.
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Fig. 13 e SEM micrograph of 950 kg/m3 density FC.

Fig. 14 e Relationship between FC-RF composites' bending-compressive strengths.
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Fig. 15 e Relationship between FC-RF composites' tensile-compressive strengths.

Fig. 16 e Relationship between FC-RF composites' bending-tensile strengths.

Fig. 17 e Thermal conductivity of FC-RF composites.
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addition [83]. Additionally, the studies showed that RF could be

employed in cement-based materials, where it could reduce or

enhance the thermal conductivity of concrete. Furthermore, FC

produced from RF can save considerable energy when used in

sustainable construction. However, the FC sample with a frac-

tion of 8% of RF showed higher thermal conductivity than the

sample with a fraction of 6% of RF. Once FC reaches its opti-

mum fraction content, SF may be distributed non-uniformly in

FC-RF composites. Thermal conductivity may also be affected

by the location and relative orientation of the FC pores at 8%

weight fraction of RF, whichmay also contribute to the increase

in thermal conductivity [84]. RF presence in the FC sample

above the optimum weight fraction tended to create pores at

right angles to the direction of heat flow. Due to this, more heat

could pass through the pores, thereby increasing thermal

conductivity. Xie et al. [85] also observed a higher thermal

conductivity when pores were parallel to the heat flow

direction.
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4. Conclusions

The mechanical properties of FC-RF composites were exam-

ined by adding varying fraction contents of RF. According to

the findings from this study, the subsequent conclusions can

be drawn:

1. The slump flow reduced steadily as the RF fraction content

rose from 2% to 8%. The lowest slump flowwas attained by

incorporating an 8% fraction of RF into the FC mixture. By

boosting the intertwining and resistance between the RF

and filler, the inclusion of RF increases flow resistance and

diminishes flowability, resulting in a considerable reduc-

tion in slump flow diameter.

2. Due to the RF's relatively high specific gravity and rising

weight percentage, the FC-RF composite density exhibits a

growing trend; nonetheless, the difference was not statis-

tically significant.

3. Adding RF to the FC mixture increases its tensile, compres-

sive and bending strength. The highest strength properties

resulted from adding 6% RF to FC. Adding RF to FCmixtures

ensures that the FC will act as a fastener once microcracks

appear. As a result, the matrix modulus doesn't instantly

drop when the direct margin strain is met. When fractures

initially appear, the RF will completely absorb all strain

before gradually transferring it to the cementitiousmatrix.

4. Significant linear relationships exist between compressive

and bending strengths (R2 ¼ 0.94), compressive and tensile

strengths (R2 ¼ 0.95) and tensile and bending strengths

(R2 ¼ 0.99). It implies a correlation between the predictors'
differences and the response variable's variations.

5. FC's thermal conductivity was decreased when RF was

included. The porous structure of FC with RF allows it to

absorb heat, so its thermal conductivity improves with the

increased fraction content of RF in FC. It was largely due to

thedistributionandgrowthof smaller, consistentpores inFC

that resulted in its low thermal conductivity. Optimal results

were obtained with a fraction content of RF of 6% in FC.
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