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Mortar is subjected to high temperatures during fire attacks or when it is near heat-radiating equipment like
furnaces and reactors. The physical and microstructure of mortar were considerably altered by high tempera-
tures. In this investigation, the effects of elevated temperatures on the flexural and compressive strengths of
wood ash (WA) cement mortar modified with green-synthesised Nano titanium oxide (NT) were examined. In
order to produce mortar samples, the cement was replaced with 10% WA, and 1-3% NT by weight of binder were
added at constant water-binder ratio. The specimens were heated to 105, 200, 400, 600, and 800 °C with an
incremental rate of 10 °C per min in the electric furnace for a sustained period of 2 h to measure their strengths.
The machine learning algorithm of artificial neural networks with Levenberg-Marquardt backpropagation
training techniques of different network architectures was engaged to predict the compressive strength of WA-
cement-NT-based mortar produced. The findings showed that higher temperatures reduced compressive
strength after 400 °C and flexural strength after 200 °C. The mortar specimen with a 3% NT addition showed the
highest residual compressive strength increase, ranging from 18.75 to 27.38%. Compared to compressive
strength, flexural strength is more severely affected by high temperatures. The backpropagation training algo-
rithm revealed that each hidden layer displayed its unique strong prediction. However, Levenberg-Marquardt
backpropagation training technique of 7-10-10-1 network structures yielded the best performance metrics for
training, validation, and testing compared to 7-10-10-10 and 7-10-1 network architectures.

1. Introduction process, there was a considerable temperature gradient between the

exterior surfaces of the mortar or concrete and their interior cores,

Recently, more focus has been placed on how concrete and mortar
behave when temperatures are high. When a fire is present or when
mortar and concrete are in close proximity to heat-radiating machinery
like furnaces and reactors, they are subjected to high temperatures. High
temperatures are one of the elements that contribute to the deterioration
of mortar and concrete, which affects the resilience of concrete struc-
tures [1]. Mortar and concrete both underwent considerable physical
and chemical changes at high temperatures. According to Arioz [2], high
temperatures have a significant impact on cement paste, aggregate
characteristics, and the bond between the cement paste and aggregate in
mortar or concrete.

Because mortar and concrete have a poor coefficient of thermal
conductivity, heat movement through them is slow. Due to the delayed
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which caused further damage as the heat increased [3,4]. Hertz [5]
noted that calcium silicate hydrate released chemically bound water at
110 °C while microcracks started to appear in the material at 300 °C as a
result of dehydration of the matrix and thermal expansion of the ag-
gregates. The characteristics of the material (the type of aggregate and
cement used), the moisture level, the size of the fire, and the addition of
additives all have a significant impact on how severely mortar or con-
crete components are damaged by elevated temperatures. The goal of
this study is to determine the best way to incorporate additives into
mortar to minimize heat transmission.

To enhance the mechanical and durability properties of mortar and
concrete, agro-industrial waste products are utilized and the results are
promising. For examples, fly ash [6,7], rice husk [8-10], maize cob [11,
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12], wood ash [13-15], silica fume [16,17], shea nut shell ash [18],
cashew nutshell ash [19], and palm oil fuel ash [20] are the
agro-industrial waste materials that have been extensively researched.
For instance, Raheem and Adenuga [14] investigated the prospects of
wood ash as a partial replacement of cement in the production of con-
crete. The findings showed that the slump and compacting factor of
concrete containing wood ash beyond 10% replacement level becomes
more workable as the wood ash content increases, signifying that less
water is needed to make the concrete workable. Additionally, after 7-90
days of curing, concrete with 5 and 10% wood ash has greater strength
than the control. Yang et al. [15] studied the effects of wood ash on
properties of concrete and flowable fill. The addition of wood ash to RCC
was found to be beneficial for compaction and lowering the likelihood of
segregation. Additionally, the addition of wood ash to mixtures of
flowable fill can help improve flow, reduce bleeding and subsidence,
and provide controlled strength, particularly when mixed with class C or
class F fly ash. The use of wood ash in this study is justified, among other
things, by these factors.

In studies on elevated temperature, AbdulAwal and Shehu [21]
assessed the performance of high-volume palm oil fuel ash (POFA)--
based concrete when exposed to elevated temperature and concluded
that concrete containing 50% POFA performed better than typical or-
dinary Portland cement (OPC) concrete at high temperatures. Addi-
tionally, Demiral and Kelestemur [3] considered the impact of increased
temperature on the mechanical characteristics of concrete containing
silica fume and finely ground pumice (FGP). The study’s conclusions
demonstrated that concrete with a high amount of FGP had a low
compressive strength and low ultrasonic pulse velocity, which helped to
mitigate the extreme effects of high temperature on it. Kaya et al. [6]
investigated the behavior of class F fly ash based geopolymer mortars
subjected to elevated temperatures of 200, 400, 600, and 800 °C. It was
observed that there was an increase in the flexural and compressive
strengths of some geopolymer mortars after high temperature exposure.
In general, geopolymer mortars exhibited better performance at
elevated temperatures in comparison to control cement mortar mixture.
Donatello et al. [22] investigated the physical and chemical modifica-
tions brought about by high volume fly ash cement pastes being heated
to temperatures of up to 1000 °C. The study found that, in contrast to
OPC paste, fly ash-cement paste had greater residual strength. Aydin and
Baradan [23] looked into how fly ash and mortar pumice responded to
high temperatures. The findings demonstrated that adding fly ash to
pumice aggregate mortar improves the mortar’s resistance to high
temperatures.

In order to improve the performance of mortar and concrete at high
temperatures, the incorporation of nanoparticles has also been
researched. The effects of extreme heat on the characteristics of cement
mortars comprising heavyweight aggregates and nano silica were eval-
uated by Horszczaruk et al. [24]. According to the study, adding nano
silica up to 3% by weight improved cement mortar resilience at high
temperatures up to 200 °C, after which the effect is less noticeable.
Similarly, Ibrahim et al. [25] examined the fire resistance of a
high-volume fly ash mortar containing nano silica. The findings
demonstrated that mortar specimens containing fly ash and nano silica
had significant residual strengths after being exposed to 700 °C. Despite
numerous research on the effects of supplementary cementitious mate-
rials and nanomaterials on the mechanical properties of mortars exposed
to high temperatures, little or no study has been conducted on perfor-
mance of wood ash-cement based mortars exposed to elevated temper-
atures. Because of this, this study was conducted.

As a result of their artificial intelligence mimicking the neurons in
the human brain, machine learning algorithms (MLAs) are constantly
growing in the scientific and technological discourse. It creates a system
out of data sets and discovers patterns and connections between
different factors and groups of factors that would be difficult to carry out
manually [26]. There are three layers in the machine learning algo-
rithm: input, hidden, and output. Neurons from the hidden layer are
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mixed with input components in the input layer. However, the goal
factor that the hidden layer received makes up the output layer [26]. As
a result, the entire learning process takes place in the hidden layer,
where interconnections between neurons are discovered. Machine
learning algorithms have been used in numerous research to forecast
strength of mortar and concrete mixes subjected to elevated tempera-
tures [27-29]. Asteris et al. [27] predicted the cement-based mortars
compressive strength using machine learning techniques such as support
vector machine, random forest, decision tree, AdaBoost and k-nearest
neighbours. The results showed that the highest prediction accuracy was
obtained from the AdaBoost (Adaptive Boosting) and random forest
models. Bingol et al. [28] investigated the neural networks analysis of
compressive strength of lightweight concrete after high temperatures
(up to 700 °C). The compressive strength of lightweight and
semi-lightweight concretes with pumice aggregate exposed to high
temperatures was modelled using an artificial neural network (ANN)
technique. The target temperature, the ratio of pumice to aggregate, and
the length of the heating process were the model’s inputs, and its output
was the concrete’s compressive strength. The ANN’s projected values
were in accordance with the experimental data, and the outcomes
showed that the model could accurately estimate compressive strength.
Moreover, Najm et al. [29] studied the mechanical properties, crack
width, and propagation of waste ceramic concrete subjected to elevated
temperatures (100, 200, and 300 °C). The application of machine
learning models such as artificial neural networks (ANN) and multiple
linear regression (MLR) was employed to predict the compressive and
tensile strength of concrete. The linear coefficient correlation (R? and
mean square error (MSE) were evaluated to investigate the performance
of the models. Based on the computational analysis, it was found that the
developed MLR model shows higher efficiency than ANN in predicting
the compressive and tensile strength of Portland cement concrete, waste
ceramic concrete, and waste ceramic-fibre concrete. However, the
rapidly evolving technology is predicted to advance social modernisa-
tion to completely new heights. One such amazing development is
neural networks. Simulated neural networks (SNNs), also known as
artificial neural networks (ANNs), are a machine learning application
that simulates human-like artificial intelligence (AI) systems. As a result,
the ANN of machine learning algorithm was used in this study because of
its adaptability, effectiveness, fault toleration, multitasking, capacity to
function with incomplete knowledge, and the capacity to understand
intricate links between input and output patterns that would be chal-
lenging to model using traditional techniques [30,31].

This study examined the impact of high temperatures on the
compressive and flexural strength parameters of WA-cement-based
mortars modified with nano titanium (NT). In order to produce mortar
samples, the cement was replaced with 10% of WA, and 1, 2, and 3% NT
by weight of binder were added while keeping a constant water-binder
ratio (w/b) throughout all mixes. The specimens were subjected to tests
to ascertain their residual compressive and flexural strengths after being
heated in an electric furnace to temperatures of 200, 400, 600, and 800
°C. The artificial neural networks were engaged to train the mix design
datasets using and the Levenberg-Marquardt, Bayesian Regularization,
Scaled Conjugate Gradient backpropagation training algorithms. By
evaluating the metrics for measuring the efficacy of each technique, the
most effective algorithm for forecasting compressive strength of WA-
cement-NT-based mortar was discovered. Therefore, these results aid
in understanding how well wood ash-cement-based mortar performs at
high temperatures. Additionally, it offers the reference data for devel-
oping a framework for high temperature-resistance products utilizing
cement and nanomaterials.

2. Materials and method
2.1. Materials

The Cement (CEM 1, 52.5 N), wood ash (WA), and water used were
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sourced from South Africa. Tables 1 and 2 present the properties of
cement and WA used. According to Table 2, which lists the oxide com-
positions of the WA, the pozzolan is appropriate for usage because it has
a SiOy + AlpO3 + FeyOg3 content of 77.67% which is greater than 70%.
Instead of the exorbitantly expensive European Silica Standard Sand
(ESSS), South Africa Silica Sand (SASS) was utilized, consisting of di-
ameters 0.8-1.8 mm, 0.4-0.85 mm, and 600 mm in that sequence. Fig. 1
shows the SASS and ESSS grading analysis [32]. Fig. 1 shows that both
SASS and ESSS compared favourably, with fineness modulus (FM) of 3.5
and 3.45, respectively. The green-synthesised Nano-TiO, (NT) was
processed and obtained from Nigeria.

2.2. Synthesis of Nano-TiO»

The green-synthesised Nano-TiOz (NT) was biogenically produced
utilizing a Cola nitida pod extract. To make the extract, 1.5 g of the
milled pod was combined with 150 ml of distilled water and heat for an
hour in a water bath at 60 °C. The extract was centrifuged at 4000 rpm
for 20 min after filtering through Whatman No. 1 filter paper. After that,
the extract was added to 600 ml of TiO5 solution by mixing 0.5 g of TiOy
with 0.6 ml of water, producing the NT. The mixture was prepared at 30
+ 2 °C room temperature and left for approximately 2 h [32,35]. An
alteration in the solution’s colour that was seen visually until it stabi-
lized, as illustrated in Fig. 2, was used to detect the formation of
Nano-TiO (NT). Fig. 3 displays the morphologies of NT. NT particles are
spherical in shape, as shown in Fig. 3a by the scanning electron micro-
scope (SEM), and they are approximately 38 nm in size, as shown in
Fig. 3b by the transmission electron microscope (TEM).

2.3. Preparation of mortar specimens

There were five different types of mortar specimens made, with the
codes A, B, C, D, and E. CEM1 and SASS, which are exclusively used as
the control experiment, are included in Category A. A 90% of CEMI,
10% WA, and SASS are found in Category B. A 90% CEM1, 10% WA,
SASS, and 1, 2, and 3% NT, respectively, are present in Categories C, D,
and E. The mortar pastes were molded into 50 mm cubes for compressive
and 40 x 40 x 160 mm prisms for flexural strengths tests in accordance
with SANS 196-1:2006 [34] guidelines. The blended cement mixes were
prepared by mixing CEM1 and WA in the dry state for successive periods
of 5 min until homogeneity was achieved. The mortar was prepared with
a blended cement to sand ratio of 1:3 and a water/binder (w/b) of 0.5. It
had been established that 10% WA substitution with up to 3% NT at w/b

Table 1
Properties of cement used [33].

Chemical Composition Cement SANS 50197-1 [34]
Insoluble residue, % 2.0 <5.0
S03% 2.0 <4.0
LOL % 2,5 <5.0
Cl™ % <0.01 <0.1
Physical Properties
Setting times: 125 >45
Initial: minutes 2.5 No requirement
Final: hours
Specific Area (Blaine): m?/kg 400 No requirement
Compressive strength >20,0
>52.5
(Mortar prism EN 196-1):
At 2 days (MPa) 28
At 28 days (MPa) +58
Soundness: 1 <10
Le Chatelier Expansion (mm)
Densities:

Relative density + 3.14

Bulk density, aerated, kg/m> 1100-1300

Bulk density, as packed, kg/m® + 1500
Approximate Volume: 50 kg bag, # + 33
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Table 2
Oxide compositions of WA used.

Oxide composition Composition (%)

SiO, 65.10
Al,03 5.32
Fey03 7.25
CaO 10.56
MgO 2.75
SO3 1.62
NayO 1.04
K;0 3.36
CaCOg3 4.37
LOI 5.18
LSF 1.23
SR 4.43
AR 6.96
120
100
80
E‘] 60 —&— Prepared standard
sand (F.M = 3.5)
B3
40
—a— European standard
Sand (F.M = 3.45)
20
0 &
0.0 0.5 1.0 1.5 2.0 2.5

Mesh size (imm)

Fig. 1. Grading curves of SASS and ESSS [32].

Fig. 2. Preparation of Nano-TiO, (NT).

of 0.5 exhibited the best results for workability and strength properties,
and for structural purposes [14,36]; hence, this was employed in this
study. Since NT is a liquid, it was used as a percentage replacement for
water during mixing to avoid increasing the mix’s w/b, as recommended
by Berra et al. [37] and Horszczaruk et al. [24]. The mortar’s ingredient
mixing ratio is shown in Table 3.

Initially, the mortar samples were stored in humid air for 24 h at 20
°C and 90% relative humidity. After that, the samples were removed
from the moulds and cured for 56 days at 25 + 3 °C.

2.4. Heating and cooling regimes

On the 56th day of curing, the samples were removed from the curing
tank, cleaned, and weighed before being put into an electric oven to dry
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(a) SEM image

(b) TEM image

Fig. 3. Morphology of green-synthesised Nano-TiO, (NT) [32]. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web

version of this article.)

Table 3
Mix proportions of mortar samples.

Sample Sample designation Materials weight (g)
code
CEM WA  SASS NT Water
1
A 100% CEM 1+ SASS 450 1350 - 225
(Control)
B 90% CEM1 + 10% WA + 405 45 1350 - 225
SASS
C 90% CEM1 + 10% WA + 405 45 1350 4.5 220.5
1% NT + SASS
D 90% CEM1 + 10% WA + 405 45 1350 9.0 216
2% NT + SASS
E 90% CEM1 + 10% WA + 405 45 1350 135 2115

3% NT + SASS

for 24 h at a constant temperature of 105 + 5 °C. A furnace with a ca-
pacity of 1400 °C was used for elevated temperature studies. Specimens
were subjected to elevated temperatures of 105, 200, 400, 600, and 800
°C with an incremental rate of 10 °C per min in the furnace for a sus-
tained period of 2 h and then air annealed to achieve the thermal steady
state. After being gradually heated to the desired peak temperature, the
specimens were kept in the furnace for an extra hour to stabilize the
temperature on their surfaces. After 2 h of cooling at room temperature,
the samples were removed from the furnace and examined. This is
comparable to the approach taken by Ref. [24]. Calculations were made
to determine the specimens’ percentage weight loss as a result of the
high temperatures. The percentage weight loss was calculated using the
average mass loss of three specimens at each temperature, as given in
Eq. (1):

Mass at 20 °C — Mass at desired temperature

Mass at 20 °C x 100%

Weight loss (%) =
(€Y

2.5. Testing of mortar specimens

All specimens’ weights were measured prior to testing. The strength
measurement was carried out by using UTM by applying compressive
force at an incremental rate of 3 kN/s for each test at a particular tem-
perature. A mortar press, ToniPRAX, Model 2010, SN 834, was used to
exert stress on the prism specimen until it splits into two equal halves,
and the flexural strength was also measured. According to the guidelines
in SANS 196-1 [38], compressive and flexural strengths were evaluated
using an average of three mortar prisms and cubes, respectively.

2.6. Artificial neural networks

Using input and output training data, neural networks offer the

fundamental knowledge needed to identify the ideal operating point.
When the neural network is given an input and an output with a cor-
responding intended or target response, the training is known as su-
pervised training [39-41]. A crucial decision in choosing the overall
neural network architecture is the number of neurons in the hidden
layers [42]. Even when they do not immediately interact with the
environment, these layers have a substantial impact on the outcome.
Hence, the number of hidden layers and the number of neurons in each
of these hidden levels should be carefully analysed to avoid underfitting
and overfitting [42,43].

In order to provide consistent data, adequately address the problems
associated with multi-dimensional mapping, and have enough neurons
in its hidden layer, this work used backpropagation training techniques
with sigmoid hidden neurons and linear output neurons [41]. The
network was trained using Levenberg-Marquardt backpropagation al-
gorithm, which ultimately produced appropriate training method re-
sults. This benefit is substantial when working with large networks that
contain many neurons and can significantly shorten training and eval-
uation periods [44-48]. In addition, among all available training algo-
rithms in the prediction of mechanical properties, crack width, and
propagation of waste ceramic concrete subjected to elevated tempera-
tures, the Levenberg-Marquardt algorithm produced the best ANN
prediction [29]. These justify the rationale behind the selection of
Levenberg-Marquardt backpropagation algorithm used in this study.
However, the function of Levenberg-Marquardt backpropagation is
restricted by its computation, which uses the Jacobian, presuming that
performance is a mean or sum of squared errors [42]. Therefore, net-
works trained with these functions must either use the mean squared
error (MSE) or sum squared error (SSE) performance function.

As the number of hidden layers rises, the number of model co-
efficients does as well. To provide reliable and trustworthy estimations
of these model coefficients, a large amount of data is needed. These led
to the claim that an ANN with two hidden layers was sufficient to
accurately represent the majority of functions in the real world [49].
However, ANNs with more than two hidden layers have greater capacity
for data learning and testing, which raises prediction accuracy [50]. As a
result, this study applied the network architecture called ANN 7-n-1,
where the first character is the number of input nodes, n is the number of
hidden layers ranging from 1 to 3, and third character is the number of
output. To analyze how each network architecture’s prediction accuracy
improved for the compressive strength of mortar [51,50], the number of
neurons in each hidden layer was tested from 2 to 14.

In an ANN, training and test sets of data are created from the original
data set. The dataset is examined to determine the model’s accuracy
once a model has been fitted using a subset of the original dataset. Thus,
quality training data form the basis of ANN. It is therefore essential to
feed the model with high-quality, pertinent, consistent, comprehensive,
and uniform data [52]. The neural network was built using a total of
seven input variables as training datasets. They are cement, wood ash,
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silica sand, Nano titanium oxide, water, curing day, and temperature. A
target variable, otherwise called target dataset, is compressive strength.
Therefore, compressive strength was predicted based on the training
datasets. A 70% of the samples were used for training, 15% for valida-
tion, and 15% for testing, in keeping with other pertinent studies on
ANNs [53-64]. The mean square errors (MSE) of the training, the vali-
dation, and the testing are tracked as several trials are done for the
training with changing numbers of neurons in the hidden layer, starting
with a low number and progressively increasing it. The hidden layer’s
neuron count is calculated using the training, validation, and testing sets
of data with the lowest mean square errors (MSE) and highest coefficient
correlation (R) [53,54,65]. Due to the various starting conditions and
sampling, training repeatedly will produce a diversity of results. How-
ever, by developing a function and giving the ANN a random stream, this
randomness was prevented. The ANN was engaged using MATLAB
R2021a version 9.10.0 1602886. Fig. 4 shows the best neural network
architecture. The correlation coefficient (R) and mean square error
(MSE) were the performance indicators used in this investigation. The
forecast’s accuracy increases as R-value approaches 1. However, the
forecast is more accurate when the MSE is less than 0. The performance
metrics are illustrated in Eqns. (2) and (3). The created network model
was used to make new predictions based on untrained data. This is
important since a model has to be able to forecast new data that has not
yet been observed or trained.

S -y

R=1-5 — 2
30 - 5)
1 . pred true 2

MSE = Py (Yi - Y ) 3

i=1

Tables 4 and 5 present the range and statistical description of data,
respectively. Three samples from each of the specimens C, D, and E at 1,
2, and 3% NT, respectively, are included in the data. The dataset has a
single target, which is compressive strength (CS). The inputs comprise
seven arguments: cement, wood ash (WA), South Africa Silica Sand
(SASS), Nano titanium oxide (NT), water, curing day (CD), and tem-
perature (Temp).

3. Results and discussion
3.1. Weight loss

Fig. 5 shows the percentage weight loss of mortars due to the impact
of high temperatures. As can be seen from Fig. 5, the weight loss

Cement
WA
SASS
NT
Water
CD

Temp
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Table 4
Range of input and target data.

Constituents Data type Unit Minimum value Maximum value
Cement Input g 405 405
WA Input g 45 45
SASS Input g 1350 1350
NT Input g 4.50 13.50
Water Input g 211.50 220.50
Temp Input °C 20 800
CD Input day 56 56

(& Output MPa 16.60 50.21

Table 5

Statistical description of data.
Statistics NT (g) Water (g) Temp (oC) CS (MPa)
Mean 9 216 346.25 38.39
Median 9 216 200 42.22
Mode 4.5 220.50 20 -
Standard deviation 3.71 3.71 283.49 10.91
Count 48 48 48 48

—=—100% CEM1 + SASS

—6—90% CEMI + 10% WA + SASS

—6—90% CEM1 + 10% WA + 1% NT + SASS
90% CEM1 + 10% WA + 2% NT + SASS

15 —*%—90% CEM1 + 10% WA + 3% NT + SASS

10

Weight loss (%)

20 105 200 400 600 800
Temperature (°C)

Fig. 5. Percentage weight loss of WA-cement-NT-based mortars at different
temperatures.

increases as the temperature rises. At 105, 200, 400, 600, and 800 °C,
specimen A experienced weight losses of 6.5, 7.6, 9.7, 11.8 and 12.2%,
respectively. The weight loss increased from 7.6% at 105 °C to 12.6% at
800 °C with WA added to CEM1 in specimen B. The addition of 1% NT to

Cr— ¢ cs

Fig. 4. Best neural network architecture (7-10-10-1).
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the binder somewhat lessened the weight loss in specimen C, with the
percentage falling from 6.5% at 105 °C to 12.1% at 800 °C. Compared to
specimens A, B, and C, specimens D and E have greater percentage of
weight loss. The release of bound water in the mortar is thought to be the
cause of the weight loss, which increases in percentage as temperatures
rise. The evaporable water in the mortar is forced out as the temperature
rises, resulting in a loss of mass for the specimens [66,67]. Cement-based
composites exhibit considerable mass loss at temperatures above 400 °C
[68]. Fares et al. [69] also supported this assertion, where at a high
temperature of 400 °C, all the specimens in this investigation experi-
enced a weight loss of roughly 10%. All mortar specimens experienced
greater weight losses after the temperature reached 400 °C. With 1% NT
added, Specimen C had the smallest percentage improvement in weight
reduction.

3.2. Flexural strength

Fig. 6 illustrates the flexural strength of WA cement mortars incor-
porated with NT when subjected to high temperatures. The flexural
strength typically increased up to 200 °C and decreased after that up to
an enhanced temperature of 800 °C. At 600 and 800 °C, flexural strength
started to drop more quickly. After drying samples at 105 °C for 24 h, the
flexural strength rose considerably. As temperature rose from 20 to 105
°C, the strength of specimens A, B, C, D, and E increased from 7.67 to
8.62 MPa, 5.75-8.09 MPa, 6.38-7.57 MPa, 6.25-6.97 MPa, and
5.90-5.93 MPa, respectively. Additionally, at 200 °C, slight increases
were seen. These outcomes were comparable to those mentioned by
Horszczaruk et al. [24]. There was a decrease in strength after the
temperature reached 200 °C. Specimens A, B, C, D, and E recorded 7.11,
6.06, 5,53, 5.91, and 6.01 MPa at 400 °C and 2.31, 2.08, 1.98, 2.25, and
2.16 MPa at 600 °C, respectively, indicating a very considerable strength
loss between 400 and 600 °C. At 800 °C, none of the specimens’ flexural
strengths were greater than 1.00 MPa.

The hardened mortar samples developed micro-cracks because of
burning at high temperatures, which reduced their flexural strength.
According to Heikal et al. [70], when cementitious composites are
exposed to temperatures above 400 °C, micro-cracks begin to form and
intensify as the temperature rises, lowering the flexural strength of the
material. The majority of cement matrix hydration products completely
disintegrate about 800 °C [71]. According to Morsy et al. [72], the
development of micro-cracks is what causes the flexural strength to drop
as temperature rises from 250 to 800 °C. Additionally, the driving out of
free water and a portion of the cement mortar’s hydration water due to
high temperatures might be responsible for the decrease in flexural
strength [72]. Basically, the decrease in flexural strength due to increase
in temperature from 400 to 800 °C is due to dehyroxylation of Ca(OH),.
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The increased micro-cracking is the result of high thermal stresses,
which are generated due to the induced temperature gradients up to 800
°C. The addition of NT to WA cement mortar has no appreciable impact
on flexural strength at high temperatures.

3.3. Compressive strength

Fig. 7 displays the compressive strength of WA cement mortar
specimens modified with NT following exposure to high temperatures.
As shown in Fig. 6, the compressive strength of each mortar specimen
grew gradually up to the point of 400 °C before abruptly decreasing
between that point and 800 °C. These findings are consistent with the
pertinent study’s results, which showed that the compressive strength of
mortar made of nano-metakaolin and cement increased before and after
exposure to increasing temperatures of 200-400 °C, but fell above 400
°C [72]. The increase in compressive strength up to 400 °C may be
attributed to the additional hydration of unhydrated cement grains
because of steam effect under the condition of the so-called internal
autoclaving effect [72]. However, the decrease in compressive strength
with increase in temperature above 400 °C may be due to the dehy-
dration of calcium hydroxide, generating CaO and H0. Strength losses
over 400 °C, are mainly caused 