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a b s t r a c t 

Recycled agricultural wastes are being used in the building and construction sector as ce- 

ment additives as a result of the environmental impact of cement production. Agricultural 

byproducts, on the other hand, are naturally occurring radioactive elements that could ex- 

pose people and the environment to radiation dangers. As a result, this research assesses 

the radiological characteristics of agricultural byproducts utilized as building and construc- 

tion materials with special attention to their activity concentrations ( 226 Ra series, 232 Th se- 

ries, and 40 K isotopes). The levels of alpha and gamma radiation were measured via the ac- 

tivity concentrations. Alpha and gamma radiation (output data) and activity concentrations 

(input data) were trained using artificial intelligence techniques, and the model’s effective- 

ness was evaluated. In terms of the metrics of the model, the linear regression algorithm 

outperformed other algorithms. Finally, none of the agricultural byproducts studied are at 

risk from alpha and gamma radiation. Thus, the findings provide the reference information 

needed to build a framework for radiation monitoring of surveyed agricultural byproducts. 

© 2023 The Author(s). Published by Elsevier B.V. 
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Introduction 

The production of cement demands high energy and emits high carbon dioxide into the atmosphere [1] . Due to the

chemical processes involved in converting limestone-based raw materials into cement clinker, roughly 110 kwh of electricity 

are used and 0.8 tons of carbon dioxide are released into the atmosphere for every ton of cement produced [2–5] . As a

result, there is a possibility for lowering the emissions of carbon dioxide in the form of substituting agricultural waste ashes

for cement [ 3 , 6 , 7 ]. Several agricultural waste products, including rice husk ash [ 8 , 9 ], cashew nut shell ash [10–12] , shea nut

shell ash [13] , corn cob ash [14–16] , sugarcane bagasse ash [ 7 , 17 ], coconut shell ash [18] , rice straw ash [19] , wood ash [20] ,

coconut fiber ash [ 21 , 22 ], egg shell powder [22] , groundnut husk ash [23] , and others, have been used in the manufacture of

sustainable concrete with promising results as a partial replacement for cement. However, agricultural waste ashes utilized 

as building and construction materials are considered naturally occurring radioactive materials (NORMs), which, in very little 

amounts, can be dangerous for the environment and human health [24–29] . 
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Radiation is energy from radioactively decaying unstable atoms that travels from its source as energy waves or electrified 

particles [29–31] . Ionizing radiation and non-ionizing radiation are the two categories of radiation, according to the United 

States Environmental Protection Agency (USEPA) [29] . The energy of non-ionizing radiation is sufficient to move the atoms 

inside a molecule, but insufficient to expel the electrons from atoms. Microwaves, visible light, and radio waves are some 

examples. Although ionizing radiation such as x-rays, alpha, beta, and gamma rays possess sufficient energy to take electrons 

from atoms [29] . Ionizing radiation affects human atoms and poses a health risk by damaging tissues and deoxyribonucleic 

acid (DNA) in genes [29] . The heaviest radioactive elements including uranium, radium, and polonium decay to produce 

alpha particles, which are released as alpha radiation. Consequently, the exposure’s effects on health through inhalation, 

ingestion, or physical contact through cuts are dangerous [29] , [29] .[29] The primary radiation sources in building materials

are naturally occurring radionuclides (NORs), particularly the potassium ( 40 K) isotope and the radium ( 226 Ra) and thorium 

( 232 Th) series [24–28] . This is supported by pertinent research, which revealed that the primary sources of human exposure

to 226 Ra, 232 Th, and 

40 K are found in building and construction materials [32–34] . The radiation from 

226 Ra, 232 Th, and 

40 K’s

short-lived offspring radionuclides is absorbed by more than 85% of the world’s population. In the constructed environment, 

these radionuclides continuously decay [ 28 , 35 , 36 ]. Therefore, from the perspective of alpha and gamma radiation, it is crucial

to work toward assessing and forecasting the radiological health risk of building inhabitants. However, despite extensive 

research on the radioactivity of materials, no accurate modeling of the alpha and gamma radiation of agricultural wastes 

used as construction materials based on artificial intelligence has been done. 

Artificial intelligence (AI) is a general term for technology that develops intelligent systems and inspires human intellect 

to complete a task or achieve a goal through adaptable transformation [37] . To this purpose, it is imperative to stress the

use of AI concepts and methodologies in science, technology, engineering, and management, particularly for the prediction 

of material properties, which can save time and resources [38] . Machine learning algorithms (MLAs), one of the subsets 

of AI, are gaining popularity in scientific and technological discourse due to their artificial intelligence that resembles the 

neurons in the human brain. From data sets, it constructs a system and produces patterns and correlations between various 

components and groups of factors that would be challenging to carry out [39] . Numerous studies have used machine learn-

ing algorithms of AI to forecast strength and develop concrete mixes. These include Ensemble Trees (ET), Linear Regression 

(LR), Regression Trees (RT), Support Vector Machine (SVM), Gaussian Process Regression (GPR), and Artificial Neural Net- 

works (ANN) [40–47] . Some of these applications offer quick estimation and have improved efficiency and precision. The AI 

of MLA’s use in medicine with high accuracy on a dataset with complex reports is another crucial component of the tech-

nology [ 4 8 , 4 9 ]. Despite the extensive research on artificial intelligence, no study has used AI to foresee alpha and gamma

radiation from agricultural outputs; this is why this current study is conducted. 

This study emphasizes the specialized functions of agricultural byproducts while providing a thorough review of them. 

The alpha and gamma rays were evaluated using the activity concentrations. Additionally, the alpha radiation data was 

trained and tested based on 

226 Ra utilizing the SVM, ANN, ET, RT, GPR, and LR of machine learning algorithms, whereas

the gamma-ray data was trained and evaluated based on three input components ( 226 Ra, 232 Th, and 

40 K). K-fold validation

was applied to prevent overfitting and underfitting. The best algorithm for predicting the alpha and gamma radiation of 

agricultural byproducts was chosen by comparing the performance parameters of each MLA with one another. As a result, 

these findings aid in the identification and forecasting of radiation dangers to human health for people living in buildings 

made with these byproducts. Additionally, it suggests employing agricultural byproducts that contain naturally occurring 

radionuclides and gives the reference data for creating a framework for radiation monitoring. 

Dataset 

The electronic source, Science Direct and Web of Science, yielded a dataset. The two most dependable and powerful 

databases for data collection are Web of Science and Science Direct [50] . Identification of other keywords, including "agri-

cultural byproducts," "building materials," and "construction materials", were also searched. To optimize data collection, per- 

tinent NORM data were acquired from United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 

Naturally Occurring Radioactivity in the Nordic Countries (NORDIC), European Commission (EC), and the Canadian Nuclear 

Safety Commission (CNSC). By carefully locating, evaluating, examining, and reading the articles and references, the data de- 

pendability and repeatability were regulated and validated. Superfluous documents were removed using a variety of filtering 

strategies. The 226 Ra, 232 Th, and 

40 K are the input parameters. The target variables (alpha radiation and gamma radiation), 

also known as the prediction factors, are reliant on the input values. 

Radiation 

Alpha index (I α) 

The radon-induced alpha radiation that building materials create is determined by the alpha index. Building materials 

are affected by radon exhalation, which results in an indoor concentration of more than 200 Bq m 

−3 and a specific activity

of 226 Ra (CRa, Bq kg −1 ) greater than 200 Bq kg −1 [51–53] . However, with a specific activity of 226 Ra below 100 Bq kg −1 ,

radon exhalation could not produce an indoor concentration above 200 Bq m 

−3 . Nordic [51] therefore advises the specific

activity of 226 Ra below 100 Bq kg −1 and excludes the upper limit. But the upper limit of 200 Bq kg −1 was agreed upon by
2 
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Table 1 

Alpha and gamma radiation and AEDV ranges. 

I α and I ɤ AEDV (mSvy −1 ) Material types Remark 

≤ 0.5 0.3 Bulky Satisfactory material 

≤ 1 1 Bulky/Building Good material 

≥ 1 ≥ 1 Superficial Unsuitable material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

both the European Commission (EC) [54] and the International Commission on Radiation Protection (ICRP) [55] . Therefore, 

Eq. (1) [ 27 , 54-62 ] provides the alpha index: 

I ∝ = 

C Ra 

200 Bq k g −1 
≤ 1 (1) 

Gamma index (I γ ) 

Given that the activity concentrations (C) of 226 Ra, 232 Th, and 

40 K have the same gamma dose rates of 300 Bq kg −1 ,

200 Bq kg −1 , and 3000 Bq kg −1 , respectively, the gamma index is proposed to analyze and control exposure to gamma

radiation (gamma rays) produced from the NORMs [ 35 , 36 , 54 ]. As a result, Eq. (2) provides the relationship between the

gamma index and the activity concentrations (2): 

I γ = 

C Ra 

300 Bq k g −1 
+ 

C T h 
200 Bq k g −1 

+ 

C K 
30 0 0 Bq k g −1 

≤ 1 (2) 

Table 1 shows the relationship between radiation indices from building materials and annual equivalent dose values 

(AEDV) [ 24 , 28 , 36 , 54 , 63 , 64 ]. The value of alpha and gamma radiation from naturally occurring radioactive elements is clearly

a maximum of unity as shown by Eqs. (1) and (2) . When the maximum values of alpha and gamma radiation, which corre-

spond to an AEDV of 0.3 and 1 mSvy-1, respectively, are reached, a material is stated to be appropriate for use. However, any

material with an AEDV more than 1 mSvy-1 and an alpha and gamma radiation value more than 1 is considered unsuitable

for usage [54] . 

Artificial intelligence 

Advanced statistical modeling, machine learning, and deep learning are all subfields of artificial intelligence [ 37 , 65 ].

This study makes use of a machine learning technique since it has been used to model a large number of publications

that have been published on concrete manufacturing that includes recycled agro-industrial wastes, yielding high precision 

[ 38 , 46 , 47 , 66-72 ]. An accurate prediction or result is provided by a machine learning algorithm (MLA), which learns input

parameters without the need for explicit programming [73] . Since the model is trained using the input variables, the input

parameters are referred to as training data [42] . For this investigation, the input data for gamma-ray data were 226 Ra, 232 Th,

and 

40 K, and 

226 Ra for alpha. Then, the alpha and gamma indexes were selected as the target variables. Then, using MATLAB

R2021a version 9.10.0 1,602,886, machine learning algorithms such as ANN, ET, GPR, LR, RT, and SVM were applied. These al-

gorithms were used because they provide more effectiveness, strong precision, high tolerance for erroneous data, and quick 

estimation for a variety of modeling tasks [ 40 , 41 , 43-45 ]. Additionally, the radiation was trained, verified, and tested using

SVM, ANN, ET, LR, RT, and GPR machine learning algorithms utilizing three input variables for gamma-ray ( 226 Ra, 232 Th, and

40 K) and two for alpha ( 226 Ra). The algorithm with the best performance metrics was identified through comparison of

these MLAs. Fig. 1 displays the entire process. 

The initial data set in machine learning is split into training and test sets. To fit the model, a portion of the original

dataset is used for training, while the full dataset is used for testing the model’s correctness. Good training data are hence

the basis of machine learning. The model must therefore be trained using high-quality, pertinent, consistent, uniform, and 

comprehensive data [42] . Overfitting and underfitting issues, however, are the most frequent difficulties with the machine 

learning model. When a model overfits because it can’t effectively generalize to the new data set, its accuracy, performance, 

and efficiency suffer. In contrast, underfitting happens when a model is unable to recognize the fundamental trend in the 

data set. As a result, Kim [73] contended that generalizing a model created via MLA is necessary to avoid overfitting and

underfitting by lengthening the model’s training period or increasing the number of variables in the data set. In order to

avoid data overfitting, data validation is necessary. The model’s performance is typically validated and enhanced to achieve 

this using a cross-validation procedure (a 10-fold) [ 39-45 , 73 , 74 ]. The bias brought on by the random sampling of the training

set is reduced by this method. It was used for the meta-analysis and compares the efficacy of several expected modeling

strategies. Another key element is the fact that 10-fold cross-validation evenly divides the real datasets into 10 subsets, 

improves learning with 9 subgroup, and confirms the model with 1 subgroup [75–77] . After completing the process suc-

cessfully 10 times, an accuracy of 10 times on average is acquired. According to Kohavi [76] , the 10-fold cross-validation

method exemplifies the generalizability and dependability of model performance. 
3 
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Fig. 1. Machine learning algorithms framework for predicting alpha and gamma radiation. 

 

 

 

 

 

 

This work used 10-fold cross-validation to achieve higher model performance by generalizing an independent dataset. 

All used methods are supervised machine learning algorithms that can accurately predict all input data used as training. 

To the fullest extent possible, 24 sub-techniques from 6 various supervised machine learning algorithms were used in this 

investigation. Nevertheless, the most effective results from each supervised machine learning were identified. 

The effectiveness of any algorithm is gauged using performance indicators, also called error metrics. As a result, calculat- 

ing the error rate between the predicted and real variables is crucial for the effectiveness of the MLA employed. This study

employed the R 

2 , MAE, MSE, and RMSE as its four different error measures. The strength of the prediction increases with R 

2 .

However, the accuracy of the prediction improves with decreasing MAE, MSE, and RMSE [78] . The error metrics are given in

Eqs. (3) - (6) : 

R 

2 = 1 −
∑ n 

i =1 

(
y pred 

i 
− y true 

i 

)2 

∑ n 
i =1 

(
y pred 

i 
− y true 

)2 
(3) 

MAE = 

1 

n 

n ∑ 

i =1 

(
y pred 

i 
− y true 

i 

)
(4) 

MSE = 

1 

n 

n ∑ 

i =1 

(
y pred 

i 
− y true 

i 

)2 

(5) 

RMSE = 

√ 

1 

n 

n ∑ 

i =1 

(
y pred 

i 
− y true 

i 

)2 

(6) 

Results and discussion 

Agricultural byproducts 

Due to the dearth of research on the radiological characteristics of recycled agricultural wastes, only rice husk ash (RHA), 

mussel shell, palm oil clinker (POC), and palm oil fuel ash (POFA) were retrieved from the electronic sources. Their radiolog-

ical characteristics are displayed in Table 2 . The results showed that the activity concentrations of the surveyed agricultural 

byproducts were below the respective world population-weighted averages of 33, 45, and 420 Bq kg −1 for 226 RA, 232 Th, 

and 

40 K [ 35 , 36 ]. In contrast, RHA, POC, and POFA’s 40 K weighted averages were 16.83%, 28.08%, and 6.04% greater than the

global population-weighted averages [ 35 , 36 ]. However, the weighted-average of 500 Bq kg −1 for 40 K recommended by EC

[54] and NEA-OECD [61] was met. All byproducts showed similar results, with alpha and gamma radiation levels below 1, 

as suggested by UNSCEAR [ 35 , 36 ]. 
4 
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Table 2 

Radiological properties of agricultural byproducts studied. 

C (Bq kg −1 ) 

Material 226 Ra 232 Th 40 K I γ I α Reference 

RHA 

Average 

6 

6 

16 

16 

505 

505 

0.27 

0.27 

0.03 

0.03 

Sas et al. [79] 

MS 14.1 8.5 137 0.14 0.07 Alam et al. [80] 

Alam et al. [80] 

Alam et al. [80] 

Alam et al. [80] 

Alam et al. [80] 

Alam et al. [80] 

MS 9.9 6.1 96.2 0.10 0.05 

MS 9.8 5.7 69.8 0.08 0.05 

MS 12.2 5.6 110 0.11 0.06 

MS 8.8 5.3 105 0.09 0.04 

MS 8.4 4.4 81.4 0.08 0.04 

MS 0.5 1.3 198 0.07 0.00 Krmpotic et al. [81] 

Krmpotic et al. [81] 

Krmpotic et al. [81] 

Krmpotic et al. [81] 

MS 8.5 4.7 389 0.18 0.04 

MS 2.0 2.3 188 0.08 0.01 

MS 5.7 6.9 377 0.18 0.03 

Average 7.99 5.08 175 0.11 0.04 

POC 6.89 4.46 571 0.24 0.03 Karim et al. [82] 

Karim et al. [82] 

Karim et al. [82] 

Karim et al. [82] 

Karim et al. [82] 

Karim et al. [82] 

POC 6.90 4.63 571 0.24 0.03 

POC 5.85 4.40 573 0.24 0.03 

POC 7.01 4.87 599 0.24 0.04 

POC 5.56 4.21 604 0.24 0.02 

POC 6.23 4.76 587 0.24 0.03 

Average 6.41 4.56 584 0.24 0.03 

POFA 8.16 6.14 441 0.20 0.04 Karim et al. [82] 

Karim et al. [82] 

Karim et al. [82] 

Karim et al. [82] 

Karim et al. [82] 

Karim et al. [82] 

POFA 7.74 6.41 450 0.21 0.04 

POFA 7.95 7.13 457 0.21 0.04 

POFA 8.75 7.98 421 0.21 0.04 

POFA 9.03 7.56 498 0.23 0.05 

POFA 6.98 6.91 413 0.19 0.03 

Average 8.10 7.02 447 0.21 0.04 

Global 33 45 420 ≤ 1 ≤ 1 ∗UNSCEAR [ 35 , 36 ] 

∗ UNSCEAR: United Nations Scientific Committee on the Effects of Atomic Radiation. 

 

 

 

 

 

These findings suggest that alpha and gamma radiation from these byproducts (RHA, MS, POC, and POFA) do not provide 

a concern to people who utilize them. As a result, with caution, they can be used as construction materials. 

(World Population-Weighted Average Value). 

Machine learning algorithms of artificial intelligence 

The performance metrics for gamma and alpha radiation for each of the six different machine learning techniques are 

shown in Tables 3 and 4 . Six trained algorithms using 24 different models generated test and validation outputs. Comparing

the linear regression technique to other algorithms, Table 3 demonstrates clearly that it produced the best metrics for pre-

dicting the gamma rays of agricultural byproducts. The outcomes from the stepwise and robust linear regression techniques 

had the lowest RMSE, MSE, and MAE, as well as 100% R 

2 among the linear regression models. When it came to test error,

the stepwise linear regression method excelled as well. Table 4 illustrates the performance metrics for the linear regression 

method that showed the best ability to predict the alpha radiation. 

Willmott and Matsuura [78] argued that error scales-for which MAE is a useful generalization of the extent of errors- 

are responsible for the variation in values. This claims that different models are compared and assessed using MAE based 

on how well they handle errors. As a result, Table 3 ’s results revealed that LR (interaction) technique performance metrics

were 73.56%, 40.50%, 84.85%, 14.19%, and 68.16% more error-free for validating datasets than those of RT (fine trees), SVM 

(linear), ET (boosted trees), GPR (squared exponential), and ANN (wide) techniques, respectively. The gamma ray testing of 

agricultural byproducts using the LR technique was also 76.71%, 38.76%, 79.19%, and 3.71% more accurate than using the RT 

(fine trees), SVM (linear), ET (boosted trees), and GRP (squared exponential) algorithms. However, ANN (wide) outperformed 

LR method by 76.71% in terms of testing error. 

Table 4 demonstrates that the LR, GRP, and ANN achieved similar performance metrics for validating and testing the 

datasets used to estimate the alpha radiation of agricultural products. But when compared to other algorithms, the LR 

(robust) method was 60.25%, 29.86%, and 68.17% more accurate for validating the expected outputs than RT (fine trees), SVM 

(linear), and ET (bagged trees) approaches. The LR (robust) approach also produced performance measures that were 30.10%, 

28.04%, and 62.30% more accurate than those of the RT (fine trees), SVM (linear), and ET (bagged trees) algorithms for

testing datasets of agricultural byproducts. One factor that contributed to the LR algorithm’s superior performance metrics 

was the linear correlation between activity concentrations and activity concentration indices (gamma and alpha radiation). 

Therefore, compared to RT, SVM, ET, and GPR, the LR algorithm, a subset of artificial intelligence, delivers perfect regression 

when used to predict alpha and gamma radiation from agricultural byproducts. After analyzing the literature, it was found 
5 
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Table 3 

Performance metrics for machine learning algorithms used in predicting gamma rays from agricultural byproducts. 

Validation results Test results 

MLA RMSE R 2 MSE MAE Pred. time 

(obs/ sec ) 

Training 

time ( sec ) 

RMSE R 2 MSE MAE Model 

LR 0.0047258 1.00 0.0000223 0.0038532 240 7.3013 0.0037906 1.00 0.00001437 0.0031470 Linear 

0.0033464 1.00 0.0000180 0.0035311 480 1.3950 0.0033464 1.00 0.00001120 0.0027757 Interaction 

0.0047564 1.00 0.0000226 0.0038833 490 2.097 0.0037913 1.00 0.00001437 0.0031474 Robust 

0.0044895 1.00 0.0000202 0.0037609 410 3.0923 0.0033573 1.00 0.00001127 0.0027694 Stepwise 

RT 0.0177370 0.93 0.0003146 0.0133540 460 3.4588 0.0157150 0.94 0.00024697 0.0119200 Fine tree 

0.0687150 0.00 0.0047218 0.0612040 320 0.9184 0.0653710 0.00 0.00427330 0.0578830 Medium tree 

0.0687150 0.00 0.0047218 0.0612040 730 0.7775 0.0653710 0.00 0.00427330 0.0578830 Coarse tree 

SVM 0.0081136 0.99 0.0000658 0.0059349 430 2.3007 0.0055962 0.99 0.00003132 0.0045321 Linear 

0.0095539 0.99 0.0000913 0.0079161 640 0.8010 0.0079116 0.99 0.00006259 0.0072201 Quadratic 

0.0150340 0.95 0.0002260 0.0114800 700 0.8138 0.0079815 0.99 0.00006370 0.0070985 Cubic 

0.0467010 0.54 0.0021809 0.0348680 560 0.8166 0.0096385 0.98 0.00009290 0.0094871 Fine gaussian 

0.0294700 0.82 0.0008685 0.0161210 480 1.6116 0.0080667 0.98 0.00006507 0.0072406 Medium gaussian 

0.0287630 0.82 0.0008273 0.0197800 430 0.7307 0.0167790 0.93 0.00028152 0.0128280 Coarse gaussian 

ET 0.0289110 0.82 0.0008359 0.0233100 170 5.6624 0.0167170 0.93 0.00027946 0.0133350 Boosted trees 

0.0519570 0.43 0.0026995 0.0431080 210 3.8397 0.0543060 0.52 0.00020526 0.0381760 Bagged tress 

GPR 0.0048762 0.99 0.0000238 0.0041151 490 2.7398 0.0034376 1.00 0.00001182 0.0028825 Squared exponential 

0.0076174 0.99 0.0000580 0.0053750 680 0.9090 0.0034270 1.00 0.00001174 0.0028699 Matern 5/2 

0.0194780 0.92 0.0003794 0.0094158 710 0.9672 0.0000365 1.00 0.00000000 0.0000296 Exponential 

0.0048762 0.99 0.0000238 0.0041151 520 1.3103 0.0034376 1.00 0.00001182 0.0028825 Rational quadratic 

ANN 0.0462930 0.55 0.0021430 0.0262900 340 7.5464 0.0009995 1.00 0.00000010 0.0007025 Narrow 

0.0721010 −0.1 0.0051985 0.0317830 630 1.5909 0.0009888 1.00 0.00000010 0.0006564 Medium 

0.0172000 0.94 0.0002959 0.0110910 620 1.1963 0.0009872 1.00 0.00000010 0.0006466 Wide 

0.0477630 0.52 0.0022813 0.0239780 540 2.0047 0.0009818 1.00 0.00000010 0.0007172 Bilayered 

0.0912730 −0.8 0.0083308 0.0330390 470 1.8822 0.0009816 1.00 0.00000010 0.0007909 Trilayered 
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Table 4 

Performance indicators of machine learning algorithms used in predicting alpha radiation from agricultural products. 

Validation results Test results 

MLA RMSE R 2 MSE MAE Pred. time 

(obs/ sec ) 

Training 

time ( sec ) 

RMSE R 2 MSE MAE Model 

LR 0.0031574 0.96 0.0000010 0.0024833 210 7.2911 0.0029373 0.96 0.00000863 0.0023250 Linear 

0.0031574 0.96 0.0000010 0.0024833 650 1.0447 0.0029373 0.96 0.00000863 0.0023250 Interaction 

0.0031441 0.96 0.0000010 0.0024918 590 1.8010 0.0029391 0.96 0.00000863 0.0023097 Robust 

0.0031574 0.96 0.0000010 0.0024833 490 2.0911 0.0029373 0.96 0.00000863 0.0023250 Stepwise 

RT 0.0092089 0.65 0.0000848 0.0062681 550 6.7771 0.0059709 0.83 0.00003565 0.0033043 Fine tree 

0.0156390 −0.0 0.0002446 0.011829 890 0.7998 0.0146280 0.00 0.00021399 0.0108880 Medium tree 

0.0156390 −0.0 0.0002446 0.011829 840 0.6228 0.0146280 0.00 0.00021399 0.0108880 Coarse tree 

SVM 0.0044552 0.92 0.0000199 0.0035525 590 1.7987 0.0039842 0.93 0.00001587 0.0032097 Linear 

0.0076903 0.76 0.0000591 0.0050221 580 0.9553 0.0061755 0.82 0.00003814 0.0050390 Quadratic 

2.5864000 – 6.6895000 1.0667000 580 10.049 3.0869000 – 9.52900000 2.2971000 Cubic 

0.0144420 0.15 0.0002086 0.0090161 550 1.0352 0.0102330 0.51 0.00010472 0.0057172 Fine gaussian 

0.0122240 0.39 0.0001494 0.0069724 650 0.8894 0.0076546 0.73 0.00005859 0.0050248 Medium gaussian 

0.0130940 0.30 0.0001715 0.0103270 620 0.7201 0.0119500 0.33 0.00014281 0.0098602 Coarse gaussian 

ET 0.0105960 0.54 0.0001123 0.0083307 220 4.2325 0.0089185 0.63 0.00007954 0.0066254 Boosted trees 

0.0107870 0.52 0.0001164 0.0078278 250 3.1381 0.0086858 0.65 0.00007544 0.0061268 Bagged tress 

GPR 0.0034440 0.95 0.0000119 0.0028894 710 2.4187 0.0029296 0.96 0.00000858 0.0023705 Squared exponential 

0.0034183 0.95 0.0000117 0.0028600 850 0.8170 0.0029282 0.96 0.00000857 0.0023617 Matern 5/2 

0.0054209 0.88 0.0000294 0.0036580 810 0.8239 0.0018814 0.98 0.00000354 0.0012627 Exponential 

0.0034440 0.95 0.0000119 0.0028894 660 1.0454 0.0029296 0.96 0.00000858 0.0023705 Rational quadratic 

ANN 0.0046784 0.91 0.0000119 0.0028894 710 2.4187 0.0029296 0.96 0.00000858 0.0023705 Narrow 

0.0038211 0.94 0.0000146 0.0029853 670 1.1752 0.0028659 0.96 0.00000821 0.0022130 Medium 

0.0042677 0.93 0.0000181 0.0030763 680 2.4498 0.0009992 1.00 0.00000010 0.0006544 Wide 

0.0058037 0.86 0.0000337 0.0038235 740 2.0616 0.0028640 0.96 0.00000820 0.0021777 Bilayered 

0.0044608 0.92 0.0000199 0.0031713 620 4.4649 0.0019880 0.98 0.00000395 0.0013356 Trilayered 
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Fig. 2. Response plots for (a) LR (interaction), (b) GPR (squared exponential), (c) SVM (linear), (d) ANN (wide), (e) RT (fine), and (f) ET (boosted) machine 

learning algorithms for gamma radiation. 
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Fig. 3. Response plots for (a) LR (robust), (b) GPR (Matern 5/2), (c) ANN (medium), (d) SVM (linear), (e) RT (fine), and (f) ET (bagged) machine learning 

algorithms for alpha radiation. 
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Fig. 4. Predicted versus true responses for (a and b) LR (interaction), (c and d) GPR (squared exponential), (e and f) SVM (linear), (g and h) ANN (wide), (I 

and j) RT (fine), and (k and l) ET (boosted) machine learning algorithms for gamma radiation. 
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Fig. 4. Continued 
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Fig. 5. Predicted versus true responses for (a and b) LR (robust) machine learning algorithms for alpha radiation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that there was no information on the correlation between activity concentrations and alpha and gamma radiation developed 

using artificial intelligence approaches. The LR algorithm’s results in Tables 3 and 4 nonetheless support Gucluer et al. 

[83] findings’, which found a good correlation between the actual and predicted datasets of concrete’s compressive strength. 

A model’s ability to forecast datasets is, as was previously mentioned, correlated with its R 

2 to unity value. As RMSE,

MAE, and MSE move closer to zero, the model’s performance increases. The performance metrics of MLAs for predicting 

gamma rays and alpha radiation of agricultural byproducts are provided in Tables 3 and 4 . Consequently, these measures

demonstrated optimal performance. These performance indicators were LR, ANN, GPR, and SVM, in that order. However, RT 

and ET produced subpar results. 

The response graphs for activity concentrations and record numbers for gamma and alpha radiation are displayed in 

Figs. 2 and 3 , respectively, to highlight the model’s performance and response characteristics. For gamma radiation training 

( Fig. 2 ), there were 23 observations of the target (response) variable and a total of 69 observations of the input parameters

( 226 Ra, 232 Th, and 

40 K). Also, there were 23 observations of the target parameters and 23 observations of the input vari-

able ( 226 Ra) for alpha radiating training. Every forecast was created using the training model. Unlike RT, ANN, and ET in

Figs. 2 and 3 , the GPR, LR, and SVM algorithms generated strongly linked responses with little to no error. The radiolog-

ical properties of the materials, which are influenced by factors such grain sizes, mineral impurities, geological formation 

and locations, geochemical compositions, and technical processes of industrial byproducts, can be related to the response 

characteristics [ 26 , 32 , 63 , 79 , 84-87 ]. 

The predicted vs. true responses of the performance measures for validation and test results are shown in Fig. 4 for

gamma radiation, while Fig. 5 shows the best performance algorithm (LR) of alpha radiation. According to the evidence 

from Fig. 4 , all data points of some ML techniques fell on diagonal (regression) lines, signifying a perfect regression model.

The response plots created for gamma and alpha radiation in Figs. 2 and 3 , and the effectiveness and efficiency of the LR

technique are supported by these data. As indicated in Fig. 4 , a few datasets using the RT and ET methods, however, showed

few outliers, a variety of dispersion, and signs of inaccuracy. Machine learning approaches have not been studied to forecast 

the gamma and alpha radiation of agricultural byproducts. But it’s important to emphasize that these results are consistent 

with past studies [ 42 , 70 , 75 , 83 ], with LR, ANN, SVM, and GPR algorithms yielding an accurate response for the concrete’s

strengths. These results support the performance metrics for each algorithm presented in Tables 3 and 4 . 

Figs. 6 and 7 display the model outputs for gamma and alpha radiation using machine learning approaches. The results 

showed a strong and precise prediction for LR, ANN, GPR, and SVM algorithms since the correlation between the actual 

and anticipated gamma and alpha radiation equals unity. Additionally, the data perfectly followed the regression line. The 

ET and RT algorithms, however, occasionally produced outliers, which were data points that were positioned roughly along 

the regression line. Moreover, the fit line and the target line are not parallel. These results validate the performance indi-

cators shown in Tables 3 and 4 , the response plots shown in Figs. 3 and 4 , and the highlighted regression graphs shown

in Figs. 4 and 5 . A comparable output performance was expressed in the modeling of concrete’s compressive strength after

28 days of curing by Thilakarathna et al. [42] . The application of LR, ANN, GPR, and SVM approaches generated the model’s

outputs R values of 85% after training. 
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Fig. 6. Model outputs for (a) LR (interaction), (b) GPR (squared exponential), (c) SVM (linear), (d) ANN (wide), (e) RT (fine), and (f) ET (boosted) machine 

learning algorithms for gamma radiation. 
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Fig. 7. Model outputs for (a) LR (robust), (b) GPR (Matern 5/2), (c) ANN (medium), (d) SVM (linear), (e) RT (fine), and (f) ET (bagged) machine learning 

algorithms for alpha radiation. 
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Conclusions 

This current study examined the radiation indexes of agricultural byproducts used as building and construction materials. 

Moreover, six artificial intelligence of machine learning techniques were engaged to predict the gamma and alpha radiation 

from these byproducts. Consequently, the following conclusions are drawn from this research: 

(a) All surveyed agricultural byproducts pose no alpha and gamma radiation risks. 

(b) With the exception of RT and ET, all machine learning techniques for artificial intelligence performed better and had 

lower disparities between the actual data and the forecasts. 

(c) Forecasting the alpha and gamma radiation of the investigated agricultural byproducts with LR showed the highest 

level of accuracy based on performance metrics. 

(d) Compared to GRP, ANN, SVM, RT, and ET algorithms, the mean absolute error of the LR method for validating alpha

and gamma radiation was approximately 15–85% lower. 

(e) The mean absolute error of the LR approach was between 4 and 80% less than that of the GRP, ANN, SVM, RT, and ET

techniques in terms of testing performance. 

(f) MLAs of artificial intelligence achieved output performance in the following order after validating and testing datasets 

for alpha and gamma radiation: LR > GPR > SVM > ANN > RT > ET. 

There is currently little to no research that makes predictions on the alpha and gamma radiation of agricultural products 

using machine learning methods of artificial intelligence. This study filled this knowledge gap and showed that machine 

learning methods may be used to forecast the alpha and gamma radiation of agricultural byproducts based on 

226 Ra and
232 Th series, as well as the 40 K isotopes. As a result of this study’s identification of alpha and gamma radiation of recycled

agricultural wastes, potential consumers are now better informed about these risks, assisting in the achievement of SDGs 

3 (good health and wellbeing), 11 (sustainable cities and communities), and 12 (sustainable consumption and production 

patterns). Regardless of these encouraging results, additional study is necessary to determine the relevance of alpha and 

gamma radiation by including data on the radiological radiation indexes of other agricultural byproducts. 
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