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A B S T R A C T

Recycling improves the circular economy and resource sustainability by using agricultural waste to create new
products. However, agricultural byproducts resulting from the recycling of agricultural waste materials contain
naturally occurring radionuclides with potential risks to human health and the environment. Therefore, this
article provides an overview of relevant literature on radiological properties of agricultural byproducts (rice
husk ash, mussel shell, palm oil clinker, and palm oil fuel ash), prioritizing their specific activities (226Ra, 232Th
and 40K). Consequently, absorbed gamma dose rates (AGDR), annual effective dose rates (AEDR) and excess
lifetime cancer risks (ELCR) of the agricultural byproducts studied were determined. The specific concentrations,
AGDR, AEDR, and ECLR were trained, validated, and tested using various machine learning algorithms. An
evaluation of the radiological properties of all agricultural byproducts examined revealed that they pose no risk
of cancer. Additionally, compared to support vector machine, regression trees, ensemble trees, Gaussian process
regression, and neural networks, linear regression yielded the best performance metrics, making it the most
suitable technique for predicting excess lifetime cancer risks of the surveyed agricultural byproducts.

1. Introduction

The global market for resources for the built environment is ex-
pected to double in size by 2050. Conversely, rapid industrialization
and urbanization have led to rapid demand for cement and accelerated
the natural resources required for its production. Despite this, cement
production emits about 8 % of global carbon dioxide into the atmo-
sphere (Andrew, 2018). This results in global warming and negative
environmental impacts (Belaid, 2022). Mitigating climate change and
negative environmental impacts from cement production require ac-
tionable strategies for sustainable cement production. One such strategy
is the recycling of agricultural wastes as substitutes for cement, in-
tegrating societal and economic needs (Aprianti et al., 2015), and en-
vironmental needs (Ghalehnovi et al., 2022).

There is worldwide concern about the naturally occurring radio-
nuclides (NORs) in recycled wastes used as building and construction
materials, based on the Uranium/Radium (238U/226Ra) series, Thorium
(232Th) series and Potassium (40K) as underlying radiation sources
(Council of the European Union [CEU], 2014; Imani et al., 2021;

Kovler, 2012; Solak et al., 2014; United Nations Scientific Committee
on the Effects of Atomic Radiation [UNSCEAR], 1993, 2000). This is
also evident in previous studies where 226Ra, 232Th and 40K in building
and construction materials were reported as the main sources of human
exposure (Faghihi et al., 2011; Mehra et al., 2010). For example, one of
the main findings of the NORM databases revealed that about 42 % of
the waste produced an excessive gamma dose rate below the re-
commended value (1 mSv y−1), with building materials having a higher
proportion of about 85 % (Trevisi et al., 2018). In a similar case, Mir
and Rather (2014) confirmed that natural radiation sources are re-
sponsible for 70 % of the radiation dose inhaled by the human popu-
lation. As a result, building occupants and potential users are exposed
to external and internal radiation from NORs emitted by direct gamma
radiation from radionuclides and inhalation of radon progenies (222Rn)
(Bavarnegin et al., 2013; Kovler, 2012; Solak et al., 2014). And con-
tinued exposure to 226Ra series, 232Th series, 40K isotopes and radon
and its progenies irradiate the cells of the pulmonary system and dis-
tribute underlying doses to the cells or tissues of the respiratory tracks,
causing leukemia and anemia. Others are liver bone, pancreatic, skin,
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lung, and kidney cancers (UNSCEAR, 1993, 2000, 2008; World Health
Organization [WHO], 2009). Notably, radon inhalation accounts for
3–14 % of all lung cancers, equivalent to 20,000 deaths annually in
Europe (Darby et al., 2005). Overall, resources must be evaluated for
potential radioactive material so prospective users can make an in-
formed decision about their use to mitigate possible hazards (Joel et al.,
2019; Maxwell et al., 2015).

Relevant studies have reported that the excess lifetime cancer risk of
some building materials surpasses the world population-weighted
average by UNSCEAR (2000, 2008), indicating that potential users have
an inherent risk of developing cancer (Abdullahi et al., 2019). In ad-
dition to the above findings, it has been found that the risk of cancer
increases with increasing exposure time to these materials. Given the
health risks of some recycled waste materials, it becomes very chal-
lenging to ignore their viable existence. From the point of view of ra-
diation protection, the assessment of the radiological risk of all mate-
rials used for construction purposes is relevant and therefore worth
examining.

Recent developments in science and technology have led to a
growing interest in machine learning algorithms (MLAs) for predicting
and evaluating complex data with high accuracy (Okan et al., 2022;
Olthof et al., 2021; Pereira and Borysov, 2019). It operates neurons like
the human brain by building a system from data sets, generating pat-
terns, and correlating factors and groups of factors (Pereira and
Borysov, 2019). The machine learning algorithm consists of input,
hidden, and output layers, which include input variables, hidden neu-
rons, and target variables obtained from the hidden layer (Pereira and
Borysov, 2019). Thus, the complete learning process takes place in the
hidden layer where the correlation between neurons is found. Extensive
research has been conducted on the application of MLAs in civil en-
gineering for concrete mix design and strength prediction. For in-
stances, Mohana (2020) determined the ground granulated concrete
compressive strength-based concrete using machine learning models.
Based on the attained prediction accuracy, random forest model de-
monstrated an excellent performance for predicting the compressive
strength compared to support vector machine. Yeh (1998) modeled the
strength of high-performance concrete using artificial neural network
(ANN). The findings revealed that a strength model based on ANN is
more accurate than a model based on regression analysis. Ziolkowski
and Niedostatkiewicz (2019) utilized the state-of-the-art achievements
in machine learning techniques for concrete mix design. The results
translated the architecture of the ANN into a mathematical equation
that can be used in practical applications. Liu et al. (2022) predicted
alligator and longitudinal cracking of the asphalt mix design using ML
techniques. The results showed that ML techniques performed better
than traditional laboratory fatigue crack testing of asphalt mixes.
However, there is a scare information about the evaluation and pre-
diction of excess lifetime cancer risks associated with the use of agri-
cultural byproducts as building and construction materials. This is the
rationale for this investigation.

This paper provides a comprehensive assessment of agricultural
byproducts with particular attention to the specific activities of 226Ra,
232Th and 40K. These radionuclides were used to determine the poten-
tial hazards from the use of studied agricultural byproducts. These
hazards are external and internal absorbed gamma dose rate (AGDR),
external and internal annual effective dose rate (AEDR), and outdoor,
indoor, and lifetime cancer risk (ELCR). In addition, the ELCRtotal
(target) variables were calculated based on seven input factors (226Ra,
232Th, 40K, AGDRin, AGDRex, AEDRin, and AEDRex) using the Support
Learning Machine (SVM), Neural Networks (NN), Ensemble Trees (ET),
regression trees (RT), Gaussian process regression (GPR) and linear
regression (LR) of MLAs. The concept of K-fold validation was em-
ployed to prevent overfitting of the data. The paper compares the
performance metrics of each MLA to select the best performing algo-
rithm for predicting the excess lifetime cancer risk of agricultural by-
products. This study underpins future studies by providing the latest

research on the excess lifetime cancer risks of agricultural byproducts
and provides a detailed understanding of the performance of various
ML techniques in predicting the ELCR of agricultural byproducts. This
would save time and resources expended on assessing excess lifetime
cancer risks from agricultural waste materials. In addition, it provides a
framework and data pool for predicting some agricultural byproducts
that may pose a cancer risk, informing potential users of the associated
risks and contributing to the achievement of Sustainable Development
Goal (SDG) 3 (health and well-being), SDG 11 (Sustainable Cities and
Communities), and SDG 12 (Responsible Consumption and Production).

2. Data source and collection

The process includes obtaining, screening, and assessing pertinent
material. A dataset was located using a number of databases, including
Science Direct, Web of Science, and Google Scholar. To maximize data
collection, pertinent information was also gathered from UNSCEAR,
WHO, CEU, European Commission (EC), and the Canadian Nuclear
Safety Commission (CNSC). Others included the Organization for
Economic Co-operation and Development (OECD), International
Atomic Energy Agency (IAEA), and International Commission on
Radiological Protection (ICRP) (NEA-OECD). There are numerous re-
search available as the concept of naturally occurring radioactive in
building and construction materials spreads. Using terms like ‘building
materials,’ ‘construction materials,’ ‘machine learning approaches,’ and
‘supplementary cementitious materials,’ 636 papers were discovered
during the initial search. The search engine was further broadened to
include terms like ‘agricultural waste products’ and ‘excess lifetime
cancer risks’ due to the study's emphasis on applying machine learning
algorithms to estimate extra lifetime cancer risks linked to agricultural
byproducts. The final number of publications was 482 from the papers.
Only peer-reviewed publications were taken into account to maintain
the high quality of the review (Chinnu et al., 2021). The significance of
the study was taken into consideration when screening, with a focus on
the activity concentrations (226Ra, 232Th, and 40K) of agricultural by-
products. The literature was further improved based on removing ex-
traneous information, adding papers on ELCR of building and con-
struction materials, and excluding articles on machine learning
algorithms other than SVM, NN, ET, RT, GPR, and LR approaches.

By creating targeted inquiries based on the main subject of the
current study, new screening methods were created. The following
standards are taken into consideration by the strategies: Are the articles
primarily focused on the radioactivity of agricultural byproducts? In the
publications surveyed, what categories of activity concentrations are
examined? Is the primary focus of the literature ELCR of agricultural
byproducts? Which relationship was used globally to calculate the
ELCR of building and construction materials? Does each article predict
the outcomes using a specific MLA?

A sample size of 134 pertinent peer-reviewed papers was obtained
after screening. By meticulously individuating, studying, examining,
and reading the publications and references, these papers were re-
searched, confirmed, and regulated. Following this careful review,
about 90 highly pertinent journals were chosen for the study. After a
thorough and verifiable search, only four agricultural byproducts were
seen and obtained: mussel shell (MS), palm oil clinker (POC), palm oil
fuel ash (POFA), and rice husk ash (RHA).

Mussel shell is an aquacultural waste, which contains high content
of calcium carbonate (CaCO3) (Buasri et al., 2013). The global gen-
eration of MS is about 6–8 million metric tonnes per year, but 1.5–2
million metric tonnes is recycled (Yan and Chen, 2015). Ishak et al.
(2021) reviewed the effects of mussel shell ash (MSA) as concrete
mixture under sodium chloride exposure. The findings revealed that the
use of mussel shell ash has the potential to be a mix in concrete to
improve compressive strength, density, tensile strength, and chemical
resistance compared to ordinary conventional concrete. The optimum
percentage of MSA as cement mixture is between 2 % and 3 % for the
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compressive strength, 2–4 % for the density, 2–6 % for the tensile
strength, and 1 % for sodium chloride (NaCl) concentration at 2.37 %.

Palm oil clinker is a byproduct of palm oil industry that is normally
dumped as waste, causing the undesirable effects to the environment
sustainability. However, the utilization of POC in concrete production
not only solves the problem of disposal of this solid waste but also helps
conserve natural resources. For instance, Ibrahim et al. (2017) in-
vestigated the strength and abrasion resistance of palm oil clinker
pervious concrete under different curing method. In this study, natural
aggregates was replaced with POC aggregates, varying from 0 to 100 wt
%. The results revealed a decrease in strength and abrasion resistance
with increasing POC aggregates content in the mix. However, a fully
water-cured method at 25 % POC aggregates substitution favorably
competed with control mix compared to 50 %, 75 %, and 100 % POC
aggregates replacement.

Palm oil fuel ash a product obtained from milling of palm oil clinker,
which is used as a cement substitute in construction and building
sector. For example, Pone et al. (2018) examined the effects of palm oil
fuel ash as a cement replacement in concrete. The results showed an
improved compressive strength, especially at early age; in fact POFA
specimens containing 2.5 % and 5 % POFA replacement showed greater
early compressive strength than the control concrete.

Rice hush ash is an agricultural byproduct, which consists of
85–90 % silica content (Aghajanian et al., 2022). The global production
of rice is approximately 770 million metric tonnes per annum, of which
more than 10 % is husk (Aghajanian et al., 2022). Rice husk ash is
suitable as additional cementitious material, which can be obtained by
controlled or natural incineration and used with or without further
processing. It possesses high pozzolanic activities and very suitable as
partial replacement of cement in concrete. Findings from a previous
study showed that the compressive strength, flexural strength, and
tensile strength of concrete specimens with 10 % cement replacement
with RHA are comparable to the control specimens (Siddika et al.,
2018).

3. Assessment of radiological hazard indexes

The potential carcinogenic risks of the agricultural by-products
studied were assessed based on their specific activities (226Ra, 232Th
and 40K) using Microsoft Excel, 2016 and globally acceptable equations.
These hazard indices are external and internal absorbed gamma dose
rates (AGDR, nGy h-1) as in Eqs. (1) and (2) (CNSC (Canadian Nuclear
Safety Commission), 2012; EC, 1999; UNSCEAR, 2000). Others are
external and internal annual effective dose rates (AEDR, mSv y−1),
using Eqs. (3) and (4) (CEU, 2014; ICRP, 1994; IAEA, 2014; UNSCEAR,
2000) and excessive outdoor and indoor lifetime cancer risks (ELCR)
shown in Eqs. (5)–(7) (EC, 1999):

= + +AGDR SR S S0.462 0.604 0.0417ex a Th K (1)

= ×AGDR AGDR1.4in ex (2)

where 0.462, 0.604, and 0.0417 nGy h−1 per Bq kg−1 are 226Ra, 232Th,
and 40K conversion coefficients, respectively.

= × × × × ×
= ×

AEDR AGDR h d
AGDR
24 365.25 0.2 0.7 10

0.00123
ex ex

ex

6

(3)

= × × × × × ×
= ×

AEDR AGDR h d
AGDR
24 365.25 1.4 0.8 0.7 10

0.00687
in in

in

6

(4)

where a dose conversion, external (ex) occupancy, and internal (in) oc-
cupancy factors of 0.7 sy Gy−1, 80%, and 20% were used (UNSCEAR,
2000, 2008).

= × ×ELCR AEDR L Rex ex S F (5)

= × ×ELCR AEDR L Rin in S F (6)

= + × ×ELCR AEDR AEDR L R( )total ex in S F (7)

Where LS is the life span (70 years) and RF is the risk factor (Sv−1), fatal
cancer risk per Sievert. For stochastic effects, ICRP 60 uses the detri-
ment coefficient of 5.0× 10−2 Sv−1 for the whole population (ICRP,
1990).

4. Machine learning algorithms

To date, scientists have used traditional computational techniques
to encode a model problem based on a mathematical framework, logical
inference, and established correlations within the bounded data struc-
ture (Cohen, 2021). This limited data set is tested without informing or
modifying the algorithm. This rule-based technique is analogous to
science, which tests hypotheses. But unlike the traditional approach,
today machine learning is a hypothesis-generating technique that is
evolving and emerging in science, technology, engineering, medicine,
and management. It processes large and complex input data and models
its internal state (hidden neurons), generating an accurate prediction
(output) about the data. In short, the machine learning algorithm
(MLA) is a technique that uses a standard computer architecture to
model a set of input variables and derive the desired output (Cohen,
2021; Kim, 2017). These input parameters are defined as training data
since the model is trained on the input variables (Thilakarathna et al.,
2020). After model generation, it was tested with new and untrained
data. For this study, 226Ra (Bq kg-1), 232Th (Bq kg-1), 40K (Bq kg−1),
AGDRex (nGy h−1), AGDRin (nGy h−1), AEDRex (mSv y−1), and AEDRin
(mSv y−1) were considered as input data, while ELCRtotal was chosen as
output (target) parameter. Different types of machine learning algo-
rithms have been developed to offer solutions to problems in different
domains. Depending on the training method, these algorithms are di-
vided into three types: supervised, unsupervised, and reinforcement
learning (Kim, 2017; Shehab et al., 2022). However, in this study, su-
pervised learning of regression learner in Matlab R2021a version 9.10.0
1602886 was engaged.

The regression learner trains regression models to predict data. It
explores data, selects features, specifies validation schemes, train
models, and assesses results. Automated training can be performed to
search for the best regression model type, including linear regression
models (LR), regression trees (RT), Gaussian process regression models
(GPR), support vector machines (SVM), ensembles of regression trees
(ET), and neural network regression models (NN). These regression
model types exhibit higher efficiency, strong precision, and fast esti-
mation (Mohana, 2020; Yeh, 1998; Ziolkowski and Niedostatkiewicz,
2019).

The model outputs were generated by training seven input variables
(226Ra, 232Th, 40K, AGDRex, AGDRin, AEDRext, and AEDRin) and re-
sponses (ELCRtotal data) using SVM, NN, ET, LR, RT, and GPR in re-
gression learner of machine learning algorithms. This study compared
the adopted MLAs and determined the algorithm with the best perfor-
mance metrics.

Training and testing data are distinct, and the significant issue for
the process of machine learning is attaining a good fit for training and
testing parameters. Thus, obtaining accurate data representing actual
data for model testing is essential (Thilakarathna et al., 2020). As a
result, Kim (2017) posited that a model developed from MLA needs to
be generalized without overfitting. Therefore, data validation is ne-
cessary to prevent data overfitting. In achieving this, a 10-fold cross-
validation method is usually used to validate and enhance the perfor-
mance of the developed model (Feng et al., 2020; Pereira and Borysov,
2019; Yeh, 1998). This technique minimizes the bias related to the
random sampling of the training dataset. Another significant aspect of
10-fold cross-validation is that it equally segments the actual datasets
into 10 subsets, enhances the learning with 9 subsets, and validates the
model with 1 subset (Ahmad et al., 2022; Kohavi, 1995; Song et al.,
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2021). Hence, an average accuracy of 10 times is obtained after re-
peating the operation 10 times successfully. Kohavi (1995) established
that the 10-fold cross-validation method represents the generalization
and credibility of the model performance. Therefore, this study applied
10-fold cross-validation owing to its excellent characteristics perfor-
mance as earlier stated above. In addition, by default, holdout valida-
tion was set at 25%.

4.1. Gaussian process regression (GPR)

Gaussian Process Regression is an algorithm that generates an
output based on the input variables. It generates models for complex
datasets (Thilakarathna et al., 2020). In this study, input and target
variables were trained based on the operational concepts of squared
exponential, matern 5/2, exponential, and rational squared by GPR,
leading to predicted outcomes. The output results were compared and
the best performance metrics were included for comparison to other
MLAs. The regression of the Gaussian process produces function dis-
tributions as in Eq. (8) using mean (m) and covariance (c) functions:

f GPR m c( , ) (8)

4.2. Linear regression (LR)

Linear regression is the simpler and faster prediction technique for
large data sets to determine the causal effects of dependent factors on
independent factors (Gucluer et al., 2021). The dependent and in-
dependent parameters are considered continuous and response para-
meters. This study applied all four LR techniques: linear, interactions,
robust, and stepwise to maximize their benefits in predicting ELCR of
agricultural by-products. Depending on the impact of the variables on
the result, the prediction output is obtained as a linear combination of
input variables multiplied by a scaling factor (Gucluer et al., 2021).
Furthermore, an additional degree of freedom is provided by adding the
bias coefficient (intercept) as an additional variable. The general form
of the linear regression algorithm is given in Eq. (9):

= + + + + … + …y a a b a b a b a b a bo i i n n1 1 2 2 3 3 (9)

where y is the predicted output, ao is the bias coefficient, a1, a2, a3…, an
are the scale factors, and b1, b2, b3,…, xn are the input variables.

4.3. Neural network (NN)

The neural network is a supervised learning tool using neurons that
predicts problems using weights and biases (Thilakarathna et al., 2020;
Yang et al., 2004). It has excellent computational skills and a high
tolerance for incorrect data (Yang et al., 2004). In maximizing NN
potentials, this study looked at all five major networks of NN: narrow,
medium, wide, two-layer, and three-layer neural networks, using a
rectified linear units (ReLU) activation operation with an iteration limit
of 1000. In contrast to the sigmoid function, the ReLU function (R), as
in Eq. (10) is computationally more efficient to calculate since only a
maximum number needs to be chosen (Nair and Hinton, 2010). It does
not perform expensive exponential operations, blow-up activation and
vanishing gradients compared to Sigmoid. In practice, networks using
ReLU show better convergence performance than Sigmoid (Nair and
Hinton, 2010).

= = <{R f x x x
x( ) , 0

0, 0 (10)

An artificial neural network comprises six main components: the
activation function f(Σ), the sum function (Σ), inputs (pi), weights (wij),
biases (b), and output (A). The NN generates the best fit model using the
weight, bias, and activation function and compares the result with the
actual output (Gucluer et al., 2021; Gunoglu et al., 2013; Saridemir
et al., 2009; Serin et al., 2011; Thilakarathna et al., 2020).

4.4. Ensemble trees (ET)

The ensemble tree has often been used as an alternative technique to
evaluate the output when the linear approach does not provide accurate
results (Gucluer et al., 2021). These techniques improve the weak al-
gorithm by using an infinite number of decision trees on the input data
during the training phase (Ahmad et al., 2022), but are often used for
regression trees (Derousseau et al., 2019). Ensemble trees show high
predicted performance on extremely nonlinear datasets. In addition,
ensemble trees produce a successful result from unequal problems of
predicted parameters. However, these techniques have low intuitive-
ness in relation to the trained data (Derousseau et al., 2019). The use of
ensemble trees is common in civil engineering to model concrete
properties. Based on their specifics, this research trained and tested all
data on boosting and bagging ensemble trees to increase their benefits.

4.5. Support vector method (SVM)

Support Vector Machine is a supervised learning technique that
solves regression and classification problems. It is a non-parametric
algorithm that uses kernel functions for its operations (Gucluer et al.,
2021; Thilakarathna et al., 2020). The Support Vector Machine algo-
rithm uses a linear technique to provide predictive outputs for a given
input (Narayan, 2020). Another benefit of SVM is that it predicts the
output variable based on the input data. It trains and tests data effi-
ciently (Gucluer et al., 2021). Because of their distinctness, the study
trained and tested all input and target variables on six mathematical
concepts of the SVM, namely linear, quadratic, cubic, fine-Gaussian,
mean-Gaussian, and coarse-Gaussian.

4.6. Regression trees (RT)

The regression trees model the target data based on the partitions
among the input parameters by creating partitions in the predicted
variables. The regression tree technique is simpler and easier to inter-
pret. Also, it provides robustness in managing missing and rich data.
The regression approach was considered for this study because it is
simpler and easier to interpret (Gucluer et al., 2021; Salehi and
Burgueno, 2018). Furthermore, the regression method applies specific
techniques that learn from the input parameters and provides highly
accurate results for the output variables, giving a classic advantage over
the traditional regression approach (Salehi and Burgueno, 2018). This
study maximizes the potential of RT by training and testing all input
and target data on fine, medium and coarse techniques. As in Eq. (11)
the regression tree reduces the cost of complex functions (c) by scaling
down an additional node selected for the model (Derousseau et al.,
2019).

= + ×c t E n R( ) ( ) (11)

Where t(E) signifies training error, β is the regulator determined
from cross-validation, and n(R) is the number of regression tree leaves.

5. Performance indicators

The performance counters, also known as error metrics, measure the
performance rate of each algorithm. Therefore, regardless of the ma-
chine learning technique used, it is important to determine the error
metrics between the true and the predicted data. Therefore, this study
examined four different performance indicators: the regression coeffi-
cient of determination (R2), the mean absolute error (MAE), the mean
square error (MSE), and the root mean square error (RMSE). The higher
R2, the stronger the prediction. However, the lower the MAE, MSE, and
RMSE, the better the prediction (Willmott and Matsuura, 2005). The
performance indicators are given in Eqs. (14)–(17):
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6. Results and discussion

6.1. Agricultural byproducts

Table 1 shows the radiological properties of the investigated agri-
cultural by-products. The results showed that the specific activities of
the agricultural by-products studied met the UNSCEAR (2000, 2008)
recommended world population weighted averages, with the exception
of RHA, POC and POFA, which were 40K above the recommendation of
420 Bq kg−1. This higher level of 40K isotopes in RHA, POC and RHA

could be related to the geological sources, treatment methods, proces-
sing patterns and production techniques of the by-products (Beretka
and Mathew, 1985; Kovler, 2012; Sas et al., 2017, 2019). However,
considering the global range, the named by-products (RHA, POC and
POFA) met the recommended values of 140–850 Bq kg-1 for each
building material (UNSCEAR, 2008). Also compared to the EC (1999)
and Nuclear Energy Agency-Organization for Economic Co-operation
and Development (NEA-OECD) (1979) recommendations, the specific
activities of all investigated agricultural by-products met the mean
values of 50, 50 and 500 Bq kg−1 for 226Ra, 232Th, and 40K. Likewise,
the results obtained in this study are consistent with the IAEA (2014)
recommending the specific activities of all building materials in the
range of 100–600, 30–300 and 100–1200 Bq kg−1 for 226Ra, 232Th, and
40K isotopes.

Table 1 shows that the results of the external and internal absorbed
gamma dose rates of RHA, MS, POC and POFA were lower than the
world averages of 59 and 84 nGy h−1. Similarly, the external and in-
ternal annual effective dose rates of all agricultural by-products studied
were lower than the world averages of 0.071 and 0.41mSv y−1, in-
dicating a possible suitability of the by-products considered.

The mean value of lifetime cancer excess risk, as reported in Table 1,
was 0.14×10−3 outdoors, 1.13×10−3 indoors and 1.27×10−3

Table 1
Radiological properties of agricultural byproducts examined.

Material S (Bq kg−1)
226Ra232Th40K

AGDR (nGy h−1)
ex in

AEDR (mSv y−1)
ex in

ELCR
out in total

Ref.

RHA 6 16 505 33 47 0.041 0.32 0.00014 0.00113 0.00127 Sas et al. (2019)
Average 6 16 505 33 47 0.041 0.32 0.00014 0.00113 0.00127
MS 14.1 8.5 137 17 24 0.021 0.17 0.00007 0.00058 0.00066 Alam et al. (1999)

Alam et al. (1999)
Alam et al. (1999)
Alam et al. (1999)
Alam et al. (1999)
Alam et al. (1999)

MS 9.9 6.1 96.2 12 17 0.015 0.12 0.00005 0.00041 0.00047
MS 9.8 5.7 69.8 11 15 0.013 0.10 0.00005 0.00037 0.00041
MS 12.2 5.6 110 14 19 0.017 0.13 0.00006 0.00046 0.00052
MS 8.8 5.3 105 12 16 0.014 0.11 0.00005 0.00039 0.00044
MS 8.4 4.4 81.4 10 14 0.012 0.10 0.00004 0.00033 0.00038
MS 0.5 1.3 198 9 13 0.011 0.09 0.00004 0.00031 0.00035 Krmpotic et al. (2015)

Krmpotic et al. (2015)
Krmpotic et al. (2015)
Krmpotic et al. (2015)

MS 8.5 4.7 389 23 32 0.028 0.22 0.00010 0.00077 0.00087
MS 2.0 2.3 188 10 14 0.012 0.10 0.00004 0.00034 0.00039
MS 5.7 6.9 377 23 32 0.028 0.22 0.00010 0.00076 0.00086
Average 7.99 5.08 175 14 20 0.017 0.14 0.00006 0.00047 0.00054
POC 6.89 4.46 571 29 41 0.037 0.20 0.00013 0.0001 0.00113 Karim et al. (2018)

Karim et al. (2018)
Karim et al. (2018)
Karim et al. (2018)
Karim et al. (2018)
Karim et al. (2018)

POC 6.90 4.63 571 29 41 0.037 0.20 0.00013 0.0010 0.00113
POC 5.85 4.40 573 29 40 0.036 0.19 0.00013 0.00098 0.00111
POC 7.01 4.87 599 31 43 0.038 0.30 0.00013 0.00105 0.00118
POC 5.56 4.21 604 30 42 0.037 0.29 0.00013 0.00102 0.00115
POC 6.23 4.76 587 30 42 0.037 0.29 0.00013 0.00102 0.00115
Average 6.41 4.56 584 30 42 0.04 0.25 0.00013 0.00101 0.00114
POFA 8.16 6.14 441 26 36 0.032 0.25 0.00011 0.00087 0.00098 Karim et al. (2018)

Karim et al. (2018)
Karim et al. (2018)
Karim et al. (2018)
Karim et al. (2018)
Karim et al. (2018)

POFA 7.74 6.41 450 26 36 0.032 0.25 0.00011 0.00088 0.00100
POFA 7.95 7.13 457 27 38 0.033 0.26 0.00012 0.00091 0.00103
POFA 8.75 7.98 421 26 37 0.032 0.25 0.00011 0.00089 0.00100
POFA 9.03 7.56 498 29 41 0.036 0.28 0.00013 0.00099 0.00112
POFA 6.98 6.91 413 24 34 0.030 0.24 0.00011 0.00083 0.00093
Average 8.10 7.02 447 26 37 0.030 0.26 0.00012 0.00090 0.00101
Global 33 45 420 59 84 0.07 0.41 0.00029 0.00116 0.00145 UNSCEAR (2000, 2008)

UNSCEAR: United Nations Scientific Committee on the Effects of Atomic Radiation (World Population-Weighted Average Value).

Table 2
Performance indicators of trained and tested MLAs.

Training/validation results Test results

MLA RMSE R2 MSE MAE RMSE R2 MSE MAE

LR 0.0000047 1.00 0.0000000 0.0000038 0.0000026 1.00 0.00000000 0.0000022
SVM 0.0000438 0.98 0.0000000 0.0000359 0.0000532 0.97 0.00000000 0.0000468
RT 0.0000806 0.94 0.0000000 0.0000062 0.0000707 0.95 0.00000000 0.0000549
ET 0.0001135 0.88 0.0000000 0.0000940 0.0000754 0.94 0.00000000 0.0000599
GPR 0.0000000 0.00 0.0000001 0.0002875 0.0003091 0.00 0.00000000 0.0002759
NN 0.0138610 -1822 0.0001921 0.0098816 0.0009975 -9.41 0.00000100 0.0007546

S. Oyebisi and H. Owamah Cleaner Waste Systems 5 (2023) 100088

5



Ta
bl
e
3

Pr
ev
io
us

st
ud

ie
s
on

pe
rf
or
m
an
ce

m
et
ri
cs

of
M
LA

s.

Re
f.

M
et
ri
c

Tr
ai
ni
ng
/M

LA
s

Te
st
in
g/
M
LA

s
St
ud

y

LR
SV

M
RT

N
N

G
PR

ET
LR

SV
M

RT
N
N

G
PR

ET

G
uc
lu
er

et
al
.(
20

21
)

R
0.
85

00
0.
84

00
0.
86

00
0.
86

00
–

–
–

–
–

–
–

–
M
L
te
ch
ni
qu

es
fo
r
es
tim

at
in
g
th
e
co
m
pr
es
si
ve

st
re
ng
th

of
co
nc
re
te

R2
0.
85

00
0.
84

00
0.
86

00
0.
86

00
–

–
–

–
–

–
–

–
M
A
E

2.
90

00
2.
93

00
2.
59

00
3.
42

00
–

–
–

–
–

–
–

–
RM

SE
4.
02

00
4.
03

00
3.
77

00
4.
48

00
–

–
–

–
–

–
–

N
gu
ye
n
et

al
.(
20

20
a,

20
20

b)
R

–
–

–
0.
99

30
–

–
–

–
–

0.
98

5
–

–
A
na
ly
zi
ng

th
e
co
m
pr
es
si
ve

st
re
ng
th

of
ge
op

ol
ym

er
co
nc
re
te

us
in
g
M
L
ap
pr
oa
ch
es

M
A
E

–
–

–
0.
84

20
–

–
–

–
–

1.
11

5
–

–
RM

SE
–

–
–

1.
47

40
–

–
–

–
–

1.
82

4
–

–
Be
hn

oo
d
an
d

G
ol
af
sh
an
i(
20

20
)

R
–

–
0.
95

4
–

–
–

–
–

0.
86

4
–

–
–

M
L
st
ud

y
of

co
m
pr
es
si
ve

st
re
ng
th

of
co
nc
re
te

co
nt
ai
ni
ng

w
as
te

fo
un

dr
y
sa
nd

R2
–

–
0.
94

5
–

–
–

–
–

0.
93

2
–

–
–

M
A
E

–
–

2.
98

5
–

–
–

–
–

3.
42

7
–

–
–

RM
SE

–
–

4.
31

2
–

–
–

–
–

4.
71

5
–

–
–

Li
u
et

al
.(
20

22
)

R2
–

0.
87

09
0.
98

10
0.
92

74
–

–
–

0.
87

09
0.
98

10
0.
92

74
–

–
M
L
te
ch
ni
qu

es
in

pr
ed
ic
tin

g
th
e
al
le
ga
to
r
an
d

lo
ng
itu

di
na
lc
ra
ck
s
by

im
pr
ov
in
g
th
e
as
ph

al
t

m
ix

de
si
gn

M
A
E

–
2.
32

00
2.
16

00
1.
78

00
–

–
–

–
–

–
–

–
M
SE

–
41

.9
70

29
.5
60

24
.9
80

–
–

–
–

–
–

–
–

R2
–

0.
85

56
0.
95

30
0.
87

91
–

–
–

0.
71

62
0.
77

75
0.
73

34
–

–
M
A
E

–
36

4.
57

30
8.
12

33
0.
91

–
–

–
–

–
–

–
–

M
SE

–
50

7.
96

39
8.
32

47
7.
24

–
–

–
–

–
–

–
–

D
ua
n
et

al
.(
20

13
)

R2
–

–
–

0.
99

70
–

–
–

–
–

0.
99

14
–

–
A
N
N
s
fo
r
pr
ed
ic
tin

g
th
e
M
oE

of
re
cy
cl
ed

ag
gr
eg
at
e-
co
nc
re
te

RM
SE

–
–

–
1.
34

55
–

–
–

–
–

2.
42

23
–

–
Pa
ix
ao

et
al
.(
20

22
)

R2
–

0.
79

00
–

0.
82

00
0.
82

00
–

–
0.
37

00
–

0.
51

00
0.
59

00
–

M
L
te
ch
ni
qu

es
to

pr
ed
ic
t
th
e
co
m
pr
es
si
ve

st
re
ng
th

of
co
nc
re
te

M
A
E

–
2.
26

00
–

2.
26

00
1.
96

00
–

–
4.
04

00
–

3.
23

00
3.
04

00
–

RM
SE

–
3.
73

00
–

3.
40

00
3.
43

00
–

–
4.
67

00
–

4.
09

00
3.
75

00
–

Kh
at
ti
an
d
G
ro
ve
r

(2
02

1)
R

0.
97

44
0.
95

39
0.
93

81
0.
97

80
–

–
0.
93

79
0.
92

73
0.
95

65
0.
90

90
–

–
Co

m
pu

ta
tio

n
of

co
m
pr
es
si
ve

st
re
ng
th

of
G
G
BS

-c
on

cr
et
e
us
in
g
M
L

M
A
E

1.
72

74
2.
23

14
2.
11

03
0.
02

00
–

–
2.
69

46
2.
50

87
1.
22

88
2.
79

23
–

–
RM

SE
2.
20

53
3.
02

71
3.
42

27
0.
08

14
–

–
3.
32

24
3.
45

05
1.
85

14
3.
40

55
–

–
Ch

op
ra

et
al
.(
20

18
)

R2
–

–
0.
86

04
0.
97

69
–

–
–

–
0.
80

08
0.
95

00
–

–
M
L
te
ch
ni
qu

es
in

pr
ed
ic
tin

g
co
nc
re
te

co
m
pr
es
si
ve

st
re
ng
th

RM
SE

–
–

2.
01

11
0.
71

76
–

–
–

–
2.
25

14
0.
91

00
–

–
D
ab
ir
ie

t
al
.(
20

22
)

R2
0.
80

00
–

–
0.
98

01
–

–
–

–
–

–
–

–
M
L
te
ch
ni
qu

es
in

co
m
pr
es
si
ve

st
re
ng
th

of
co
nc
re
te

w
ith

re
cy
cl
ed

ag
gr
eg
at
e

M
A
E

8.
68

00
–

–
2.
09

00
–

–
–

–
–

–
–

–
RM

SE
11

.1
70

2.
94

00
–

–
–

–
–

–
–

–
A
hm

ad
et

al
.(
20

22
)

R2
–

–
0.
90

33
–

–
0.
96

83
–

–
0.
89

00
–

–
0.
83

00
A
na
ly
zi
ng

th
e
co
m
pr
es
si
ve

st
re
ng
th

of
ge
op

ol
ym

er
co
nc
re
te

us
in
g
M
L
ap
pr
oa
ch
es

M
A
E

–
–

2.
62

00
–

–
1.
51

00
–

–
1.
48

00
–

–
2.
23

00
M
SE

–
–

11
.4
00

–
–

3.
75

00
–

–
2.
30

00
–

–
5.
16

00
RM

SE
–

–
3.
38

00
–

–
1.
94

00
–

–
1.
52

00
–

–
2.
27

00
N
as
er
ie

t
al
.(
20

20
)

R
0.
91

16
0.
90

00
–

0.
98

49
–

–
0.
68

42
0.
89

90
–

0.
95

30
–

–
D
es
ig
ni
ng

su
st
ai
na
bl
e
co
nc
re
te

m
ix
tu
re

by
de
ve
lo
pi
ng

a
ne
w
m
ac
hi
ne

le
ar
ni
ng

te
ch
ni
qu

e
R2

0.
83

11
0.
80

99
–

0.
97

01
–

–
0.
46

82
0.
80

82
–

0.
90

81
–

–
M
A
E

5.
62

16
5.
91

55
–

2.
04

24
–

–
8.
44

86
5.
57

61
–

2.
89

37
–

–
M
SE

43
.4
48

49
.2
38

–
8.
96

42
–

–
20

8.
15

45
.2
83

–
18

.9
95

–
–

RM
SE

6.
59

15
7.
01

70
–

2.
99

40
–

–
14

.4
27

6.
72

93
–

4.
35

83
–

–
Sa
la
m
ie

t
al
.(
20

21
)

R2
–

0.
98

20
–

–
–

–
–

0.
95

40
–

–
–

–
Pr
ed
ic
tin

g
te
rn
ar
y-
bl
en
d
co
nc
re
te

st
re
ng
th

us
in
g
M
LA

s
RM

SE
–

2.
23

00
–

–
–

–
–

3.
35

00
–

–
–

–
N
yg
uy

en
et

al
.(
20

20
a,

20
02

b)
R

–
0.
95

00
–

–
–

–
–

0.
96

00
–

–
–

–
Effi

ci
en
t
m
ac
hi
ne

le
ar
ni
ng

m
od

el
s
fo
r

pr
ed
ic
tio

n
of

co
nc
re
te

st
re
ng
th
s

M
A
E

3.
79

00
–

–
–

–
–

0.
27

00
–

–
–

–
RM

SE
–

5.
00

00
–

–
–

–
–

0.
39

00
–

2.
42

23
–

–
Sh
am

sa
ba
di

et
al
.

(2
02

2)
R2

0.
44

00
0.
91

00
–

0.
97

00
–

–
–

–
–

–
–

–
M
L-
ba
se
d
co
m
pr
es
si
ve

st
re
ng
th

m
od

el
in
g
of

co
nc
re
te

in
co
rp
or
at
in
g
w
as
te

m
ar
bl
e
po

w
de
r

M
A
E

7.
71

00
2.
48

00
–

1.
35

00
–

–
–

–
–

–
–

–
M
SE

92
.4
90

17
.4
50

–
5.
26

00
–

–
–

–
–

–
–

–
RM

SE
9.
62

00
4.
18

00
–

2.
29

00
–

–
–

–
–

–
–

–
Fe
ng

et
al
.(
20

20
)

R2
–

0.
99

60
–

0.
99

70
–

–
–

0.
97

90
–

0.
98

10
–

–
M
L-
ba
se
d
co
m
pr
es
si
ve

st
re
ng
th

pr
ed
ic
tio

n
fo
r

co
nc
re
te
:A

da
pt
iv
e
bo

os
tin

g
M
A
E

–
1.
26

00
–

1.
26

00
–

–
–

1.
66

0
–

1.
66

00
–

–
RM

SE
–

1.
55

00
–

1.
53

00
–

–
–

2.
26

00
–

2.
25

00
–

–

(c
on
tin
ue
d
on

ne
xt
pa
ge
)

S. Oyebisi and H. Owamah Cleaner Waste Systems 5 (2023) 100088

6



overall for RHA. MS showed 0.06 10−3 outdoors, 0.47×10−3 indoors
and 0.54× 10−3 overall. Additionally, POC was 0.13×10−3 out-
doors, 1.01× 10−3 indoors, and 1.14× 10−3 overall. And POFA re-
turned 0.12× 10−3 as Outdoor, 0.90×10−3 as Indoor, and
1.01×10−3 overall. In comparison, these results were below the world
population-weighted averages reported by UNSCEAR (2000, 2008),
which were 0.29× 10−3 for outdoor, 1.16×10−3 for indoor and
1.45×10−3 for the overall excess lifetime cancer risk. In terms of se-
quential lifetime factors, therefore, MS shows the best suitability, fol-
lowed by POFA, POC and RHA.

Most importantly, as shown in Table 1, the results showed that MS,
POFA, POC and RHA do not pose a cancer risk. Therefore, MS, POFA,
POC and RHA can be used as building and construction materials, but
with caution.

6.2. Machine learning algorithms

Given the zero coefficient of determination (R2), GPR, and NN ob-
viously have not learned anything. Therefore, Table 2 shows the per-
formance indicators (R2, MAE, MSE and RMSE) for the four different
selected model types. As mentioned above, it is important to note that
the radiological parameters of the agricultural by-products studied
were all trained, validated, and tested in twenty-four different models
from six different machine learning algorithms of NN, ET, GPR, LR, RT
and SVM. The input parameters of the radiological parameters
were 226Ra, 232Th, 40K, AGDRex, AGDRin, AEDRin, and AEDRex, while
ELCRtotal was chosen as the target variable to predict the excess lifetime
cancer risks. Table 2 shows that the linear regression algorithm had the
best performance indicators for modeling the excess lifetime cancer
risks of agricultural by-products based on the training and testing scores
of 1.00 for R2 and the lowest mean square error values of 0.0000047 for
training scores and 0.0000026 for test results.

In general, the mean absolute error (MAE) shows the weight and
importance of the error due to the different values and error scales
(Willmott and Matsuura, 2005). Therefore, the error-efficient perfor-
mance of each model is based on the mean absolute error. The MAE in
training and testing the datasets, as displayed in Table 2, was far from
zero, indicating a good correlation. However, the MAE of LR technique
in training the ELCR datasets of agricultural by-products was 89.42%,
38.71%, 95.96%, 98.86%, and 99.96% lower than the SVM, RT, ET,
GPR, and NN techniques, respectively. Similarly, the MAE in testing the
ELCR datasets of agricultural by-products using the LR technique was
95.30%, 95.99%, 96.33%, 99.71%, and 99.20% lower than SVM, RT,
ET, NN, and GPR methods, respectively. The evidence from these re-
sults indicates that there is a linear correlation between the specific
activities and the radiological hazards of agricultural by-products.
These agree with the representations in Eqs. (1)–(7). Thus, the best
correlation between the true and predicted agricultural by-product
variables exists in the LR algorithm. A machine learning algorithm
application to the excess lifetime cancer risks of agricultural by-pro-
ducts has not yet been studied. Nevertheless, Table 3 contains the
performance indicators for the various model types used in this study
that are also used in other disciplines to support the findings. Ulti-
mately, these results indicated that the LR algorithm could optimize the
radiological indices of agricultural by-products to achieve the expected
ELCR output.

It can be seen from Table 2 that the performance indicators of MLAs
for predicting ELCR of agricultural by-products are classified in order of
LR (linear), SVM (linear), RT (fine), and ET (boosted). As previously
explained, the higher the R2 to one, the better the model predicts the
data. The lower the RMSE, MAE and MSE to zero, the better the model
performs. As a result, the LR model is given in Eq. (18):

ELCRtotal =0.0000037965+0.000013634 (226Ra)+0.000017709
(232Th)+0.000001232 (40K) – 0.00000024792 (AGDRout)+0.000001341
(AGDRin)+0.053105 (AEDRout)+0.000021452 (AEDRin) (18)Ta
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A systematic understanding for predicting excess lifetime cancer risk
from agricultural by-products via MLAs is still lacking. However, the
accuracy and validity of the performance indicators obtained in this
study are confirmed by comparing them (Table 2) to those from pre-
vious studies (Table 3) that used similar MLAs but different materials
and input hyper-variables. The results are summarized in Table 3. As
shown in Table 3, it is now well established through comparisons from
a variety of studies that the MLAs adopted demonstrated superior ro-
bustness and performance with the lowest prediction errors.

6.2.1. Response plots
Fig. 1 shows the response plots for ECLRtotal and record number

to visualize the relationship between the input parameters and the

response (ECLRtotal). Each radiological index included 23 observa-
tions, a total of 161 observations for input parameters (226Ra, 232Th,
40K, AGDRex, AGDRin, AEDRin, and AEDRex) and 23 observations for
the target (response) variable (ELCRtotal). Each prediction was ob-
tained based on the trained model. The LR algorithm, as shown in
Fig. 1, showed a strong correlative response with little or no error.
Because LR assumes a linear relationship between the input variable
and the output variable (target), which is absolutely linear in the
true sense of the word. Some data sets in the SVM algorithm showed
a number of scatters with error traces. Also, RT, ET, GPR, and NN
techniques showed a range of scatter with a larger margin of error.
These results validate the performance indicators presented in
Table 2 for all MLAs used.

Fig. 1. Response plots for machine learning algorithms adopted.
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6.2.2. Predicted and true responses
Fig. 2 shows the predicted versus true ELCR for the trained data. Re-

sults showed perfect regression models for LR and SVM algorithms, such
that all data points fell on diagonal (regression) lines. However, the RT and
ET algorithms encountered few outliers, where data points were roughly
symmetrically spread around the regression line. However, the GPR and
NN algorithms showed an imperfect model as the data are far from the
regression line. In support of these results, few or no studies have been
conducted to compare predicting the ELCR of agricultural by-products
using machine learning algorithms. However, it is noteworthy to note that
these results confirm the previous studies (Ahmad et al., 2022; Gucluer
et al., 2021; Nguyen et al., 2020a, 2020b; Thilakarathna et al., 2020) such
that LR and SVM Algorithms gave a perfect prediction of concrete com-
pressive strength, validating the efficiency of these algorithms.

6.2.3. Output performance
Fig. 3 shows the model outputs for all machine learning algorithms

used. The result outputs established a strong and perfect prediction for
LR and SVM algorithms because the data fit perfectly with the regres-
sion line. The relationship between the true response (ELCR) and the
input arguments is linear. Besides, LR and SVM use linear and linear
kernel functions, respectively, thus, the true responses for LR and SVM,
as indicated in Fig. 2, are equal to the predicted responses, signifying a
perfect correlation. Moreover, RT and ET algorithms also gave a perfect
result due to their strong correlation (R) of about 0.97 and 0.98 re-
spectively. However, GPR and NN showed strongly identifiable outliers,
rendering the models imperfect. The reason for this poor prediction is
that GPR models are non-parametric kernel-based probabilistic models,
hence, the use of exponential kernel or Matern 5/2 functions does not

Fig. 2. Predicted versus true responses machine learning algorithms used.
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seem to be a good predictor of ELCR datasets. Likewise, neural network
models are fully connected layers of various sizes, which seems not to
be a good predictor of ELCR datasets. Sometimes NNs may not be able
to find their minimal error value to give back an accurate output to the
user. This happens when neurons have high weights so that the opti-
mization processes like gradient descent will not be able to find global
minima, resulting in inaccurate output (Cohen, 2021), as shown in
Fig. 3(f) for NN. The results presented in Fig. 3 are consistent with
performance indicators, response charts and regression charts

highlighted in Table 2, Fig. 1 and Fig. 2. There are similarities between
the output power expressed by LR and SVM algorithms in this study and
those reported by Thilakarathna et al. (2020). In this context, data on
the compressive strength of concretes after 28 days of curing were
collected and trained with the various machine learning algorithms.
After training, the model outputs gave R-values of 0.8503 and 0.8424
for LR and SVM, respectively. The LR approach ultimately offers the
optimum fit for training and testing the ELCR datasets of agricultural
by-products for better output performance.

Fig. 3. Model outputs for machine learning algorithms engaged.
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7. Conclusions

This study examined the radionuclide content of agricultural by-
products and predicted their excess lifetime cancer risks (ELCR) using
six different machine learning algorithms. The main findings of this
research revealed that the naturally occurring radionuclides in RHA,
MS, POC, and POFA do not pose a cancer risk. However, the potential
users should apply them with caution. The excess lifetime cancer risks
in RHA, MS, POC, and POFA were approximately 12%, 63%, 22%, and
31% lower than the UNSCEAR world population-weighted averages.
The LR represents the most accurate technique for predicting the ELCR
of surveyed agricultural byproducts. In comparison to SVM, RT, ET,
GPR, and NN algorithms, the LR method yielded the best error-free
efficiency in terms of mean absolute error for training and testing the
ELCR datasets.

Overall, the results help identify, understand and predict the cancer-
related risks associated with the use of agricultural byproducts derived
from recycled agricultural waste. In addition, it provides the reference
data for establishing the radiation monitoring framework and re-
commendations for the use of agricultural byproducts containing NORs.
However, for further studies, the range of the ELCR of the agricultural
datasets should be considered to provide higher efficiency in predicting
the ELCR of agricultural byproducts.
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