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A B S T R A C T   

Mortar is subjected to high temperatures during fire attacks or when it is near heat-radiating equipment like 
furnaces and reactors. The physical and microstructure of mortar were considerably altered by high tempera
tures. In this investigation, the effects of elevated temperatures on the flexural and compressive strengths of 
wood ash (WA) cement mortar modified with green-synthesised Nano titanium oxide (NT) were examined. In 
order to produce mortar samples, the cement was replaced with 10% WA, and 1–3% NT by weight of binder were 
added at constant water-binder ratio. The specimens were heated to 105, 200, 400, 600, and 800 ◦C with an 
incremental rate of 10 ◦C per min in the electric furnace for a sustained period of 2 h to measure their strengths. 
The machine learning algorithm of artificial neural networks with Levenberg-Marquardt backpropagation 
training techniques of different network architectures was engaged to predict the compressive strength of WA- 
cement-NT-based mortar produced. The findings showed that higher temperatures reduced compressive 
strength after 400 ◦C and flexural strength after 200 ◦C. The mortar specimen with a 3% NT addition showed the 
highest residual compressive strength increase, ranging from 18.75 to 27.38%. Compared to compressive 
strength, flexural strength is more severely affected by high temperatures. The backpropagation training algo
rithm revealed that each hidden layer displayed its unique strong prediction. However, Levenberg-Marquardt 
backpropagation training technique of 7–10-10-1 network structures yielded the best performance metrics for 
training, validation, and testing compared to 7-10-10-10 and 7-10-1 network architectures.   

1. Introduction 

Recently, more focus has been placed on how concrete and mortar 
behave when temperatures are high. When a fire is present or when 
mortar and concrete are in close proximity to heat-radiating machinery 
like furnaces and reactors, they are subjected to high temperatures. High 
temperatures are one of the elements that contribute to the deterioration 
of mortar and concrete, which affects the resilience of concrete struc
tures [1]. Mortar and concrete both underwent considerable physical 
and chemical changes at high temperatures. According to Arioz [2], high 
temperatures have a significant impact on cement paste, aggregate 
characteristics, and the bond between the cement paste and aggregate in 
mortar or concrete. 

Because mortar and concrete have a poor coefficient of thermal 
conductivity, heat movement through them is slow. Due to the delayed 

process, there was a considerable temperature gradient between the 
exterior surfaces of the mortar or concrete and their interior cores, 
which caused further damage as the heat increased [3,4]. Hertz [5] 
noted that calcium silicate hydrate released chemically bound water at 
110 ◦C while microcracks started to appear in the material at 300 ◦C as a 
result of dehydration of the matrix and thermal expansion of the ag
gregates. The characteristics of the material (the type of aggregate and 
cement used), the moisture level, the size of the fire, and the addition of 
additives all have a significant impact on how severely mortar or con
crete components are damaged by elevated temperatures. The goal of 
this study is to determine the best way to incorporate additives into 
mortar to minimize heat transmission. 

To enhance the mechanical and durability properties of mortar and 
concrete, agro-industrial waste products are utilized and the results are 
promising. For examples, fly ash [6,7], rice husk [8–10], maize cob [11, 
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12], wood ash [13–15], silica fume [16,17], shea nut shell ash [18], 
cashew nutshell ash [19], and palm oil fuel ash [20] are the 
agro-industrial waste materials that have been extensively researched. 
For instance, Raheem and Adenuga [14] investigated the prospects of 
wood ash as a partial replacement of cement in the production of con
crete. The findings showed that the slump and compacting factor of 
concrete containing wood ash beyond 10% replacement level becomes 
more workable as the wood ash content increases, signifying that less 
water is needed to make the concrete workable. Additionally, after 7–90 
days of curing, concrete with 5 and 10% wood ash has greater strength 
than the control. Yang et al. [15] studied the effects of wood ash on 
properties of concrete and flowable fill. The addition of wood ash to RCC 
was found to be beneficial for compaction and lowering the likelihood of 
segregation. Additionally, the addition of wood ash to mixtures of 
flowable fill can help improve flow, reduce bleeding and subsidence, 
and provide controlled strength, particularly when mixed with class C or 
class F fly ash. The use of wood ash in this study is justified, among other 
things, by these factors. 

In studies on elevated temperature, AbdulAwal and Shehu [21] 
assessed the performance of high-volume palm oil fuel ash (POFA)-
based concrete when exposed to elevated temperature and concluded 
that concrete containing 50% POFA performed better than typical or
dinary Portland cement (OPC) concrete at high temperatures. Addi
tionally, Demiral and Kelestemur [3] considered the impact of increased 
temperature on the mechanical characteristics of concrete containing 
silica fume and finely ground pumice (FGP). The study’s conclusions 
demonstrated that concrete with a high amount of FGP had a low 
compressive strength and low ultrasonic pulse velocity, which helped to 
mitigate the extreme effects of high temperature on it. Kaya et al. [6] 
investigated the behavior of class F fly ash based geopolymer mortars 
subjected to elevated temperatures of 200, 400, 600, and 800 ◦C. It was 
observed that there was an increase in the flexural and compressive 
strengths of some geopolymer mortars after high temperature exposure. 
In general, geopolymer mortars exhibited better performance at 
elevated temperatures in comparison to control cement mortar mixture. 
Donatello et al. [22] investigated the physical and chemical modifica
tions brought about by high volume fly ash cement pastes being heated 
to temperatures of up to 1000 ◦C. The study found that, in contrast to 
OPC paste, fly ash-cement paste had greater residual strength. Aydin and 
Baradan [23] looked into how fly ash and mortar pumice responded to 
high temperatures. The findings demonstrated that adding fly ash to 
pumice aggregate mortar improves the mortar’s resistance to high 
temperatures. 

In order to improve the performance of mortar and concrete at high 
temperatures, the incorporation of nanoparticles has also been 
researched. The effects of extreme heat on the characteristics of cement 
mortars comprising heavyweight aggregates and nano silica were eval
uated by Horszczaruk et al. [24]. According to the study, adding nano 
silica up to 3% by weight improved cement mortar resilience at high 
temperatures up to 200 ◦C, after which the effect is less noticeable. 
Similarly, Ibrahim et al. [25] examined the fire resistance of a 
high-volume fly ash mortar containing nano silica. The findings 
demonstrated that mortar specimens containing fly ash and nano silica 
had significant residual strengths after being exposed to 700 ◦C. Despite 
numerous research on the effects of supplementary cementitious mate
rials and nanomaterials on the mechanical properties of mortars exposed 
to high temperatures, little or no study has been conducted on perfor
mance of wood ash-cement based mortars exposed to elevated temper
atures. Because of this, this study was conducted. 

As a result of their artificial intelligence mimicking the neurons in 
the human brain, machine learning algorithms (MLAs) are constantly 
growing in the scientific and technological discourse. It creates a system 
out of data sets and discovers patterns and connections between 
different factors and groups of factors that would be difficult to carry out 
manually [26]. There are three layers in the machine learning algo
rithm: input, hidden, and output. Neurons from the hidden layer are 

mixed with input components in the input layer. However, the goal 
factor that the hidden layer received makes up the output layer [26]. As 
a result, the entire learning process takes place in the hidden layer, 
where interconnections between neurons are discovered. Machine 
learning algorithms have been used in numerous research to forecast 
strength of mortar and concrete mixes subjected to elevated tempera
tures [27–29]. Asteris et al. [27] predicted the cement-based mortars 
compressive strength using machine learning techniques such as support 
vector machine, random forest, decision tree, AdaBoost and k-nearest 
neighbours. The results showed that the highest prediction accuracy was 
obtained from the AdaBoost (Adaptive Boosting) and random forest 
models. Bingol et al. [28] investigated the neural networks analysis of 
compressive strength of lightweight concrete after high temperatures 
(up to 700 ◦C). The compressive strength of lightweight and 
semi-lightweight concretes with pumice aggregate exposed to high 
temperatures was modelled using an artificial neural network (ANN) 
technique. The target temperature, the ratio of pumice to aggregate, and 
the length of the heating process were the model’s inputs, and its output 
was the concrete’s compressive strength. The ANN’s projected values 
were in accordance with the experimental data, and the outcomes 
showed that the model could accurately estimate compressive strength. 
Moreover, Najm et al. [29] studied the mechanical properties, crack 
width, and propagation of waste ceramic concrete subjected to elevated 
temperatures (100, 200, and 300 ◦C). The application of machine 
learning models such as artificial neural networks (ANN) and multiple 
linear regression (MLR) was employed to predict the compressive and 
tensile strength of concrete. The linear coefficient correlation (R2) and 
mean square error (MSE) were evaluated to investigate the performance 
of the models. Based on the computational analysis, it was found that the 
developed MLR model shows higher efficiency than ANN in predicting 
the compressive and tensile strength of Portland cement concrete, waste 
ceramic concrete, and waste ceramic-fibre concrete. However, the 
rapidly evolving technology is predicted to advance social modernisa
tion to completely new heights. One such amazing development is 
neural networks. Simulated neural networks (SNNs), also known as 
artificial neural networks (ANNs), are a machine learning application 
that simulates human-like artificial intelligence (AI) systems. As a result, 
the ANN of machine learning algorithm was used in this study because of 
its adaptability, effectiveness, fault toleration, multitasking, capacity to 
function with incomplete knowledge, and the capacity to understand 
intricate links between input and output patterns that would be chal
lenging to model using traditional techniques [30,31]. 

This study examined the impact of high temperatures on the 
compressive and flexural strength parameters of WA-cement-based 
mortars modified with nano titanium (NT). In order to produce mortar 
samples, the cement was replaced with 10% of WA, and 1, 2, and 3% NT 
by weight of binder were added while keeping a constant water-binder 
ratio (w/b) throughout all mixes. The specimens were subjected to tests 
to ascertain their residual compressive and flexural strengths after being 
heated in an electric furnace to temperatures of 200, 400, 600, and 800 
◦C. The artificial neural networks were engaged to train the mix design 
datasets using and the Levenberg-Marquardt, Bayesian Regularization, 
Scaled Conjugate Gradient backpropagation training algorithms. By 
evaluating the metrics for measuring the efficacy of each technique, the 
most effective algorithm for forecasting compressive strength of WA- 
cement-NT-based mortar was discovered. Therefore, these results aid 
in understanding how well wood ash-cement-based mortar performs at 
high temperatures. Additionally, it offers the reference data for devel
oping a framework for high temperature-resistance products utilizing 
cement and nanomaterials. 

2. Materials and method 

2.1. Materials 

The Cement (CEM 1, 52.5 N), wood ash (WA), and water used were 
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sourced from South Africa. Tables 1 and 2 present the properties of 
cement and WA used. According to Table 2, which lists the oxide com
positions of the WA, the pozzolan is appropriate for usage because it has 
a SiO2 + Al2O3 + Fe2O3 content of 77.67% which is greater than 70%. 
Instead of the exorbitantly expensive European Silica Standard Sand 
(ESSS), South Africa Silica Sand (SASS) was utilized, consisting of di
ameters 0.8–1.8 mm, 0.4–0.85 mm, and 600 mm in that sequence. Fig. 1 
shows the SASS and ESSS grading analysis [32]. Fig. 1 shows that both 
SASS and ESSS compared favourably, with fineness modulus (FM) of 3.5 
and 3.45, respectively. The green-synthesised Nano-TiO2 (NT) was 
processed and obtained from Nigeria. 

2.2. Synthesis of Nano-TiO2 

The green-synthesised Nano-TiO2 (NT) was biogenically produced 
utilizing a Cola nitida pod extract. To make the extract, 1.5 g of the 
milled pod was combined with 150 ml of distilled water and heat for an 
hour in a water bath at 60 ◦C. The extract was centrifuged at 4000 rpm 
for 20 min after filtering through Whatman No. 1 filter paper. After that, 
the extract was added to 600 ml of TiO2 solution by mixing 0.5 g of TiO2 
with 0.6 ml of water, producing the NT. The mixture was prepared at 30 
± 2 ◦C room temperature and left for approximately 2 h [32,35]. An 
alteration in the solution’s colour that was seen visually until it stabi
lized, as illustrated in Fig. 2, was used to detect the formation of 
Nano-TiO2 (NT). Fig. 3 displays the morphologies of NT. NT particles are 
spherical in shape, as shown in Fig. 3a by the scanning electron micro
scope (SEM), and they are approximately 38 nm in size, as shown in 
Fig. 3b by the transmission electron microscope (TEM). 

2.3. Preparation of mortar specimens 

There were five different types of mortar specimens made, with the 
codes A, B, C, D, and E. CEM1 and SASS, which are exclusively used as 
the control experiment, are included in Category A. A 90% of CEM1, 
10% WA, and SASS are found in Category B. A 90% CEM1, 10% WA, 
SASS, and 1, 2, and 3% NT, respectively, are present in Categories C, D, 
and E. The mortar pastes were molded into 50 mm cubes for compressive 
and 40 × 40 × 160 mm prisms for flexural strengths tests in accordance 
with SANS 196–1:2006 [34] guidelines. The blended cement mixes were 
prepared by mixing CEM1 and WA in the dry state for successive periods 
of 5 min until homogeneity was achieved. The mortar was prepared with 
a blended cement to sand ratio of 1:3 and a water/binder (w/b) of 0.5. It 
had been established that 10% WA substitution with up to 3% NT at w/b 

of 0.5 exhibited the best results for workability and strength properties, 
and for structural purposes [14,36]; hence, this was employed in this 
study. Since NT is a liquid, it was used as a percentage replacement for 
water during mixing to avoid increasing the mix’s w/b, as recommended 
by Berra et al. [37] and Horszczaruk et al. [24]. The mortar’s ingredient 
mixing ratio is shown in Table 3. 

Initially, the mortar samples were stored in humid air for 24 h at 20 
◦C and 90% relative humidity. After that, the samples were removed 
from the moulds and cured for 56 days at 25 ± 3 ◦C. 

2.4. Heating and cooling regimes 

On the 56th day of curing, the samples were removed from the curing 
tank, cleaned, and weighed before being put into an electric oven to dry 

Table 1 
Properties of cement used [33].  

Chemical Composition Cement SANS 50197–1 [34] 

Insoluble residue, % 2.0 ≤5.0 
SO3% 2.0 ≤4.0 
LOI, % 2,5 ≤5.0 
Cl− % <0.01 ≤0.1 
Physical Properties 
Setting times: 125 ≥45 
Initial: minutes 2.5 No requirement 
Final: hours   
Specific Area (Blaine): m2/kg 400 No requirement 
Compressive strength  ≥20,0 

≥52.5 
(Mortar prism EN 196–1):   
At 2 days (MPa) 28  
At 28 days (MPa) ±58  
Soundness: 

Le Chatelier Expansion (mm) 
1 ≤10 

Densities: 
Relative density ± 3.14 
Bulk density, aerated, kg/m3 1100–1300 
Bulk density, as packed, kg/m3 ± 1500  

Approximate Volume: 50 kg bag, ℓ ± 33   

Table 2 
Oxide compositions of WA used.  

Oxide composition Composition (%) 

SiO2 65.10 
Al2O3 5.32 
Fe2O3 7.25 
CaO 10.56 
MgO 2.75 
SO3 1.62 
Na2O 1.04 
K2O 3.36 
CaCO3 4.37 
LOI 5.18 
LSF 1.23 
SR 4.43 
AR 6.96  

Fig. 1. Grading curves of SASS and ESSS [32].  

Fig. 2. Preparation of Nano-TiO2 (NT).  
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for 24 h at a constant temperature of 105 ± 5 ◦C. A furnace with a ca
pacity of 1400 ◦C was used for elevated temperature studies. Specimens 
were subjected to elevated temperatures of 105, 200, 400, 600, and 800 
◦C with an incremental rate of 10 ◦C per min in the furnace for a sus
tained period of 2 h and then air annealed to achieve the thermal steady 
state. After being gradually heated to the desired peak temperature, the 
specimens were kept in the furnace for an extra hour to stabilize the 
temperature on their surfaces. After 2 h of cooling at room temperature, 
the samples were removed from the furnace and examined. This is 
comparable to the approach taken by Ref. [24]. Calculations were made 
to determine the specimens’ percentage weight loss as a result of the 
high temperatures. The percentage weight loss was calculated using the 
average mass loss of three specimens at each temperature, as given in 
Eq. (1): 

Weight loss (%)=
Mass at 20 ◦C − Mass at desired temperature

Mass at 20 ◦C
× 100%

(1)  

2.5. Testing of mortar specimens 

All specimens’ weights were measured prior to testing. The strength 
measurement was carried out by using UTM by applying compressive 
force at an incremental rate of 3 kN/s for each test at a particular tem
perature. A mortar press, ToniPRAX, Model 2010, SN 834, was used to 
exert stress on the prism specimen until it splits into two equal halves, 
and the flexural strength was also measured. According to the guidelines 
in SANS 196–1 [38], compressive and flexural strengths were evaluated 
using an average of three mortar prisms and cubes, respectively. 

2.6. Artificial neural networks 

Using input and output training data, neural networks offer the 

fundamental knowledge needed to identify the ideal operating point. 
When the neural network is given an input and an output with a cor
responding intended or target response, the training is known as su
pervised training [39–41]. A crucial decision in choosing the overall 
neural network architecture is the number of neurons in the hidden 
layers [42]. Even when they do not immediately interact with the 
environment, these layers have a substantial impact on the outcome. 
Hence, the number of hidden layers and the number of neurons in each 
of these hidden levels should be carefully analysed to avoid underfitting 
and overfitting [42,43]. 

In order to provide consistent data, adequately address the problems 
associated with multi-dimensional mapping, and have enough neurons 
in its hidden layer, this work used backpropagation training techniques 
with sigmoid hidden neurons and linear output neurons [41]. The 
network was trained using Levenberg-Marquardt backpropagation al
gorithm, which ultimately produced appropriate training method re
sults. This benefit is substantial when working with large networks that 
contain many neurons and can significantly shorten training and eval
uation periods [44–48]. In addition, among all available training algo
rithms in the prediction of mechanical properties, crack width, and 
propagation of waste ceramic concrete subjected to elevated tempera
tures, the Levenberg–Marquardt algorithm produced the best ANN 
prediction [29]. These justify the rationale behind the selection of 
Levenberg-Marquardt backpropagation algorithm used in this study. 
However, the function of Levenberg-Marquardt backpropagation is 
restricted by its computation, which uses the Jacobian, presuming that 
performance is a mean or sum of squared errors [42]. Therefore, net
works trained with these functions must either use the mean squared 
error (MSE) or sum squared error (SSE) performance function. 

As the number of hidden layers rises, the number of model co
efficients does as well. To provide reliable and trustworthy estimations 
of these model coefficients, a large amount of data is needed. These led 
to the claim that an ANN with two hidden layers was sufficient to 
accurately represent the majority of functions in the real world [49]. 
However, ANNs with more than two hidden layers have greater capacity 
for data learning and testing, which raises prediction accuracy [50]. As a 
result, this study applied the network architecture called ANN 7-n-1, 
where the first character is the number of input nodes, n is the number of 
hidden layers ranging from 1 to 3, and third character is the number of 
output. To analyze how each network architecture’s prediction accuracy 
improved for the compressive strength of mortar [51,50], the number of 
neurons in each hidden layer was tested from 2 to 14. 

In an ANN, training and test sets of data are created from the original 
data set. The dataset is examined to determine the model’s accuracy 
once a model has been fitted using a subset of the original dataset. Thus, 
quality training data form the basis of ANN. It is therefore essential to 
feed the model with high-quality, pertinent, consistent, comprehensive, 
and uniform data [52]. The neural network was built using a total of 
seven input variables as training datasets. They are cement, wood ash, 

Fig. 3. Morphology of green-synthesised Nano-TiO2 (NT) [32]. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Table 3 
Mix proportions of mortar samples.  

Sample 
code 

Sample designation Materials weight (g)   

CEM 
1 

WA SASS NT Water 

A 100% CEM 1+ SASS 
(Control) 

450 – 1350 – 225 

B 90% CEM1 + 10% WA +
SASS 

405 45 1350 – 225 

C 90% CEM1 + 10% WA +
1% NT + SASS 

405 45 1350 4.5 220.5 

D 90% CEM1 + 10% WA +
2% NT + SASS 

405 45 1350 9.0 216 

E 90% CEM1 + 10% WA +
3% NT + SASS 

405 45 1350 13.5 211.5  
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silica sand, Nano titanium oxide, water, curing day, and temperature. A 
target variable, otherwise called target dataset, is compressive strength. 
Therefore, compressive strength was predicted based on the training 
datasets. A 70% of the samples were used for training, 15% for valida
tion, and 15% for testing, in keeping with other pertinent studies on 
ANNs [53–64]. The mean square errors (MSE) of the training, the vali
dation, and the testing are tracked as several trials are done for the 
training with changing numbers of neurons in the hidden layer, starting 
with a low number and progressively increasing it. The hidden layer’s 
neuron count is calculated using the training, validation, and testing sets 
of data with the lowest mean square errors (MSE) and highest coefficient 
correlation (R) [53,54,65]. Due to the various starting conditions and 
sampling, training repeatedly will produce a diversity of results. How
ever, by developing a function and giving the ANN a random stream, this 
randomness was prevented. The ANN was engaged using MATLAB 
R2021a version 9.10.0 1602886. Fig. 4 shows the best neural network 
architecture. The correlation coefficient (R) and mean square error 
(MSE) were the performance indicators used in this investigation. The 
forecast’s accuracy increases as R-value approaches 1. However, the 
forecast is more accurate when the MSE is less than 0. The performance 
metrics are illustrated in Eqns. (2) and (3). The created network model 
was used to make new predictions based on untrained data. This is 
important since a model has to be able to forecast new data that has not 
yet been observed or trained. 

R= 1 −

∑n

i=1

(
ypred

i − ytrue
i

)

∑n

i=1

(
ypred

i − ytrue
i

) (2)  

MSE=
1
n
∑n

i=1

(
ypred

i − ytrue
i

)2
(3) 

Tables 4 and 5 present the range and statistical description of data, 
respectively. Three samples from each of the specimens C, D, and E at 1, 
2, and 3% NT, respectively, are included in the data. The dataset has a 
single target, which is compressive strength (CS). The inputs comprise 
seven arguments: cement, wood ash (WA), South Africa Silica Sand 
(SASS), Nano titanium oxide (NT), water, curing day (CD), and tem
perature (Temp). 

3. Results and discussion 

3.1. Weight loss 

Fig. 5 shows the percentage weight loss of mortars due to the impact 
of high temperatures. As can be seen from Fig. 5, the weight loss 

increases as the temperature rises. At 105, 200, 400, 600, and 800 ◦C, 
specimen A experienced weight losses of 6.5, 7.6, 9.7, 11.8 and 12.2%, 
respectively. The weight loss increased from 7.6% at 105 ◦C to 12.6% at 
800 ◦C with WA added to CEM1 in specimen B. The addition of 1% NT to 

Fig. 4. Best neural network architecture (7-10-10-1).  

Table 4 
Range of input and target data.  

Constituents Data type Unit Minimum value Maximum value 

Cement Input g 405 405 
WA Input g 45 45 
SASS Input g 1350 1350 
NT Input g 4.50 13.50 
Water Input g 211.50 220.50 
Temp 

CD 
Input 
Input 

oC 
day 

20 
56 

800 
56 

CS Output MPa 16.60 50.21  

Table 5 
Statistical description of data.  

Statistics NT (g) Water (g) Temp (oC) CS (MPa) 

Mean 9 216 346.25 38.39 
Median 9 216 200 42.22 
Mode 4.5 220.50 20 – 
Standard deviation 3.71 3.71 283.49 10.91 
Count 48 48 48 48  

Fig. 5. Percentage weight loss of WA-cement-NT-based mortars at different 
temperatures. 
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the binder somewhat lessened the weight loss in specimen C, with the 
percentage falling from 6.5% at 105 ◦C to 12.1% at 800 ◦C. Compared to 
specimens A, B, and C, specimens D and E have greater percentage of 
weight loss. The release of bound water in the mortar is thought to be the 
cause of the weight loss, which increases in percentage as temperatures 
rise. The evaporable water in the mortar is forced out as the temperature 
rises, resulting in a loss of mass for the specimens [66,67]. Cement-based 
composites exhibit considerable mass loss at temperatures above 400 ◦C 
[68]. Fares et al. [69] also supported this assertion, where at a high 
temperature of 400 ◦C, all the specimens in this investigation experi
enced a weight loss of roughly 10%. All mortar specimens experienced 
greater weight losses after the temperature reached 400 ◦C. With 1% NT 
added, Specimen C had the smallest percentage improvement in weight 
reduction. 

3.2. Flexural strength 

Fig. 6 illustrates the flexural strength of WA cement mortars incor
porated with NT when subjected to high temperatures. The flexural 
strength typically increased up to 200 ◦C and decreased after that up to 
an enhanced temperature of 800 ◦C. At 600 and 800 ◦C, flexural strength 
started to drop more quickly. After drying samples at 105 ◦C for 24 h, the 
flexural strength rose considerably. As temperature rose from 20 to 105 
◦C, the strength of specimens A, B, C, D, and E increased from 7.67 to 
8.62 MPa, 5.75–8.09 MPa, 6.38–7.57 MPa, 6.25–6.97 MPa, and 
5.90–5.93 MPa, respectively. Additionally, at 200 ◦C, slight increases 
were seen. These outcomes were comparable to those mentioned by 
Horszczaruk et al. [24]. There was a decrease in strength after the 
temperature reached 200 ◦C. Specimens A, B, C, D, and E recorded 7.11, 
6.06, 5,53, 5.91, and 6.01 MPa at 400 ◦C and 2.31, 2.08, 1.98, 2.25, and 
2.16 MPa at 600 ◦C, respectively, indicating a very considerable strength 
loss between 400 and 600 ◦C. At 800 ◦C, none of the specimens’ flexural 
strengths were greater than 1.00 MPa. 

The hardened mortar samples developed micro-cracks because of 
burning at high temperatures, which reduced their flexural strength. 
According to Heikal et al. [70], when cementitious composites are 
exposed to temperatures above 400 ◦C, micro-cracks begin to form and 
intensify as the temperature rises, lowering the flexural strength of the 
material. The majority of cement matrix hydration products completely 
disintegrate about 800 ◦C [71]. According to Morsy et al. [72], the 
development of micro-cracks is what causes the flexural strength to drop 
as temperature rises from 250 to 800 ◦C. Additionally, the driving out of 
free water and a portion of the cement mortar’s hydration water due to 
high temperatures might be responsible for the decrease in flexural 
strength [72]. Basically, the decrease in flexural strength due to increase 
in temperature from 400 to 800 ◦C is due to dehyroxylation of Ca(OH)2. 

The increased micro-cracking is the result of high thermal stresses, 
which are generated due to the induced temperature gradients up to 800 
◦C. The addition of NT to WA cement mortar has no appreciable impact 
on flexural strength at high temperatures. 

3.3. Compressive strength 

Fig. 7 displays the compressive strength of WA cement mortar 
specimens modified with NT following exposure to high temperatures. 
As shown in Fig. 6, the compressive strength of each mortar specimen 
grew gradually up to the point of 400 ◦C before abruptly decreasing 
between that point and 800 ◦C. These findings are consistent with the 
pertinent study’s results, which showed that the compressive strength of 
mortar made of nano-metakaolin and cement increased before and after 
exposure to increasing temperatures of 200–400 ◦C, but fell above 400 
◦C [72]. The increase in compressive strength up to 400 ◦C may be 
attributed to the additional hydration of unhydrated cement grains 
because of steam effect under the condition of the so-called internal 
autoclaving effect [72]. However, the decrease in compressive strength 
with increase in temperature above 400 ◦C may be due to the dehy
dration of calcium hydroxide, generating CaO and H2O. Strength losses 
over 400 ◦C, are mainly caused by calcium carbonate dissociation and 
subsequent CO2 escape from CaCO3 [72]. 

Fig. 8 displays the residual strengths of mortar specimens at various 
high temperatures. For specimen A (the control), as temperature rose 
from 20 to 400 ◦C, the compressive strength increased from 5.54 to 
14.63%. As specimen B showed a strength increase of between 13.56 
and 23.18% for the same temperature range, higher residual compres
sive strength was seen with the addition of WA to cement mortar. Only 
between 7.07 and 12.27% more strength was gained with the addition of 
1% NT, as seen for specimen C. The specimen E with a 3% NT addition 
showed the greatest gains in residual strength, ranging from 18.75 to 
27.35%. Ultimately, the replacement of cement with 10% WA and 1–3% 
NT resulted in better strength at higher temperature (200–400 ◦C) than 
the control samples. Due to the dehydration of calcium-silicate-hydrate 
(C–S– H) and Portlandite (Ca(OH)2) in the binder gel as well as the 
formation of internal stress, cement deteriorates at high temperatures 
[73]. 

The pozzolanic interaction between the cement’s Ca(OH)2 and the 
reactive SiO2 from the WA, which reduced the amount of Ca(OH)2 in the 
mixture, may be attributed to specimen B’s higher residual compressive 

Fig. 6. Flexural strength of WA cement mortars incorporated with NT at 
elevated temperatures. 

Fig. 7. Compressive strength of WA cement mortars containing NT at elevated 
temperatures. 
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strength than specimen A’s [23]. In a similar vein, the introduction of 
3% NT, which improved the microstructure by nano-filling and nucle
ating, contributed to the increase in compressive strength and is 
responsible for the maximum residual strength seen in specimen E [70]. 
Because TiO2 increases the microstructure of cement paste in this way, 
natural mortar may benefit from its high temperature resistance because 
any potential thermal stresses may not be high enough to damage the 
natural mortar’s stronger interfacial transition zone (ITZ). 

When exposed to temperatures between 600 and 800 ◦C, the 
compressive strength of every specimen significantly dropped; speci
mens A, B, C, D, and E reportedly decreased by 26.18 and 54.43%, 11.64 
and 53.86%, 27.49 and 60.53%, 19.22 and 56.42%, and 12.85 and 
57.15%, respectively. Since all specimens lost their strengths at 600 and 
800 ◦C, the elevated temperatures of 600 and 800 ◦C was particularly 
problematic. Previous studies have verified the loss of compressive 
strength of mortar and concrete specimens at elevated temperatures of 
400–800 ◦C [73–75]. The strength decrease of Nano-TiO2 admixed 
geopolymer after exposure to temperature above 400 ◦C, according to 
Sivasakthi et al. [73], was due to increased geopolymerization and 
sintering, which improve thermal stability. If not, thermal in
compatibility results in destruction. In addition, the coefficient of ther
mal expansion (CTE) varies with porosity and with the composition of 
the cement paste [74]. The decrease in compressive strength of Nano-
TiO2-recycled aggregates based-mortars above 400 ◦C is ascribed to the 
different thermal properties of cement paste with Nano-TiO2, inducing 
additional thermal stresses that cause damage in the weak ITZ of mortars 
with recycled aggregates [74]. Bastami et al. [75] attributed the 
decrease in compressive strength to the specimens becoming dehydrated 
due to the loss of physically bonded water, which has an impact on the 
mechanical properties. According to a study by Lin et al. [76], concrete 
specimens underwent substantial deterioration at a high temperature of 
800 ◦C because of the dissolution of the C–S–H gel. This holds true for 
the mortar specimens under investigation as well. Ibrahim et al. [25] ‘s 
further claimed that the extreme strength loss over 700 ◦C is caused by 
an excessive build-up of vapour pressure, which results in the specimens 
developing significant cracks. 

3.4. Correlation between flexural strength and compressive strength 

The relationship between the flexural strength and compressive 
strength of WA-cement-NT-based mortar subjected to elevated temper
atures is presented in Fig. 9. The datasets comprised the results obtained 
from 90% CEM1 + 10% WA + 1% NT + SASS, 90% CEM1 + 10% WA +

2% NT + SASS, and 90% CEM1 + 10% WA + 3% NT + SASS at tem
peratures varied from 20 to 800 ◦C. After the regression analysis, the 
power trend line yielded the best-fit equation. The regression equation, 
as shown in Fig. 9, signified that coefficient of determination (R2) is 
92.88% fit to predict the datasets at 95% confidence and predictive in
tervals for 56 days of curing. This result aligns with the findings of Morsy 
et al. [72] where the correlation between the flexural and compressive 
strengths of blended cement mortars containing nano-metakaolin at 
elevated temperatures (20, 250, 450, 600, and 800 ◦C) yielded 87.27% 
R2 at 28 days of curing. The slight variation may be attributed to the 
material properties, days of curing, water/binder ratio, and aggrega
tes/binder ratio. Therefore, this equation can be applied in the predic
tion of blended cement mortars modified with Nano-TiO2. 

3.5. Artificial neural networks 

3.5.1. Performance metrics 
Based on the developed number of network architectures, the 

Levenberg-Marquardt backpropagation’s performance indicators for the 
compressive strength of WA-cement-NT-based mortar are shown in 
Table 6–8 for one, two, and three hidden layers, respectively. Comparing 
the backpropagation training algorithms for 1-hidden layer with 2–14 
neurons, as shown in Table 6, 7-4-1 network structures yielded the best 
metrics for predicting the compressive strength of WA-cement-NT-based 
mortar. This signified that the number of neurons in the 1-hidden layer 

Fig. 8. Residual strength of WA cement mortars containing NT at elevated 
temperatures. 

Fig. 9. Relationship between flexural strength and compressive strength.  

Table 6 
Performance metrics for 1- hidden layer with 2–14 number of neurons.  

Network architecture Results Performance metrics MSE R 

7-2-1 Training  0.99691 
Validation 0.800 0.98784 
Testing  0.99629 

7-4-1 Training  0.99920 
Validation 0.194 0.99756 
Testing  0.98962 

7-6-1 Training  0.99759 
Validation 0.360 0.97158 
Testing  0.98756 

7-8-1 Training  0.99682  
Validation 0.297 0.99611  
Testing  0.99760 

7-10-1 Training  0.99736  
Validation 0.300 0.99437  
Testing  0.99787 

7-12-1 Training  0.99982  
Validation 
Testing 

0.360 0.97524 
0.99759 

7-14-1 Training  0.87050  
Validation 0.0355 0.98476  
Testing  0.93194  
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optimized for the Levenberg-Marquardt backpropagation is four. This 
result suggests that the best model created for the prediction of 
compressive strength of WA-cement-NT-based mortar does not actually 
need a higher number of neurons in the 1-hidden layer. This supports a 
prior study in which the forecast of building cooling load led to shallow 
architecture rather than deep networks because of the limited amount of 
dataset [77]. The free-error performance, as revealed by MSE in Table 6, 
indicated that 7-4-1 network architecture is about 35–76% more effi
cient than other network structures. The MSE for 7-14-1 network is 
lower than 7-4-1- network structure, but the correlation coefficients of 
7-4-1- network structure for training, validation, and testing are stronger 
than the 7-14-1 network architecture. Thus, a 7-4-1- network structure is 
adjudged as best network in the 1-hidden layer. The reasons for this 
performance might be accounted for by how quickly 7-4-1 network 
trains moderate-sized feedforward neural networks (up to several hun
dred weights) [78,79]. Conversely, when the number of hidden layers 
increased from one to two and three, as indicated in Tables 7 and 8, the 
number of neurons in the second and third hidden layers optimized for 
the Levenberg-Marquardt backpropagation are ten (10) and fourteen 
(14). These connote that the number of the hidden layers increased with 

increasing number of neurons. From Table 7, a 7-10-10-1 network ar
chitecture produced the best performance metrics compared to other 
network structures in 2-hidden layer with about 21–99% error-free ef
ficiency. In the same vein, a 7-14-14-14-1 network architecture exhibi
ted the best performance indicators compared to other network 
structures in 3-hidden layer with about 48–99% error-free efficiency. 

A good network topology cannot be inferred solely from the numbers 
of input and output data. The truth is that a good number of hidden 
layers can accurately shorten training times with high accuracy. There 
are numerous methods for standardizing the best number of hidden 
layers needed for neural networks; however, each time, the estimate 
relies on the type of database [80,81]. Moreover, Panchal et al. [82] 
inferred that the best number of hidden units depends on the numbers of 
input and output units, the number of training cases, the amount of noise 
in the targets, the complexity of the function or classification to be 
learned, the architecture of the type of hidden unit activation function, 
and the training algorithm. On this note, comparisons of the overall 
accuracy of hidden layers used in this study were made. It is evident in 
Table 7 that 2-hidden layer with ten number of neurons in each layer 
(7-10-10-1) yielded the best correlation coefficient for training, valida
tion, and testing of input and output arguments. This is followed by 
3-hidden layer with fourteen neurons in each layer (7-14-14-14-1) in 
Table 8, and lastly, 1-hidden layer with four neurons in the layer (7-4-1) 
in Table 6. These results infer that the prediction of compressive strength 
of WA-cement-NT-based mortar using the Levenberg-Marquardt back
propagation training technique reached its best learning at 2-hidden 
layer network with ten neurons in each hidden layer. The reasons can 
be attributed to the generalization capacity of multiple layers, which 
learn all the intermediate features between the input data and high-level 
classification [83]. In addition, the results corroborate previous studies 
where an ANN with more hidden layers showed a better capacity for 
data learning and mining and improved the prediction accuracy [80,83]. 
For instance, Karsoliya [80] found a subpar performance indication 
when single layer was used in conjunction with the introduction of 
intricate and large problems. Then, it was established that in order to get 
satisfactorily results, the amount of hidden layers must be increased 
until accuracy is attained. 

Although, in principle, there is no reason for a deep neural network. 
A sufficiently wide neural network with just a single hidden layer can 
approximate any (reasonable) function given enough training data [83]. 
There are, however, a few difficulties with using wider and shallow 
networks with single layer. The main issue is that they are very good at 
memorization, but not so good at generalization, which is not useful for 
any practical application. This is why Panchal et al. [82] inferred that 
neural networks gave better performance as soon as number of hidden 
neurons and hidden layers increase. Ultimately, the model performs 
better as the correlation coefficient comes closer to 1. As a result, the 
performance metrics of the 7-10-10-1 network structure given in Table 7 
for the prediction of compressive strength of WA-cement-NT-based 
mortar showed the best performance. 

3.5.2. Mean squared error (MSE) of performance plot 
In Fig. 10, the best performance and error characteristics for the 

backpropagation training algorithms for the compressive strength of 
WA-cement-NT-based mortar are displayed. The best validation per
formance for the Levenberg-Marquardt, the best training performance of 
7-4-1, 7-10-10-1, and 7-14-14-14-1 network architectures at epochs 29, 
8, and 4, respectively, was evidently 0.51339, 0.036415, and 0.2860, 
verifying the outcomes shown in Tables 7–9. The results disclosed that 2- 
hidden layer network structure with 10 number of neurons in each layer 
(7-10-10-1) was more error-free efficient than 7-4-1 and 7-14-14-14-1 
networks. These results support a relevant work in which the logistic 
and tanh input functions provided mean squared errors of 0.010 and 
0.016 for ANN predictions of cement mortar compressive strength 
employing seven hidden layer neurons [57]. A network system with 
better training produces results with the least amount of error and can 

Table 7 
Performance metrics for 2- hidden layer with 2–14 number of neurons.  

Network architecture Results Performance metrics MSE R 

7-2-2-1 Training  0.83780 
Validation 30.100 0.72075 
Testing  0.20272 

7-4-4-1 Training  0.99986 
Validation 0.0355 0.99970 
Testing  0.99986 

7-6-6-1 Training  0.99853 
Validation 0.140 0.99959 
Testing  0.99858 

7-8-8-1 Training  0.99601  
Validation 0.241 0.99710  
Testing  0.99964 

7-10-10-1 Training  0.99981  
Validation 0.0359 0.99991  
Testing  0.99992 

7-12-12-1 Training  0.99967  
Validation 
Testing 

0.0452 0.98224 
0.99667 

7-14-14-1 Training  0.93463  
Validation 0.0355 0.68256  
Testing  0.72223  

Table 8 
Performance metrics for 3- hidden layer with 2–14 number of neurons.  

Network architecture Results Performance metrics MSE R 

7-2-2-2-1 Training  0.90158 
Validation 21.100 0.95041 
Testing  0.86854 

7-4-4-4-1 Training  0.64998 
Validation 16.900 0.87096 
Testing  0.48020 

7-6-6-6-1 Training  0.99982 
Validation 0.0228 0.06630 
Testing  0.97888 

7-8-8-8-1 Training  0.99988  
Validation 0.0247 0.99967  
Testing  0.99951 

7-10-10-10-1 Training  0.99989  
Validation 0.0232 0.97793  
Testing  0.98897 

7-12-12-12-1 Training  0.96174  
Validation 
Testing 

0.0237 0.98260 
0.98384 

7-14-14-14-1 Training  0.99992  
Validation 0.0119 0.99762  
Testing  0.99986  
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also be used to forecast future values that are unknown at the time. 
These results demonstrate that the data match the model well because of 
good training. 

The neural network training error histograms for the back
propagation training algorithms for the compressive strength of WA- 
cement-NT-based mortar are also shown in Fig. 11. The histogram 
error indicated that around 9 occurrences of projected values for 7-4-1 
network structure exhibited zero error at 0.0173%. Similarly, about 
14 instances of 7–10-10-1 network architecture resulted in zero error 
between − 0.023 and 0.024%. For 7-14-14-14-1 network structure, zero 
error between − 0.1588 and 0.0779% for about 20 instances. Figs. 10 
and 11 show that the data fit the model well as a result of good training 
and validation, which implies that a network system with superior 
training delivers results with the least amount of error and can also be 
used to predict the compressive strength of blended cement mortar 

modified with Nano TiO2. 

3.5.3. Regression plots of training, testing, and validation 
The correlation coefficients for training, validation, testing, and the 

combined set for the compressive strength of mortar based on WA- 
cement-NT are shown in Fig. 12. As shown in Fig. 12, the total set of 
all the R-values for the Levenberg-Marquardt backpropagation training 
techniques of 7-4-1, 7-10-10-1, and 7-14-14-14-1 network structures 
were 99.843%, 99.99%, and 99.70%, respectively. The value of the 
regression coefficient denotes the correlation between the output and 
the desired (target) value. The output and the target have a perfect 
relationship when the R-value is 100%. Relevant studies have shown 
that a random relationship exists when R-value is zero and that results 
are of higher quality when R-value is greater than 90% [54,61–63]. As 
can be seen in Fig. 12, the regression plots exhibit a strong relationship. 

Fig. 10. MSE plots for the best validation performance.  

Table 9 
Untrained datasets.  

S/ 
N 

Cement 
(g) 

WA 
(g) 

SASS 
(g) 

NT 
(g) 

Water 
(g) 

CD 
(day) 

Temp 
(oC) 

True value CS 
(MPa) 

Predicted (7-4-1) 
MPa 

Predicted (7-10-10- 
1) MPa 

Predicted (7-14-14-14- 
1) MPa 

1 405 45 1350 4.5 220.5 56 105 46.01 45.64 44.66 44.21 
2 405 45 1350 4.5 220.5 56 400 47.06 47.59 47.54 47.42 
3 405 45 1350 9 216 56 200 46.97 46.54 47.12 47.21 
4 405 45 1350 9 216 56 600 33.49 33.76 33.49 33.64 
5 405 45 1350 13.5 211.5 56 400 50.05 48.24 50.04 50.03 
6 405 45 1350 13.5 211.5 56 800 16.84 17.13 17.04 16.84  
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Aligning with a prior work, which used an ANN 5-11-1, the combined 
correlation coefficients of ANN predictions of cement mortar compres
sive strength were above 90% [57]. 

3.5.4. Validation of developed network architectures with untrained 
datasets 

Making sure the model actually fulfils the required function involves 
validating it with data that were not observed during model training. 
Usually, this entails proving the model’s accuracy in relation to the 
application for which it was intended. In particular, target data 
(compressive strength) and input data (cement, wood ash, silica sand, 
Nano titanium oxide, water, curing day, and temperature) were used to 
confirm the network structures that were built. The predicted responses 
for all trained network structures are presented in Table 9, while 
Table 10 shows the results of absolute and relative errors between the 
true and predicted responses. The errors arising from the analysis, as 
indicated in Table 10, are negligible. This indicates that the developed 
network architectures accurately predicted the compressive strength of 
WA-cement-NT-based mortar with a 95% confidence level and predic
tive ranges. The absolute errors of 0.37, 1.35, and 1.80 MPa indicated in 
Table 10 for 7-4-1, 7-10-10-1, and 7-14-14-14-1 network structures 
could be created by outliers. 

The correlation between the true and predicted compressive 
strengths was analysed and the results are presented in Fig. 13. The 
model’s accuracy increases and becomes stronger as R-value closes to 

100%. However, a developed model is more accurate when the RMSE is 
farther from zero. According to Fig. 13, the coefficient of determination 
(R2) and root mean square error (RMSE) values for validating the true 
and predicted responses were 99.65% and 0.8194 for 7-4-1 network 
architecture, 99.75% and 0.704 for 7-10-10-1 network structure, and 
99.60% and 0.8923 for 7-14-14-14-1 network structure. These statistical 
findings indicated a strong correlation between the input and target 
arguments for the established network architectures. 

4. Conclusions 

This study investigated the effects of TiO2 nanoparticles on wood 
ash-cement based mortar exposed to elevated temperatures. Lev
enberg–Marquardt backpropagation training techniques of different 
network structures developed from ANN was used to predict the 
compressive strength of mortar produced after high temperatures. The 
compressive strength results obtained in the ANN models were 
compared with the experimental results. Based on the experimental and 
computational findings, the following conclusions can be drawn:  

i. As the temperature rises, mortar specimens lose weight more 
quickly. By incorporating 1% NT, weight loss was reduced to the 
barest minimum while the addition of WA increased the weight 
loss percentage. 

Fig. 11. Neural network training error histogram with 20 bins.  
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ii. The flexural strength of mortar specimens increased up to 200 ◦C 
and then dropped till an elevated temperature of 800 ◦C. The 
addition of WA and NT to the cement mortar did not significantly 
improve the flexural strength at high temperatures (400–800 ◦C).  

iii. The compressive strength of all mortar specimens increased 
steadily up to burning at 400 ◦C and then decreased drastically 
between 400 and 800 ◦C of elevated temperatures. The addition 
of WA and NT slightly reduced the compressive strength. How
ever, the addition of 3% NT marginally increased the compressive 
strength at 105–400 ◦C compared to 1 and 2% NT. Nevertheless, 
at 600–800 ◦C, addition of 2% NT to the mortar mix, to a slight 
extent, improved the compressive strength. 

iv. Mortar specimens with 3% NT addition recorded the highest re
sidual strength increases of between 18.75 and 27.38%. In 
addition, compared to compressive strength, flexural strength is 
more severely affected by high temperatures.  

v. Comparing the number of hidden layers and neurons in the 
network architectures of Levenberg-Marquardt backpropagation 
training techniques, it was found that the network structure with 
the best performance for predicting compressive strength pro
duced from WA-cement-NT based mortar was 7–10-10-1, which 
had two hidden layers and ten neurons in each layer.  

vi. A 7-10-10-1 network architecture was 92.91 and 87.27% more 
error-free efficient than 7-4-1 and 7-14-14-14-1 network archi
tectures in addition to having a strong correlation coefficient. 

vii. The validation of developed network architectures with un
trained datasets showed very good confidence in the prediction 
accuracy of the compressive strength of cement-based mortars. 

The findings and modelling process of the present study can be used 
by researchers, designers and engineers interested in predicting the 
strength of cement-based mortars and in developing new eco-efficient 
compositions for a variety of applications in civil engineering. Finding 
the real number of hidden layers is still a very difficult task. Numerous 
scholars are still debating the precise and ideal number of hidden layers. 
Future research should be expanded to incorporate extensive training 
dataset application. The inability to identify the ideal structure using 
various studies is another drawback of the established models in this 
work. Therefore, it is advised to use some metaheuristic optimization 
techniques to improve the coefficients and weights of the created 
models. Additionally, a larger database of the mechanical properties of 
cement-based materials can be made available to create a novel ANN 
approach. 
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Table 10 
Absolute and relative errors of the developed network structures.  

S/ 
N 

Absolute error (MPa) Relative error (%)  

7-4-1 7-10-10- 
1 

7-14-14-14- 
1 

7-4-1 7-10-10- 
1 

7-14-14-14- 
1 

1 0.37 1.35 1.8 0.80 2.93 3.91 
2 − 0.53 − 0.48 − 0.36 − 1.13 − 1.02 − 0.76 
3 0.43 − 0.15 − 0.24 0.92 − 0.32 − 0.51 
4 − 0.27 0 − 0.15 − 0.81 0.00 − 0.45 
5 1.81 0.01 0.02 3.62 0.02 0.04 
6 − 0.29 − 1.19 − 0.02 − 1.72 − 1.19 − 0.12  
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