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Abstract 
Evaluating Maximum likelihood estimates in Generalized Linear Mixed Models (GLMMs) has been a serious challenge due to some 

integral complexities encountered in maximizing its likelihood functions. It is computationally difficult to establish analytical solutions 

for the integrals. In view of this, approximation techniques would be needed. In this paper, various approximation techniques were exam-

ined including Laplace approximation (LA), Penalized Quasi likelihood (PQL) and Adaptive Gauss-Hermite Quadrature (AGQ) tech-

niques. The performances of these methods were evaluated through both simulated and real-life data in medicine. The simulation results 

showed that the Adaptive Gauss-Hermit Quadrature approach produced better estimates when compared with PQL and LA estimation 

techniques based on some model selection criteria. 
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1. Introduction 

Collection of data without any reference to standard assumption of 

independence across observations is currently posing a serious 

challenge in statistical modeling. This kind of data may include 

data with repeated observations on a particular subject over time 

or observations which are clustered in one way on the other. Ex-

ample is classes in the same school or households in the same 

neighborhood). Due to computational advancement in statistical 

modeling, analytical techniques have been modified to handle 

such data complex structures. Binary data is a statistical data type 

described by binary variables, which can take only two possible 

values. Binary response is a data type that assumes 0 and 1 quali-

tative values. To make predictions on such data; correlation within 

observations on the same subject area must be taken into consider-

ation for better regression parameters.  

Lee et al. [1] extended the linear mixed model to handle outcomes 

with non-normal distributions. Breslow [2] made a submission 

that in Generalized Linear Mixed Models (GLMMs), the model 

should be specified such that subject-specific random effects, 

which are often normally independently distributed, should be 

considered. By so doing, Breslow [2] mentioned that the second 

order structure or correlation between subjects in the same cluster 

can be described and accounted for. When the outcome is binary, 

GLMMs regression coefficient is estimated on the random effect, 

and as such, has a subject-specific interpretation.  Bolker et al.[3]  

identified that the rate at which data are collected in which the 

standard assumption of independence between observations is not 

met. By implication, data may comprise of multiple observations 

on a subject over time or subjects which are clustered in some way.  

Among the authors that identified the flexibility of GLMMs in 

handling non-normal data is Casals et. al [4] and McCulloch  & 

Searle [5] .These authors encounter difficulty mainly in the area of 

parameter estimation because there was no analytic solution for 

the maximization of the marginal likelihood. However, in recent 

times, there are some proposed methods for estimating parameters 

of GLMMs and in-built packages in R software, by R Core team 

[6]. 

Maximum likelihood Estimation (MLE) is commonly used in 

GLMMs for parameter estimation. However, this method of esti-

mation has to do with high-dimensional integrals that pose some 

analytical complexity, particularly when the response variable is 

not normally distributed. To handle this problem, numerical ap-

proximation methods are needed, of which their estimations can 

either be classical or Bayesian. Gamerman [7], Christensen & 

Waagepetersen [8], Zhao et. al [9], Fong et. al [10], and Adesina 

et. al [11] estimated parameters of GLMMs using both Bayesian 

and Frequentist approach.  Efron [12] , Adesina et. al [13] and  

Brooks et. al [12], estimated parameters of GLMMs with Bayesian 

technique.  

This study provides analytical methods in estimating parameters 

of GLMMs, and to investigate the suitability of Adaptive Gauss-

Hermite quadrature estimation technique in fitting GLMMs with 

binary responses over other exiting GLMM estimation techniques.  

Over the years, the application of GLMMs in medical analysis has 

increased to solve the problem of dependence across data when 

modeling binary or count data. In this study, the methods pro-

posed are evaluated with R software using both real from medical 

domain and simulated data. The remaining part of this paper is 

sectioned as follows; various methods of estimation of Linear 

models, Generalized Linear models and GLMMs was expounded 

in section 2, while in section 3, the results obtained were presented, 

and section 4 contains the summary and discussion respectively.   
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2. Methods 
 

2.1 Classical Linear Models 
Classical linear models are ordinary models in linear regression. 

They are often accepted by many due to their effectiveness in 

handling regression problems. The one dimensional version is 

defined as 

 

 𝑦 = 𝛽𝑜 + 𝛽1𝑥 + 𝑒                                                                                (1) 

In this setting, 𝑥 is often called the predictor and y the response 

variable where  

𝛽𝑜  and 𝛽1 are the regression parameters and 𝑒 is the error term. 

For one predictor variable x , this notation is often sufficient. 

When more predictors are introduced a matrix based setup is more 

appropriate as it will ease computational and notational effort. Let 

𝑝 be number of parameters  𝛽1,…….. 𝛽𝑝 and 𝑛 the number of 

observations, then, we can rewrite the expanded version of equa-

tion (1) for one observation as 

 

𝑦𝑖 = 𝛽1 + 𝛽2𝑥𝑖2+, … , +𝛽𝑝𝑥𝑖𝑝 + 𝑒𝑖                                      (2) 

In matrix notation, we can rewrite the vectored version as 

 

𝑦 = 𝑋𝛽 + 𝑒                                                                             (3) 

If we assume there is an intercept in X  such that  𝑥𝑖1 = 1, 
the corresponding 

Matrix notation for the elements  Y , X  , 𝛽  and e is 

  𝑌 = [

𝑦1

⋮
𝑦𝑛

] , 𝑋 = [

1 𝑥12 𝑥13

1 𝑥22 𝑥23
⋯

𝑥𝑝

𝑥1𝑝

⋮ ⋱ ⋮
1 𝑥𝑛2 𝑥𝑛3 ⋯ 𝑥𝑛𝑝

]    , 

𝛽 = [

𝛽1

⋮
𝛽𝑝

],    𝑒 = [

𝑒1

⋮
𝑒𝑛

]                                                               (4) 

 

𝑌 is the response vector, where 𝛽  the predictor vector and X  is 

in computational application often referred to as the model matrix. 

. 

Considering the model defined in (4), we can further investigate 

the 'noise' parameter 𝑒𝑖 . We often make an assumption that the 

parameters 𝑒𝑖  are i.i.d. with 𝑒𝑖~𝑁(0, 𝜎). Therefore in equation (3), 

it still holds that E(𝛽𝑖) = 𝛽𝑖  . Moreover this leads to 𝑦𝑖~𝑁(𝜇, 𝜎2) 

and Cov(𝑦𝑖,𝑦𝑗) = 0 for i j . This can easily be extended to the 

matrix notation of the model by assuming that 𝐸(𝑒𝑖) = 0, Var(𝑒𝑖) 

= 𝜎2  .  
Y~ 𝑁(𝜇, 𝜀) to be multivariate-normal (𝜀 is in this case the diago-

nal matrix with value 𝜎2). In this case, Maximum Likelihood Es-

timation (MLE) is used. For the LM, the MLE coincides with that 

of the minimized least squares under the above assumption. 

 

2.2 Generalized Linear Models 

 

Linear Models provide excellent solutions to many applica-

tions across all of science; they are however bound to two 

constraints as two assumptions are made: 

i. The components of Y  ~(𝜇, 𝜎2) and the variance  𝜎2  is 

constant 

ii. 𝐸(𝑌) = 𝜇 and 𝜇 = 𝑋𝛽 
 

In nature where many things are normally distributed due to 

the central limit theorem, LMs are therefore often sufficient. 

In actuarial application however, 𝑌  is often not normally 

distributed with non-trivial connection between the predic-

tors and the response. Generalized linear models (GLMs) 

provide a solution for this. GLMs happen to be an extension 

of classical linear model which allows the mean of any giv-

en population to depend on a linear predictor using a nonlin-

ear link function. GLM and application is sufficiently discussed by 

Jong and Heller [15]. 

 

Components of Generalized linear models are as follows; 

 

i. Y as a response variable has a distribution in the exponential 

family with a probability function of the form: 

 

( )
( )

( )
( ), ,; exp

i i i

i i i

i

y b
f y c y

a

 
 



 −
= +  

                                    (5) 
for suitable choice of 0ia  , b and c. Note: φ is the scale parame-

ter while natural parameter is represented by θ .For the exponen-

tial family. Here, 0  is the dispersion parameter; o ∈ 𝜃 is the 

parameter of the given distribution and R    is an open set 

containing 𝜃.  
 

 
'( ) ( )i i iE y b = =

, 
( ) ( )''var( )i i iY b a =

                                (6)

     
Distribution that are members in the exponential family are flexi-

ble and can fit continuous, count and binary data adequately.  

 

ii. Considering the random variable𝑌1, … , 𝑌𝑛 , the linear part is 

defined as ɳ𝑖 = 𝑋𝑖𝛽,      

 𝑖 = 1,   . . 𝑛  with some vector parameters 𝛽 = (𝛽1 , .  .  . , 𝛽𝑝  and 

covariate ( )1,  .  .   .  ,i ipX x x=  related to  observations iY . 

 

iii. A nonlinear link function g illustrate how the expected re-

sponse  𝜇𝑖 = 𝐸(𝑌𝑖) is a function of the linear predictor  𝑔(𝜇𝑖) =
𝜂𝑖 , 𝑖 = 1, … . , 𝑛     

 

The linear predictor ɳ connects to observable 𝐸(𝑌)  through a link. 

In linear regression models, this is always the identity link 

(g( 𝜇𝑖) = 𝜇𝑖 = ɳ𝑖)  When using Gamma or Poisson distributions. 

This may be less useful as these distributions only have values on 

the positive line R+
. For example, we may require that the mean 

needs to be strictly positive (as in claim counts and severity). 

Hence, links that only take positive values may be more appropri-

ate. 

 

2.3 The Generalized Mixed Models 
 

Generalized linear mixed model is considered as being extension of gener-
alized linear models which include both the fixed and random effect is 

express as follows: 

 

   i iy X Z e = + +                                                          (7) 

 
Methods for estimating parameters in statistical analyses play a 

vital role in determining the fit of any model. Both fixed-effect 

and random-effect parameters are estimate by maximum likeli-

hood procedures. However, this ML procedure tends to break 

down more complex cases in both LMMs and GLMMs.  To solve 

this problem, one has to integrate likelihoods over all random 

effects. To illustrate, a direct computation of the likelihood; 

 

𝐿 = ∫ 𝑓𝑦/𝑢 (
𝑦

𝑢
) 𝑓𝑢(𝑢)𝑑𝑢                                                       (8) 

Or individually, 

𝐿 = ∫ ∏
𝑓𝑦𝑖

𝑢 (
𝑦𝑖

𝑢
)

𝑛

𝑖−1

𝑓𝑢(𝑢)𝑑𝑢                                                     (9) 

 
For functions of the exponential family, this leads to a likelihood 

equation of the form 
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 𝐿 = ∫ ∏ 𝑒𝑥𝑝 [
𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)

𝜙
+ 𝑐(𝑦𝑖; 𝜙)]

𝑛

𝑖

 

×
1

𝜎𝑢√2𝜋
𝑒𝑥𝑝 [

−(𝑥 − 𝜇)2

2𝜎𝑢
2

] 𝑑𝑢                                              (10) 

with corresponding log-likelihood 

( )
( );

n
i i i

i

i

y b
L log exp c y

 




 − 
= +  

   


 

( )
2

2

1

22 uu

x
exp du



 

 − −
  

  

                                             (11) 

For this equation, no analytical solution can be given. Therefore, 

numerical approximation must be used to estimate the maximum 

likelihood.  

 

2.3.1 Estimation Techniques for GLMMs 

 
Penalized Quasi-Likelihood Estimation Method:  

   

Variance components are estimated with quasj-likelihood methods 

when there is to pre-knowledge of the distribution.  Approxima-

tion for vector response data 𝑦𝑖 is given by 

 

 𝑦 ≈ 𝜇𝑖 + 𝜀𝑖 = 𝐸(𝑦𝑖/𝑏) + 𝜖𝑖                                            (12) 

 

=h(𝑥𝑖
′𝛽 + 𝑍𝑖

′𝑏) +∈𝑖                                                (13)

   

Where 𝛽 =fixed vector parameter 

 

=𝑥𝑖
′𝛽 + 𝑍𝑖

′𝑏                                                              (14) 

 
Using Taylor expansion in (14)  

  

( ) ( ) ( )' ' ' ' 'ˆˆ ˆ
i i i i i iy h x Z b h x Z b x   + + + −  

( ) ( )' ' 'ˆˆ ˆ
i i i ih x Z b Z   + + − +                                   (15) 

 ( ) ( ) ( ) ( )' 'ˆ ˆˆ
i i i i iV x V Z       = + − + − +                            (16) 

 

Equation (16) can also be written as  

  

𝑦𝑖
∗ = 𝑉𝑖

−′(𝑦𝑖 − 𝜇𝑖) + 𝑥𝑖�̂� + 𝑍𝑖�̂�𝑖 

     =𝑥𝑖𝛽 + 𝑍𝑖𝑏𝑖 + 𝜀𝑖
∗                                                         (17) 

 
Where 𝑦𝑖

∗ = 𝑝𝑠𝑒𝑢𝑑𝑜 − 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

Conditional variance for 𝑦𝑖
∗ is given by 

 𝑣𝑎𝑟(𝑦𝑖/𝑏) = 𝑎𝑖
′(∅)𝑉(𝜇𝑖)                                                (18)

          

 

∅ = Dispersion parameter              

    

Laplace Approximation     

         
 The method uses a Taylor expression of an exponential form. It 

approximates integrals 

∫ 𝑒ℎ(𝑢) 𝑑𝑢                                                               (19) 
 

Where 𝑢 = 𝑞 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 and ℎ(𝑢) =
𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑠𝑚𝑜𝑜𝑡ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
 

We define the second order Taylor expansion for h in 𝑢𝑜 as 

( ) ( ) ( )( )'1
( )

2
o o o oh u h u u u h u u u + − −                              (20)

         

From (20) using Laplace approximate function 

    

 ( ) ( ) ( )
1

2 2(2 ) | |
q

h u

o oe du exp h u h u
−

  −                (21)

       

In order to approximate the likelihood function, we consid-

er the Laplace approximation 

( ) ( )/ /L log fy u y u fu u du=   

( ) ( )/ /log exp logfy u y u logfu u du=  +                         
 (22) 

Where 

ℎ(𝑢) = 𝑙𝑜𝑔𝑓𝑦/𝑢(𝑦/𝑢) + 𝑙𝑜𝑔𝑓𝑢(𝑢)   

we assume  

𝑢~𝑁(0, 𝐷)  where 𝑢 =univariate Normal distribution 

 ( )

( )

11
log

2

1
log 2 |

2 2

fu u D u

q
log D

−=

−



−

                                                       (23) 

  
𝜕𝑙𝑜𝑔𝑓𝑢

𝜕𝑢
= −𝐷−1𝑢    

          
𝜕2𝑙𝑜𝑔𝑓𝑢

𝜕𝑢𝜕𝑢| = −𝐷−1                                                               (24)

          

    

Using chain rule on the exponential family, we have 

 

   
𝜕𝑙𝑜𝑔𝑓𝑦/𝑢(𝑦/𝑢)

𝜕𝑢
=

1

𝜑
∑ (𝑦𝑖

𝜕𝜃𝑖

𝜕𝑢
−

𝜕𝑏(𝜃𝑖)𝜕𝜃𝑖

𝜕𝜃𝑖𝜕𝑢
)𝑖   

      

=
1

𝜑
∑ (𝑦𝑖𝑖 − 𝜇𝑖)

1

𝑣(𝜇𝑖)
 

1

𝑔"(𝑢𝑖)𝑍𝑖
′                                  (25)

               
To find 𝜇𝑜 we solve    

     

 
𝜕ℎ(𝑢)

𝜕𝑢
=

1

𝜑
𝑍′𝑊∆(𝑦 − 𝜇) − 𝐷−1 = 0                    (26)

          
𝜕2ℎ(𝑢)

𝜕𝑢𝜕𝑢′ =
𝜕

𝜕𝑢′ (
1

𝜑
𝑍′𝑊∆(𝑦 − 𝜇) − 𝐷−1𝑢)  

( )' 11 W
Z W Z y D

u u






−
 

  
= −  + − − 

  

                                   (27)

            
For calculative convenience, we choose to ignore the second term 

(20)  

 

 
𝜕2ℎ(𝑢)

𝜕𝑢𝜕𝑢′ = −
1

𝜑
(𝑍′𝑊𝑍𝐷 + 𝐼)𝐷−1                                      (28)

            
Putting (20) and (30), we have 

( ) ' 1

1

1
/ /

2

1 1
log

2

o o oL logfy u y u u D u

Z WZD I D


−

−

 −

 
− + 

 


                                        (29) 

( )/ / 1
log |

2

ologfy u y ul Z WZD

   

 
= +

 




 

≈
1

𝜑
𝑋′𝑊∆(𝑦 − 𝜇)                                                (30)

       

W changes with respect to 𝛽 and gives an estimate of 𝛽 and 

𝑢 by solving the equation        
1

𝜑
𝑋′𝑊∆(𝑦 − 𝜇) = 0                                    (31)

                   
1

𝜑
𝑍′𝑊∆(𝑦 − 𝜇) = 𝐷−1𝑢                                                 (32) 
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Adaptive Gauss-Hermite quadrature methods 

 
The adaptive version of the AGQ uses a Gaussian approach, in 

which a Gaussian function replaces the factor exp (−𝑍2 ) with 

suitable changes in the weights and approximation points. We 

follow the outline and adapt it to the case of the GLMM. The goal 

is to approximate ∫(𝑔(𝑡))𝑑𝑡 by transformation. To achieve this, 

we have: 

 

  ∫ 𝑓(𝑡)𝜙(𝑡, 𝜇, 𝜎)𝑑𝑡                                                         (33) 

 
 We approximate the likelihood by picking optimal subdivisions to 

evaluate the integrand. Adaptive GHQ brings in information from 

an initial fit to increase precision. This requires a transformation 

of the sampling nodes according to the 

Transformation from 𝑒𝑥𝑝[𝑍𝑖] to 𝜙(𝑡: 𝜇, 𝜎) which equals 

  2  i it Z = +                                                                 (34) 

Moreover as we want to sample the integral in the region of g(t), 

we can define 𝜇 as the mode of g(t) and  𝜎 = 1/√𝑗 for 

( )( )
2

2
   log / tj g t

t
=


= −



                                                       (35) 

( )
( )

( )
define 

; ,

g t
h t

t  
=                                                        (36) 

 
then we can rewrite the integral for g(t) as 

 

( ) ( ) ( ), , )  g t dt h t t dt   =                                           (37) 

 
which after applying the transformed Gauss-Hermite quadrature 

equals 

 

( ) ( )*

1

2 2
Q

i i

i

g t dt w g Z  
=

 = +                                     (38) 

𝑓𝑜𝑟 𝑤𝑖
∗ = 𝑤𝑖exp (𝑍𝑖)                                                         

 
In the case of the GLMMs, the implementation of a single random 

effect can be seen as clustered into different groups. Every cluster 

𝑖 has a random effect which is distributed as 𝑢𝑖~𝑁(0, 𝜎2). Thus, 

the posterior mode of iu needs to be determined, and this depends 

on the factors 𝛽, 𝜙 𝑎𝑛𝑑 𝜎  and iu . We replace these by the cur-

rent estimate (and in the first step a well-chosen val-

ue) 𝛽∗, 𝜙∗ 𝑎𝑛𝑑 𝜎∗  . Then using these estimates, define iu  which 

maximizes 

 

 𝑓(𝑦𝑖/𝑢𝑖)𝑓(𝑢𝑖ᴦ𝜎∗) ∝ 𝑓(𝑢𝑖/𝑦𝑖)                                           (39) 

 

Thus we can use iu  as the mode for iu  and use the above Gauss-

Hermite quadrature to approximate 

  

( ) ( )

* *

1 1

/ /

( / ( ))

i i i

Q n

i ij i

i j

fY u yi u fu u du

w fY u y Z
= =



 
                                               (40) 

in which 𝑢𝑖 is the size of the cluster i, 𝑦𝑖𝑗  is the j-th element 

of cluster i and we have the adaptive weights 

 

( ) ( )* 2 *2 exp ;0,1i i i i iW w Z Z =                                          (41) 

 

 𝑍𝑖
∗ = 𝜕𝑖 + √2𝜎𝑍𝑖                                                                   (42) 

 
where 𝜎𝑖 is the approximation for 𝜎−1𝑢𝑖~𝑁(0,1). Multiplication 

of this sum leads to the approximated maximum likelihood. This 

method leads to new current best estimates until convergence. 

 

2.4  Simulation Study 
 

In order to evaluate the strength of the three statistical estimation 

techniques with varying sample sizes. Simulation study was car-

ried out to identify how the three underlying models performed at 

different sizes (that is, 20 to 1000. Random numbers were gener-

ated using a discrete uniform distribution ranging in the range 

Response variable was simulated at different 𝑛  along with two 

predictors using (0, 1), (0, 1.5) (0, 1) and (0, 3) respectively, to 

generate predictors in the fitting of GLMMs with simulated binary 

responses. Different GLMMs parameter estimation methods were 

used to produce estimates with different sample sizes, model se-

lection criteria was used to identify the best model.  Coefficients 

and random intercept variances as estimated via PQL, LA and 

GHQ for each simulation scenario are generated with R with lme4 

package in R by Bate et. al (2015).  

 

2.5 Data Description 
The data set consists of health data containing 1500 patients using 

some of the Health facilities in Ogun State, Nigeria for the period 

of July 2016 to July 2017. The data was collected with the aim of 

modelling and identifying which predictor impacts significantly 

on the response variable. Response variable in this work is follow-

up, while predictors are Sex, Ages of patients, and Number of 

diagnosis respectively for the period of visits. For the period of 

observation, it either a patient is on follow-up or not as advised by 

the physician. The analysis centres on medical follow-up effects 

on Patients. The model parameters were estimated using Penalized 

Quasi-Likelihood (PQL), Gaussian Hermite quadrature (GHQ) 

and Laplace Approximation techniques (LA).  

3. Results 

The following table represents the descriptive statistics of the 

simulated data using R software package. 

Table 1: Descriptive Statistics of Simulated Data 

Desc.Stat Y X1  X2 X3 X4 

Min. 0.0000 1.4047e-04 0.0688 0.1584 0.0531 

Max. 1.0000 8.8124e-01 1.4285 1.9003 2.4090 
Sum 20.000 3.9962+01 73.0204 101.9712 2.3559 

Median 0.0000 3.1773e-01 0.7518 1.0222 1.2599 

Mean 0.2000 3.9622e-01 0.7302 1.0197 1.1980 
SE.mean 0.8020 3.2340e-02 0.0462 0.0520 0.0715 

C.I mean 0.0797 6.4171e-02 0.0917 0.10330 0.1420 

Var. 0.1616 1.0459e-01 0.2139 0.2710 0.5122 
Std.dev 0.4020 3.2340e-01 0.4624 0.5262 0.7158 

Coef.var 2.0107 8.1333e-01 0.6333 0.5105 0.5973 

Skewness 1.3889 0.2249 0.0212 -0.1329 -0.1115 
Kurtosis -0.0668 -1.7106 -1.5156 -1.3983 -1.3563 
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Table 2: Descriptive Statistics for Real-Life Data 

 Follow-up Sex  Age  Ndiagnosis Bgroup Gnotype Status 

Mean 0.18466 0.46000 30.02067 2.681333 1.6560 1.6560 0.2106 
Standard Error 0.01002 0.01287 0.471299 0.051015 2.2952e-02 2.2952e-02 0.9105 

Median 0.00000 0.00000 35.00000 2.000000 1.0000 1.0000 0.0000 

Mode 0.00000 0.00000 37.0000 1.000000 1.0000 1.0000 0.0000 
Standard Deviation 0.38815 0.49856 18.25332 1.975784 7.9010e-01 7.9010e-01 0.40791 

Sample Variance 0.15066 0.24857 333.1837 3.903721 8.8890e-01 8.8890e-01 0.1664 

Kurtosis 0.64781 -1.97680 -1.36130 4.242080 0.8244 0.8244 0.00972 
Skewness 1.62694 0.16067 -0.12010 1.748514 1.2974 1.2974 1.4174 

Range 1.00000 1.00000 77.00000 14.00000 3.0000 3.0000 1.0000 
Minimum 0.00000 0.00000 0.000000 1.00000 1.0000 1.0000 0.00000 

Maximum 1.00000 1.00000 77.00000 15.0000 4.0000 4.0000 1.00000 

Sum 277.000 690.000 45031.0 4022.0 2.4843e+03 2.4843e+03 316.0000 
Count 1500 1500 1500 1500 1500 1500 1500 

 

For the real life data, from Table 2, the response variable is the 

follow-up status of patients accounting for 1500 users of the vari-

ous health facilities within the space of twelve months. The co-

variates/predictor variables include sex, age, number of diagnoses, 

blood group, genotype and smoking status of individual patients. 

The Table also indicates descriptive statistics of both response and 

predictor variables with their corresponding properties. Consider-

ing the properties of the response variables, it shows lack of nor-

mality which justifies the fitting through generalized linear mixed 

models. 
 

Table 3: Simulation Results for Penalized Likelihood Model 

n AIC BIC DF 

20 410.46 426.09 15 
30 108.31 116 25 

40 109.54 116 35 

50 314.82 330.45 95 
100 269.35 284.98 95 

200 503.50 523.29 195 

400 1246.47 1270.42 395 
500 1384.07 1409.36 495 

1000 2799.44 2828.87 995 

 
Table 4: Simulation Results for Laplace Approximation Model 

n AIC BIC Loglik Deviance DF 

20 21.20 36.90 -4.60 9.2 94 

30 53.4 71.50 -20.70 41.40 144 
40 63.60 71.50 -25.80 51.60 194 

50 79.30 100.40 -36.60 67.30 244 

100 162.00 187.30 -75.00 150.00 494 
200 278.20 307.70 -133.10 266.20 994 

400 609.10 642.70 -298.50 597.10 1994 

500 734.90 769.80 -361.40 722.90 2494 
1000 1534.70 1573.80 -761.40 1522.70 4994 

 
Table 5: Simulation Results for Adaptive Gauss-Hermite Quadrature Model 

n AIC BIC Loglik Deviance DF 

20 29.00 44.60 -8.50 17.0 94 
30 50.50 68.6 -19.20 38.50 144 

40 65.40 85.20 -26.70 53.40 194 

50 74.00 95.10 -31.00 62.00 244 
100 152.20 177.50 -70.10 140.20 494 

200 256.20 285.60 -122.10 244.20 994 

400 497.60 531.20 -242.80 485.60 1994 
500 637.60 672.60 -312.80 625.60 2494 

1000 1276.70 1315.80 -632.30 1264.70 4994 

Table 6: A) Estimates of Penalized Likelihood Model for Health Data 
 Estimate Std.error Z-value Pr(>IZI) 

Intercept -1.5694 0.2863 -5.4800 4.25e-08*** 

Sex -0.1166 0.1220 -0.9560 0.3390 

Age 0.03095 0.00381 8.1070 5.20e-16*** 
Ndiagnosis 0.01257 0.02977 0.4300 0.6670 

Bgroup -0.3457 0.0866 -5.1081 3.2431 

Gnotype -0.0814 0.0697 -1.1681 0.2431 
Sstatus -0.03506 0.1473 -0.2381 0.8127 

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’. 

 

 
Table 6: B) Model Performance of Penalized Likelihood Model 

AIC BIC Null deviance R. deviance Df 

1398 1435.15 935.45 829.97 1498 
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Fig. 1: Standard Residual Plot for Penalized Likelihood Model of Health Data. 

 

 
Fig. 2: Visualize Standardized Effect Sizes and Model R Squared for Penalized Likelihood Model of Health Data. 

 

 
Fig. 3: Visualize Standardized Effect Sizes and Model R Squared of Simulated Data for Penalized Likelihood Model with 20n = . 

 
Table 7: A) Coefficient of Predictors Using LA Model 

 Coef s.e(coef) Z-value Pr(>IZI) 

Intercept -1.5694 0.2863 -5.4800 4.25e-08*** 

Sex -0.1166 0.1220 -0.9560 0.3390 

Age 0.03095 0.00381 8.1070 5.20e-16*** 
Ndiagnosis 0.01257 0.02977 0.4300 0.6670 

Bgroup -0.3457 0.0866 -5.1081 3.2431 

Gnotype -0.0814 0.0697 -1.1681 0.2431 
Sstatus -0.03506 0.1473 -0.2381 0.8127 

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

 
 

Table 7: B) Model Performance of Laplace Approximation Model for Health Data 

AIC BIC Null deviance Deviance df 

1398 1435.15 935.45 829.97 1498 

 
Table 8: A) Coefficient of Predictors Using Gauss-Hermite Quadrature Model for Health Data 

 Coef s.e(coef) Z-value Pr(>IZI) 

Intercept -1.19124 0.3280 -3.6310 0.00028*** 

Sex -0.1367 0.1411 -0.9690 0.3326 

Age 0.0389 0.00434 8.9700 <2e-16*** 
Ndiagnosis 0.0181 0.0346 0.5220 0.6015 

Bgroup -0.4662 0.0805 -5.7910 7.02e-09*** 
Gnotype -0.1060 0.0797 -1.3310 0.1833 

Sstatus -0.0507 0.1710 -0.2970 0.7668 

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 
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Table 8: B) Model Performance of Gauss-Hermite Quadrature Model for Health Data 

AIC BIC Loglit Deviance df 

1318.7 1361.2 -651.3 1302.7 1491 

 
Table 9: Summary of Model Performances for PQL, LA, Glmm TMB and GHQ Using Real Life Health Data Provided 

Models AIC BIC Loglik Deviance DF 

PQL 1398.00 1435.15 - 935.45 1498 

LA 1400.00 1442.50 -692.00 1384.00 1491 

GHQ 1318.70 1361.20 -651.20 1302.70 1491 

 

4. Discussion 

This study presented and explored methods of estimating parame-

ters of Generalized Linear Mixed Models; the descriptive statistics 

of the simulation was presented in Table 1. Using the simulated 

data, the performances of the underlying models were assessed 

with model selection criteria, and results from Table 3, Table 4, 

and Table 5 shows that that Gauss- Hermite quadrature is superior 

to the two other models (Penalized Likelihood Model, and Laplace 

Approximation Model) based on model selection criteria.  

Estimation was further carried out using From Gauss Hermite 

Quadrature (glmmGHQ) model given in Table 8, having estab-

lished its potency as shown in Table 9. It was observed that the 

number of diagnoses account for more follow-up status of indi-

vidual patients. By implication, it shows that every increase in 

follow-up status, there is an increase of 0.03 factors in the number 

of diagnoses of individual patients. It was also observed that for 

every increase in the follow-up status, there is a decrease in the 

smoking status of individual patients by a factor of 0.1. By impli-

cation patients with follow-up status tend to avoid smoking which 

accounts for the decrease. It was also observed that for every in-

crease in the follow-up status, there is an increase in ages of pa-

tients by a factor of 0.4. By implication, older patients tend to 

have more diagnoses than other age categories. Therefore, Gauss 

Hermite Quadrature and family, is hereby recommend in fitting 

Generalized Linear Mixed Models using binary response data.  
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