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ABSTRACT 
 
The study attempted to develop forecasting model for inflation as well as IPP growth in a multivariate time series 
Bayesian framework, known as Bayesian Vector Autoregressive (BVAR) model. The main advantage of using this 
model is the incorporation of prior information which may boost the forecasting performance of the model.  The results 
revealed that the diagnostics results of the models are appear to be satisfactory and out of sample percentage root 
mean square error (PRMSE) for WPI for four quarters is 1.4932 percent, whereas, for IIP, it is 4.2508 percent. Further, 
for selecting the a suitable values for lambda and theta, we have tried various combination for these parameters 
between 0 to 1 and based on PRMSE, we found that lambda=0.3 and theta=0.9 are suitable values for BVAR(2). 
Therefore, BVAR(2) with lambda=0.3 and theta=0.9 was fitted. From the results, it can be observed that, out of sample 
PRMSE has been reduced while using BVAR in both the cases i.e. for WPI as well as IIP.Based on the comparison of 
forecasting performance of VAR and BVAR model, measured in terms of out-of-sample percentage root mean square 
error, it was found that BVAR model performed better than VAR model in case of inflation as well as IPP growth forecast 
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1. INTRODUCTION 
 
The search for better forecasting techniques to get reliable forecast is always vital. The frequently used forecasting 
models are univariate time series models like autoregressive model, moving average model, autoregressive moving 
average model, and multivariate time series model. The merit of using multivariate time series model is along with 
incorporating past information of the target variable, it allows to incorporate inter-temporal interdependence of other 
variables for improving the forecasting performance. The commonly used multivariate time series model is vector 
autoregressive (VAR) model but the major setback of this model is the problem of over-parameterisation. By the nature 
of the model, it requires to estimate large number of parameters which leads to large standard error. So, if some 
restriction can be imposed on the parameters then the performance of the model should be improved. The facility of 
imposing restrictions is available in Bayesian Statistics by the way of prior information on parameters or coefficients.  
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As, the name itself says about prior information, it is the information about the parameters which come before the 
experiment by the way of other experiments and personal belief of the forecaster, etc., and then assigning probability 
distribution to each coefficients of the model. This Bayesian VAR (BVAR) approach provides more accurate forecasts 
(Litterman (2000). BVAR is also superior to VAR since it is robust to the choice of national variables, even when 
misspecified national variables are included (Olatayo and Oniyide, 2006).Hence, a modified VAR restricting certain 
parameters is sometimes preferred. In general, the prior being used for BVAR is Minnesota prior or Litterman’s prior 
proposed by Litterman in 2000. Some important studies Bayesian VAR is used are (Litterman, 2000), (Kadiyala and 
Sune, 1997).  
 
In this study, we used a Bayesian Vector Autoregressive (BVAR) model to analyze and discuss Nigeria Economy by 
allowing possibility of interactions between the important macroeconomic variables. The variables used for this study 
are industrial output growth and inflation rate. 
 
1.1 Objectives of the Study 

i. Reviewing the theory Bayesian Vector Autoregressive (BVAR).  
ii. Modeling Nigerian economic growth using BVAR and VAR 
iii. Comparison of the estimate of BVAR and VAR using meta diagnostic tools. 
iv. Forecasting Nigerian economic growth using BVAR and VAR.  

 
1.2 Source of data 
The data used for this study were obtained from the Statistical Bulletin of the Central Bank of Nigeria (CBN), various 
issues. 
 
2. LITERATURE REVIEW 
 
The use of VAR models has been recommended by Sims (2000) as an efficient alternative to verify causal relationships 
in economic variables and to forecast their evolution. On the theoretical level, this approach has its foundation in the 
work of Wold (1938), Box and Jenkins (2006). Given the vector of variables, the classical VAR model explains each 
variable by its own past values and the past values of all other variables by a well-defined relation. For macroeconomic 
forecasting, VAR has become a standard tool. VARs produce dynamic forecasts that are consistent across equations 
and forecast horizons. The issue which has entailed for a long time the controversy between the supporters and 
detractors of the Bayesian procedure is the estimation of the parameters of a model, either by using the statistical 
inference techniques or, on the contrary, by taking into account the previous knowledge of the economic system. The 
application of this procedure implies that a priori probability has to be chosen and it can only be applied to models with 
a finite number of parameters. Yet, since most of the macroeconomic variables are from stochastic tendencies, the 
specification of their distribution turns out to be necessary.  
 
Usually, the hypothesis of normality for the coefficients is adopted since, in most cases, the underlying economic theory 
has little influence on the distribution of errors. In the field of multivariate modeling, Litterman (2000) suggested the use 
of the Bayesian procedure as an efficient way of avoiding some of the problems posed by Sims VAR models. The over-
parametrisation is mainly the cause of these problems. Indeed, even if the reduced-size systems are involved, too 
many parameters have to be considered, which turns out to be non-significant after applying the hypothesis tests. 
Thus, it is necessary to put forward that the out-of-sample forecasts obtained by means of a standard VAR model 
depend a lot on the number of lags, even though the values observed and calculated are very close on the estimation 
period. In order to bypass these difficulties, Litterman (2000) introduces some a-priori knowledge in the formulation of 
his model by means of a distribution of probabilities.  
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The primary focus of monetary policy, both in Nigeria and elsewhere, has traditionally been the maintenance of a low 
and stable rate of aggregate price inflation along with sustainable economic growth. The underlying justification for this 
objective is the widespread consensus supported by numerous economic studies that inflation is costly so far as it 
undermines real, wealth-enhancing economic activity. If anything, this consensus is probably stronger today than it 
ever has been in the past. Indeed, it could be argued that much of the improvement in Indian living standards which 
has taken place over the last two decades would not have been achieved without the establishment of a credible low 
inflation environment. This study focuses mainly on BVAR models. Over the past twenty years, the BVAR approach 
has gained widespread acceptance as a practical tool to provide reasonably accurate macroeconomic forecasts when 
compared to conventional macroeconomic models or alternative time series approaches. 
 
3. METHODOLOGY 
 
The vector autoregression (VAR) is an econometric model used to capture the linear interdependencies among multiple 
time series. VAR models generalize the univariate autoregressive model (AR model) by allowing for more than one 
evolving variable. All variables in a VAR are treated symmetrically in a structural sense (although the estimated 
quantitative response coefficients will not in general be the same); each variable has an equation explaining its 
evolution based on its own lags and the lags of the other model variables. VAR modeling does not require as much 
knowledge about the forces influencing a variable as do structural models with simultaneous equations: The only prior 
knowledge required is a list of variables which can be hypothesized to affect each other intertemporally. 
 
3.1 Definition 
A VAR model describes the evolution of a set of k variables (called endogenous variables) over the same sample 
period (t = 1, ..., T) as a linear function of only their past values. The variables are collected in a k × 1 vectoryt, which 
has as the ith element, yi,t, the observation at time "t" of the ith variable. For example, if the ith variable is GDP, then yi,t 
is the value of GDP at time t. 
 
A p-th order VAR, denoted VAR(p), is 
 

    (1) 
where the l-periods back observation yt−l is called the l-th lag of y, c is a k × 1 vector of constants (intercepts), Ai is a 
time-invariant k × kmatrix and et is a k × 1 vector of error terms satisfying 
 
𝐸(𝑒 ) = 0— every error term has mean zero; 
𝐸(𝑒 𝑒 ) = Ω— the contemporaneous covariance matrix of error terms is Ω (a k × kpositive-semi definite matrix); 
𝐸(𝑒 𝑒 ) = 0 for any non-zero k — there is no correlation across time; in particular, no serial correlation in individual 
error terms.  
 
A pth-order VAR is also called a VAR with p lags. The process of choosing the maximum lag p in the VAR model 
requires special attention because inference is dependent on correctness of the selected lag order.  
Rewriting the VAR in equation (1) as a system of multivariate regressions yields 
𝑌 = 𝑋𝐵 + 𝑈          (2) 
 
Where 𝑌 = (𝑌 , 𝑌 , … , 𝑌 )  is a 𝑇 × 𝑛  matrix where T is the number of observed time periods, 𝑋 =
(𝑋 , 𝑋 , … , 𝑋 )  with 𝑋 = (𝑌 , 𝑌 , … , 𝑌 )  is a 𝑇 × 𝑘 matrix where 𝑘 = 𝑛𝑝 + 1,𝐵 = (𝐴 , 𝐴 , … , 𝐴 , 𝑐)  
is a 𝑘 × 𝑛 matrix containing all parameters, and 𝑈 = (𝑢 , 𝑢 , … , 𝑢 )  is a 𝑇 × 𝑛 matrix of the error terms. 
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The normal inverted Wishart prior has the form: 
𝑣𝑒𝑐(Β|Ψ)~𝑁(𝑣𝑒𝑐(Β ), Ψ⨂Ω  and Ψ~𝐼𝑊(𝑆 , 𝜎 )     (3) 
 
where the prior parametersΒ , Ω 𝑆 , 𝜎 , are defined such that the prior expectation and variance of B coincide with 
the Minnesota prior expectations and variances for the autoregressive matrices 𝐴 , 𝐴 , … , 𝐴 : 

𝐸 (𝐴 ) =
𝛿 , 𝑗 = 𝑖, 𝑘 = 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (4) 

𝑉 (𝐴 ) =
, 𝑗 = 𝑖

𝑣 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (5) 

 
and the expectation of Ψ is equal to the fixed residual covariance matrix of the Minnesota prior Ψ =
𝑑𝑖𝑎𝑔(𝜎 , 𝜎 , … , 𝜎 ). The matrices 𝐴 , 𝐴 , … , 𝐴  are assumed to be independent and normally distributed and for 
the intercepts 𝑐 an uninformative (so-called "diffuse") prior is assumed. Following BGR (2010), it was imposed on  a 
random walk prior, i.e. 𝛿 = 1, for all nonstationary variables, i.e. that the prior mean of the variables is characterized 
by random walk with drift 𝑌 = 𝑐 + 𝑌 + 𝑢 , and a white noise prior, i.e. 𝛿 = 0, for all stationary variables. 
 
The so-called hyperparameter 𝜆 controls the overall tightness of the prior distribution around the random walk and 
therefore represents the confidence in the prior distribution with respect to the information contained in the data. If the 
hyperparameter is set to𝜆 = 0 the posterior is equivalent to the prior, whereas if 𝜆 = ∞ the posterior expectation is 
equivalent to an OLS estimate. The strategy for choosing the tightness of the priors is explained below. The parameter 
1 𝑘⁄  is the rate at which the prior variance decreases with increasing lag length and reflects the prior belief that more 
recent lags provide more reliable information than more distant ones. In order to have a prior which can be implemented 
simply, the normal inverted Wishart prior has to be based on the assumption 𝑣 = 1, i.e. that the variation of a given 
variable is equally explainable by its own lags and lags of other variables. This condition prohibits the prior from treating 
lags of the dependent variable differently from lags of other variables (apart from the scale) and is in a sense the price 
for being able to relax the strict covariance matrix assumption of the Minnesota prior. 
 
4.. RESULTS 
 
4.1 Stationary 
The Augmented Dickey Fuller test is used for testing stationarity at the level and at first difference. The graph in 
Appendix I shows instability or volatility of the headline inflation overtime. See Appendix II for the table showing Unit 
Roots. Based on the results of the test statistics, it is observed that the variables are stationary at first difference.  
 
4.2 Selection of Order of VAR 
For the purpose of selecting order of VAR, the Minimum Information Criteria as well as Univariate Model White Noise 
Diagnostics are being used and based on these criteria, the order of VAR is found to be two. (See Appendix III)  
Based on these results, it can be observed that the diagnostics results of this model are appears to be satisfactory. 
And out of sample percentage root mean square error (PRMSE) for WPI for four quarters is 1.4932 percent, whereas, 
for IIP, it is 4.2508 percent. 
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4.3 Selection of values of lambda and theta in Litterman prior 
Here, since the VAR model is developed at difference of the variables, therefore, the absolute value of the parameters 
would be less than one and hence mean of prior distribution is taken as zero, whereas, the degree of closeness of 
parameters to the prior mean can be controlled by suitable values of lambda and theta. Further, for selecting the a 
suitable values for lambda and theta, we have tried various combination for these parameters between 0 to 1 and 
based on PRMSE, we found that lambda=0.3 and theta=0.9 are suitable values for BVAR(2). Therefore, BVAR(2) with 
lambda=0.3 and theta=0.9 was fitted. From the results, given in the table 4.1, it can be observed that, out of sample 
PRMSE has been reduced while using BVAR in both the cases i.e. for WPI as well as IIP. 
 

Table 4.1 : Comparison of the Models 
Model  Out of Sample PRMSE 

WPI IIP 
VAR(2) 1.4932 4.2508 

BVAR(2) 1.4400 3.6055 
 
The models fitted are given below: 
 
Model I: 

𝑑𝑙𝑤𝑝𝑖 = 0.00961 + 0.00144𝑆 − 0.00197𝑆 + 0.00613𝑆 + 0.22639𝑑𝑙𝑤𝑝𝑖 + 0.05563
+ 0.08854𝑑𝑙𝑚𝑙 − 0.16897𝑑𝑙𝑤𝑝𝑖 + 0.05573𝑑𝑙𝑖𝑖𝑝 + 0.11449𝑑𝑙𝑚𝑙  

 
Model II: 

𝑑𝑙𝑖𝑖𝑝 = 0.02409 + 0.00772𝑆 + 0.03394𝑆 − 0.09845𝑆 − 0.41799𝑑𝑙𝑤𝑝𝑖 + 0.20349𝑑𝑙𝑖𝑖𝑝
+ 0.13𝑑𝑙𝑚𝑙 − 0.00292𝑑𝑙𝑤𝑝𝑖 − 0.06808𝑑𝑙𝑖𝑖𝑝 − 0.15537𝑑𝑙𝑚𝑙  

 
Model III: 

𝑑𝑙𝑚𝑙 = 0.0049 + 0.03024𝑆 + 0.05074𝑆 + 0.0399𝑆 − 0.1708𝑑𝑙𝑤𝑝𝑖 + 0.07945𝑑𝑙𝑖𝑖𝑝
− 0.2761𝑑𝑙𝑚𝑙 − 0.0642𝑑𝑙𝑤𝑝𝑖 − 0.14172𝑑𝑙𝑖𝑖𝑝 + 0.11877𝑑𝑙𝑚𝑙  

Model Forecast  
 
Table 1: The forecast for 2014:1-2014:4 

Qrts Forecast 
95% Confidence Interval 

Actual 
Lower Upper 

1 1118.7 -293.8 1243.5  

2 1231.5 -243.9 1425.1  

3 1321.9 -252.2 1338.2  

4 1536.1 -324.2 1622.3  
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5. CONCLUSION  
 
The objective of the study was to obtain a BVAR model. Based on the results, it can be observed that the diagnostics 
results of the models are appear to be satisfactory and out of sample percentage root mean square error (PRMSE) for 
WPI for four quarters is 1.4932 percent, whereas, for IIP, it is 4.2508 percent. Further, for selecting the a suitable values 
for lambda and theta, we have tried various combination for these parameters between 0 to 1 and based on PRMSE, 
we found that lambda=0.3 and theta=0.9 are suitable values for BVAR(2). Therefore, BVAR(2) with lambda=0.3 and 
theta=0.9 was fitted. From the results, it can be observed that, out of sample PRMSE has been reduced while using 
BVAR in both the cases i.e. for WPI as well as IIP. 
 
In this study, with the objective of getting better forecast of inflation as well as IIP growth, quarterly data on WPI, IIP 
and M1 since first quarter of 2004-95 to fourth quarter of 2007-08 were used and we developed a VAR as well as 
Bayesian VAR (BVAR) model for forecasting the target variables. Further, based on the comparison of performance of 
these two models, it is found that the forecasting performance, measured in terms of out-of-sample percentage root 
mean square error of VAR model being used for forecasting inflation as well as IIP growth, has improved by applying 
Bayesian technique. It is recommended that the Bayesian VAR modeling should be encouraged, since it is more 
efficient than the VAR, and moreso, that it provides better forecast and more robust to the choice of variables even 
when misspecified variables are included. 
 
REFERENCES 
 

1. Box.G.E.P. & Jenkins. G.M. (2006), “Time series Analysis forecasting and control,” Revision Edition. San 
Francisco. Holden. Day. 

2. Kadiyala, K. Rao, and Sune Karlsson, (1997). "Numerical Methods for Estimation and Inference in  
3. Litterman, Robert B. (2000). “A Bayesian Procedure for Forecasting with Vector Autoregressions”. Federal 

Reserve Bank of Minneapolis. 
4. Olatayo, T. and Oniyide, O. (2006). On Bayesian Approach to vector Autoregressive Time Series Models, 

Proc. Int. Conf. Math., 0-10 
5. Sims, Christopher A., (2000). "Interpreting the macroeconomic time series facts,"European Economic Review, 

36, 975-1011. 
6. Wold H. (1938). A study in the analysis of stationary Time series. Stockholm, Sweden; Stockholm University. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


