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Abstract: The lethal coronavirus illness (COVID-19) has evoked worldwide discussion. This contagious, 
sometimes fatal illness, is caused by the severe acute respiratory syndrome coronavirus 2. So far, COVID-19 has 
quickly spread to other countries, sickening millions across the globe. To predict the future occurrences of the 
disease, it is important to develop mathematical models with the fewest errors. In this study, classification and 
regression tree (CART) models and autoregressive integrated moving averages (ARIMAs) are employed to model 
and forecast the one-month confirmed COVID-19 cases in Nigeria, using the data on daily confirmed cases. To 
validate the predictions, these models were compared through data tests. The test results show that the CART 
regression model outperformed the ARIMA model in terms of accuracy, leading to a fast growth in the number of 
confirmed COVID-19 cases. The research findings help governments to make proper decisions on how the prepare 
for the outbreak. Besides, our analysis reveals the lack of quarantine wards in Nigeria, in addition to the 
insufficiency of medications, medical staff, lockdown decisions, volunteer training, and economic preparation. 

Keywords: Autoregressive integrated moving averages (ARIMAs); Classification and regression tree (CART); 
COVID-19; Prediction 

1. Introduction

The extreme acute respiratory coronavirus 2 syndrome (COVID-19) has prompted a global alert. The COVID-
19 virus primarily spreads through saliva droplets or nasal discharge when an infected individual coughs or sneezes 
[1, 2]. The top five affected countries were the US, Brazil, India, Russia, and Spain. Sahai [3] examined the time 
series data on the overall number of infected patients from these five nations. A 77-day out-of-sample forecast was 
produced using ARIMA models. By July 31st, India and Brazil would have 1.38 million and 2.47 million, 
respectively, while the US would have 4.29 million, according to their analysis. In the same vein, Anne [4] used a 
time series model to predict the short-term transmission of the exponentially growing COVID-19 time series, with 
the aid of simulation. Taiwo et al. [5] used the autoregressive integrated moving average (ARIMA) model to model 
and forecast Nigerian confirmed and death cases as a result of the COVID-19 pandemic. This model predicts the 
number of cumulative instances over time and is validated using Akaike information criterion (AIC) statistics. 
ARIMA (1,2,0) and ARIMA (1,1,0) were selected to model the confirmed and death cases of COVID-19, 
respectively. Based on the results of the ARIMA model-building, the two models were demonstrated to be suitable 
for modeling and forecasting Nigerian COVID-19 data. The predicted values showed that, over the following three 
months, the number of cumulatively confirmed deaths and cases of COVID-19 in Nigeria may range from 189,019 
to 327,426 and from 406 to 3,043, respectively (May 30, 2021). The ARIMA models predicted an alarming daily 
increase in the number of confirmed COVID-19 death cases in Nigeria. 

Ribeiro et al. [6] forecasted the time series one, three, and six days ahead of the COVID-19 cumulative cases in 
ten Brazilian states using the following tools: Autoregressive integrated moving average (ARIMA), cubist 
regression (CUBIST), random forest (RF), ridge regression (RIDGE), support vector regression (SVR), and 
stacking-ensemble learning. In general, these models could provide credible predictions with errors ranging from 
0.87% percent to 3.51%. Ceylan [7, 8] also developed auto-regressive integrated moving average (ARIMA) 
models to project COVID-19 occurrences in Italy, Spain, and France. The relevant data were collected from the 
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official website of the World Health Organization, from February 21st through April 15th, 2020. Several ARIMA 
models with different parameters were created. With the lowest mean average percentage errors (MAPEs) (4.7520, 
5.8486, and 5.6335), ARIMA (0,2,1), ARIMA (1,2,0), and ARIMA (0,2,1) models were the best prediction tools 
for Italy, Spain, and France, respectively. ARIMA models are suitable for forecasting COVID-19 prevalence in 
Italy, Spain, and France. Their findings shed light on the disease patterns, and help assess the epidemiological 
stage of these locations. 

By employing Kuwait as a case study, Alabdulrazzaq et al. [9] assessed and tested the accuracy of an ARIMA 
model over a reasonable timespan. The best-fit model was employed in Kuwait's progressive prevention plan to 
forecast confirmed and recovered COVID-19 cases. At a 95% level of significance, the findings were compared 
to the actual values reported after the forecast period had passed. The Pearson's correlation coefficient between the 
prediction points and the actual recorded data was determined to be 0.996. This suggests an unbreakable 
connection between the two sets. Xu et al. [10] integrated data envelopment analysis (DEA) with four different 
machine learning (ML) approaches to examine the effectiveness and performance of the COVID-19 response in 
the US. The performance of the COVID-19 response was predicted using environmental variables such as social 
distance, health policy, and socioeconomic indices. The performance was assessed using Classification and 
Regression Tree (CART), Boosted Tree (BT), Random Forest (RF), and Logistic Regression (LR). The 23 states 
had an average efficiency score of 0.97, indicating that they are efficient. Furthermore, the BT and RF models 
produced the best prediction results, while CART outperformed LR. The most significant factors influencing 
efficiency, in order, were urbanity, physical inactivity, the total number of tests per person, population density, 
and hospital beds. 

To forecast the COVID-19 outbreak, Ardabili et al. [11] compared machine learning and soft computing 
approaches. Out of the many machine languages tested, only two models achieved the promising results. This 
paper acts as a preliminary benchmark to demonstrate machine learning's research potential. Pinter et al. [12] 
illustrated the usefulness of the hybrid machine learning approach in predicting COVID-19 in Hungary. The 
researchers proposed to project the time series of infected people and death rate, through a hybrid machine learning 
strategy using the multi-layered perceptron-imperialist competitive algorithm (MLP-ICA) and adaptive network-
based fuzzy inference system (ANFIS). The forecasts predict that the pandemic and overall morale will have 
greatly declined by late May. The validation process lasts for 9 days and produces good outcomes, demonstrating 
the model's accuracy. The model is predicted to maintain its accuracy as long as there is no significant disturbance. 
This paper provides an early benchmark to highlight the promise of machine learning research. 

For a number of nations, Chakraborty and Ghosh [13] created short-term (real-time) predictions of upcoming 
COVID-19 cases as well as risk evaluations (in terms of case fatality rates) for a few particularly badly affected 
nations. The approach is based on a Wavelet-based forecasting model and an autoregressive integrated moving 
average model. In the first task, the researchers adopted the optimal regression tree to identify crucial factors that 
significantly affect case fatality rates across nations. The analysis of early risk estimates for 50 severely affected 
countries undoubtedly yielded in-depth insights from this data-driven investigation. 

Univariate time series models, machine learning, and epidemiologic compartment models have all been used in 
numerous studies to forecast COVID-19 transmission rates and analyze their effects on public health, urban 
mobility, and the environment. The goal of this work is to model and forecast one-month confirmed cases of 
COVID-19 in Nigeria utilizing daily confirmed cases. The CART models and ARIMAs were employed to assure 
the prediction accuracy and utilize their intrinsic power to explore big data. 
 
2. Methodology  
 
2.1 Data and Descriptive Statistics 

 
The data used for the analysis was accessed online from https:/raw.githubusercontent.com/owid/covid-19-

data/master/public/data/owid-covid-data.xlsxx-data. Under the Creative Commons by license, the data is fully 
available and licensed. A list of the COVID-19 data preserved by Our World of Data is the full COVID-19 dataset. 
It is updated regularly and provides reports on reported cases, deaths, and tests, as well as other factors of possible 
concern. 

ARIMA models were created using the methods detailed in Box and Jenkins' classic work, and a CART model 
was then utilized to form a decision tree. Based on a 4:1 ratio, a training set (45) and a testing set (5) were produced. 
Modeling was done with the training set, and verification was done with the testing set. 

The established models' effectiveness and robustness were assessed using areas under the curve (AUCs) and a 
confusion matrix. The testing set was used to calculate sensitivity and specificity based on the model attributes. 
Minitab was used for all statistical analyses, with a significance level of 𝑝𝑝 <  0.05. 

The ARIMA (𝑝𝑝,𝑑𝑑, 𝑞𝑞) model represents the autoregressive integrated moving average (ARIMA) model. 
The autoregressive (AR) and moving average (MA) models are combined to create ARMA models. Consider 

the stochastic process 𝑋𝑋𝑡𝑡, which is written as 
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𝑋𝑋𝑡𝑡 = 𝜑𝜑1𝑋𝑋𝑡𝑡−1 + ⋯+ 𝜑𝜑𝑝𝑝𝑋𝑋𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡 + 𝜃𝜃1𝜀𝜀𝑡𝑡−1 + ⋯+ 𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞 (1) 
 
where, {𝜀𝜀𝑡𝑡} is a purely random process. 

This equation can be rewritten using the lag operator, 𝐿𝐿, as 
 

𝜑𝜑(𝐿𝐿)𝑋𝑋𝑡𝑡 = 𝜃𝜃(𝐿𝐿)𝜀𝜀𝑡𝑡 (2) 
 

where: 𝜑𝜑(𝐿𝐿) and 𝜃𝜃(𝐿𝐿) are polynomials of orders 𝑝𝑝 and 𝑞𝑞, respectively, and are defined as 
 

𝜑𝜑(𝐿𝐿) = 1 − 𝜑𝜑1𝐿𝐿 − 𝜑𝜑2𝐿𝐿2 − ⋯− 𝜑𝜑𝑝𝑝𝐿𝐿𝑝𝑝  (3) 
 

𝜃𝜃(𝐿𝐿) = 1 + 𝜃𝜃1𝐿𝐿 + 𝜃𝜃2𝐿𝐿2 + ⋯+ 𝜃𝜃𝑞𝑞𝐿𝐿𝑞𝑞  (4) 
 
The roots of 𝜑𝜑(𝐿𝐿) = 0 must lie outside the unit circle for stationarity, and the roots of 𝜃𝜃(𝐿𝐿) must again lie 

outside the unit circle for invertibility of the MA component. As a result, we have a combination of the 
autoregressive and moving average processes' "stability" conditions. 

The model-building process consists of three steps: identification, parameter estimate, and diagnostic testing. 
Identification: The ARIMA model orders 𝑝𝑝, 𝑑𝑑, and 𝑞𝑞 are used to specify the number of parameters to estimate. 

The Box-Jenkins ARIMA approach, on the other hand, can only be used on stationary time series. As a result, 
determining whether the time series data is stationary is the first stage in creating a Box-Jenkins model. The 
fundamental justification for obtaining stationary data, according to Gujarati and Porter [14], is that any model 
derived from this data can be viewed as stable or stationary, providing a valid basis for predicting. 

After stationarity has been established, the order (𝑝𝑝 and 𝑞𝑞) of the autoregressive and moving average terms must 
be determined. The autocorrelation (ACF) and partial autocorrelation (PACF) plots are the most fundamental 
methods for achieving this. 

For the ARIMA model, a software package was employed. The parameters were estimated using the Akaike 
information criterion (AIC) and Bayesian information criterion (BIC) values. A model with the lowest AIC, BIC, 
and Q-statistics, as well as a high R-square, could be considered suitable for predicting [15]. The model is regarded 
as unacceptable in an application if the computed p-value associated with the Q-Statistics is modest (p-value) [14]. 
As a result, the analytical procedure should be repeated until a satisfactory model is found. 

The first step in creating an ARIMA model is to determine whether the variable being forecasted is stationary 
in time series. By stationary, we imply that the values of a variable change around a constant mean and variance 
across time. We won't be able to build the ARIMA model until this series is stationary. To create an ARIMA 
(𝑝𝑝,𝑑𝑑, 𝑞𝑞) model with “𝑑𝑑” as the order of differencing, we must first difference the time series "d" times to generate 
a stationary series. When differencing, exercise caution because excessive differencing will result in an increase 
in the standard deviation rather than a decrease. Starting with the lowest order (of the first order, d=1) differencing 
and testing the data for unit root problems is the best strategy. As a result, we obtained a first-order differencing 
time series. 

We now look at the regression tree. The data is 𝐷𝐷 = ��𝑥𝑥(𝑖𝑖),𝑦𝑦(𝑖𝑖)��
𝑖𝑖=1
𝑁𝑁

, where 𝑥𝑥(𝑖𝑖) ∈ 𝑋𝑋 and 𝑦𝑦(𝑖𝑖) ∈ ℌ. Typically, 
𝑋𝑋 = ℝ𝑑𝑑 and 𝔜𝔜 = ℝ𝐾𝐾. The goal of the regression tree algorithm is to construct a function 𝑓𝑓 ∶ 𝔛𝔛 → 𝔜𝔜 such that the 
error is small: 
 

��𝑓𝑓�𝑥𝑥(𝑖𝑖)� − 𝑦𝑦(𝑖𝑖)�
2

𝑖𝑖

 (5) 

 
The way to do it is to construct a tree and define a constant value on each subregion corresponding to the 

terminal node of the tree. Thus f constructed this way is a piecewise constant function. 
In particular, any node 𝑡𝑡𝑡𝑡𝑡𝑡 corresponds to a subset of 𝔵𝔵. On each node t, define the average 𝑦𝑦-value 𝑦𝑦�(𝑡𝑡) of the 

data on the node t by 
 

𝑦𝑦�(𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡)
�𝑦𝑦(𝑖𝑖)

𝑥𝑥𝑖𝑖𝑒𝑒𝑒𝑒

 (6) 

 
which is an estimator of E [Y |X ∈ t]. We also define the (squared) error rate r(t) of node 𝑡𝑡 by 

 

𝑟𝑟(𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡)
��𝑦𝑦(𝑖𝑖) − 𝑦𝑦�(𝑡𝑡)�

2

𝑥𝑥𝑖𝑖𝑒𝑒𝑒𝑒

 (7) 
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It is nothing but the variance of the node t, which is also an estimator of 
 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌|𝑋𝑋 ∈ 𝑡𝑡) = 𝜎𝜎2(𝑌𝑌|𝑋𝑋 ∈ 𝑡𝑡) (8) 
 
We define the cost R(t) of the node 𝑡𝑡 by 
 

𝑅𝑅(𝑡𝑡) = 𝑟𝑟(𝑡𝑡)𝑝𝑝(𝑡𝑡) (9) 
 
Recall that 𝑝𝑝(𝑡𝑡) = 𝑁𝑁(𝑡𝑡)

𝑁𝑁
. Therefore 

 

𝑅𝑅(𝑡𝑡) −
1
𝑁𝑁
� �𝑦𝑦(𝑖𝑖) − 𝑦𝑦�(𝑡𝑡)�

2

𝑥𝑥𝑖𝑖𝑒𝑒𝑒𝑒

 (10) 

 
Let 𝑠𝑠 be a split of a node 𝑡𝑡. Define the decrease ∆𝑅𝑅(𝔰𝔰, 𝑡𝑡) of the cost by 𝑠𝑠 as 
 

∆𝑅𝑅(𝔰𝔰, 𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅(𝑡𝑡𝐿𝐿) − 𝑅𝑅(𝑡𝑡𝑅𝑅) (11) 
 
The splitting rule at t is 𝑠𝑠∗ such that we take the split 𝔰𝔰∗ among all possible candidate splits that decrease the 

cost most. Namely, 
 

∆𝑅𝑅(𝔰𝔰∗, 𝑡𝑡) = max
𝔰𝔰
∆𝑅𝑅(𝔰𝔰, 𝑡𝑡) (12) 

 
One may use this splitting rule for the split of the classification tree. This way, we can grow the regression tree 

to 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 . As before, one quick rule of thumb is that one stops splitting the node if the number of elements of the 
node is less than the preset number. Once 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  is found, we can prune back. The pruning method for the regression 
tree is the same for the classification tree except that we define 𝑅𝑅𝑡𝑡𝑡𝑡(𝑇𝑇)and 𝑅𝑅𝑐𝑐𝑐𝑐(𝑇𝑇)a differently. 
 
3. Results and Discussion 
 
3.1 Time Plot and Stationarity 

 
From Figure 1 below, it was observed that the pattern of the graph indicates series non-stationarity. There is an 

upward trend for covid cases. The autocorrelation plot in Figure 2 indicates significant spikes up to lags 35, a 
downward trend from lag to lag, and a slight cut-off from lag 35 which also indicates an element of non-stationarity. 
The partial autocorrelation also tails after lag 1 with a significant spike at lag 1. 

From Figure 3, it was observed that the pattern of the graph indicates series non-stationarity. There is an upward 
trend for covid cases. The autocorrelation plot in Figure 4 indicates significant spikes up to lags 35, a downward 
trend from lag to lag, and a slight cut-off from lag 35 which also indicates an element of non-stationarity. The 
partial autocorrelation also tails after lag 1 with a significant spike at lag 1. 
 

 
 

Figure 1. Daily covid cases 
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Figure 2. ACF and PACF for covid cases 
 

 
 

Figure 3. Daily covid deaths 
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Figure 4. ACF and PACF for covid deaths 
 
3.2 ARIMA Modelling 
 

Having made the series stationary, the decision was made on reasonable values of the orders of the 
Autoregressive (AR(ϕ)), ordinary differencing, Moving Average (MA(θ)). 

After trying different ARIMA models of various orders, to choose the best model, we look for the model with 
the least AIC. Brockwell and Davis (1991) in their research suggest that AIC is the primary criterion in selecting 
the orders of a time series. 

After various trials, it was discovered that the ARIMA model (3,1,0) for covid cases gives the minimum MSE. 
This is observed in Table 1. 

After various trials, it was discovered that the ARIMA model (1,1,0) for covid deaths gives the minimum MSE. 
This is observed in Table 2. 

The ultimate aim of building any time series model is forecasting. If this objective is not achieved, the work is 
incomplete. Forecasts were made for the possible number of covid cases and deaths. Based on the chosen model, 
the forecast for 12 months is seen in Table 3. 

 
Table 1. Final estimates of parameters for covid cases 

 
Type Coef SE Coef T-Value P-Value 
AR   1 0.4756 0.0463 10.28 0.000 
AR   2 0.1987 0.0507 3.92 0.000 
AR   3 0.2748 0.0463 5.94 0.000 

Constant 16.91 8.41 2.01 0.045 
Differencing: 1 regular difference 

 
Table 2. Final estimates of parameters for covid deaths 

 
Type Coef SE Coef T-Value P-Value 
AR 1 0.5257 0.0425 12.37 0.000 

Constant 2.252 0.238 9.45 0.000 
Differencing: 1 regular difference 

 
Table 3. Forecasts for covid cases 

 
  95% Limits  

Period Forecast Lower Upper Actual 
405 156347 155997 156697  
406 156660 156037 157282  
407 156991 156081 157900  
408 157319 156065 158573  
409 157645 156021 159270  
410 157974 155958 159991  
411 158304 155872 160736  
412 158634 155767 161500  
413 158965 155647 162282  
414 159296 155512 163080  
415 159628 155365 163892  
416 159961 155206 164716  

51



Table 4. Forecasts for covid deaths from period 404 
 

  95% Limits  
Period Forecast Lower Upper Actual 

405 1921.46 1912.08 1930.83  
406 1927.10 1910.00 1944.21  
407 1932.32 1908.28 1956.37  
408 1937.32 1907.13 1967.51  
409 1942.20 1906.54 1977.86  
410 1947.02 1906.44 1987.59  
411 1951.80 1906.76 1996.84  
412 1956.57 1907.43 2005.71  
413 1961.32 1908.38 2014.27  
414 1966.08 1909.57 2022.58  
415 1970.83 1910.97 2030.69  
416 1975.58 1912.54 2038.61  

  
The result in Table 4 shows that there is likely to be an increase in the number of covid cases as well as its 

corresponding deaths.  
 

3.3 Node CART® Regression: Total_deaths Versus Total_cases 
 

The result of the response information in Table 5 showed that the mean of the variable to be 1027.05, with a 
standard deviation of 668.719. The kurtosis value is 5.18358 and this implied the series is not normally distributed. 

Figure 5 depicts a trend in which the R2 statistic rises quickly for the first few nodes before leveling out. The 
researchers wish to look at the performance of some of the even smaller trees that are similar to the tree in the 
results because this chart reveals that the R2 value is generally steady between trees with around 45 nodes and trees 
with approximately 70 nodes. 

Figure 6 illustrates a tree diagram of the k-fold cross-validation study, which shows all cases from the entire 
data set. The table of fits and error statistics, as well as the topic categorization criteria, provide further information 
about the terminal nodes. 

The values for the training and test statistics are near. Table 6 indicates that the tree is not overfitted because 
the 𝑅𝑅2 statistic is nearly as high as the 45-node tree, the study then decides to investigate the associations between 
the predictor factors and the response values using the 45-node tree. 

Figure 7 illustrates the scatterplot of response fits versus actual values. The graphs demonstrate that the predicted 
values are extremely close to the actual ones. 
 

Table 5. Response information 
 

Mean StDev Minimum Q1 Median Q3 Maximum 
1027.05 668.719 0 439.5 1113 1481.5 2065 

  

  
 

Figure 5. R-squared vs number of terminal nodes plot 
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Figure 6. Optimal tree diagram 
 

Table 6. Model summary 
 

Total predictors 1 
Important predictors 1 

Number of terminal nodes 45 
Minimum terminal node size 3 

Statistics Training Test 
R-squared 0.9997 0.9993 

Root mean squared error (RMSE) 11.3639 17.2089 
Mean squared error (MSE) 129.1391 296.1451 

Mean absolute deviation (MAD) 8.2412 12.1177 
Mean absolute percent error (MAPE) 0.0719 0.0829 

  

  
 

Figure 7. Scatterplot of response fits versus the actual values 
 

  
 

Figure 8. Scatterplot of MSE versus terminal node 
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The terminal node's MSE in Figure 8 demonstrates that node 8 is the least precise of the terminal nodes. You 
can have a higher level of trust in the accuracy of the fits for nodes with lower MSE values. If there is a way to 
lessen or explain the variation, the examples in terminal node 8 have the best chance of improving the tree. 

Figure 9 displays a plot of residuals by the terminal node that reveals the fit is too large for a tiny cluster of 
patients in Terminal Node 8. The researchers look into why some of these patients use services for a shorter period 
than the average patient in their group. 

Figure 9 also shows clusters or outliers are shown in the plot of residuals by the terminal node. In Terminal 
Node 1 and Terminal Node 7, there is one residue that looks to be significantly larger than the others. 

The results reveal that the tree's performance on new data is similar to that on training data. Similar trends may 
be seen in the points for the training and test data sets. 

Table 7 presents the fit and error data for each node in each row. In order of least to highest inaccuracy, the best 
nodes are listed first. The mean response of the cases in node 29 has the best fit value of 1179.78. It is chosen 
because the MSE, MAD, and MAPE are least compared to the other best terminal nodes. 

Table 8 shows the criteria for classifying subjects into the best 5 terminal nodes. This implies that each row of 
the table lists the values of the predictors for a terminal node. For Node 29 with fit, 1179.78, the predicted total 
cases will be between 6,7697 and 71,006. For Node 1, with fit value of 2.55, the predicted total cases will be less 
than or equal to 467. For Node 28 with fit, 1165.73, the predicted total cases will be between 641377 and 67697. 
For Node 26 with fit, 1127, the predicted total cases will be between 61,088 and 62,297. For Node 45 with fit, 
2,060, the predicted total cases will be greater than 162,438. 
 

  
 

Figure 9. Residual plot by terminal node 
 

Table 7. Fits and error statistics for best 5 terminal nodes 
 

Terminal Node Count Fit StDev MSE MAD MAPE 
29 9 1179.78 2.29868 5.2840 1.80247 0.001528 
1 49 2.55 3.75288 14.0841 3.03207 0.827121 
28 22 1165.73 4.08080 16.6529 3.52066 0.003019 
26 12 1127.00 4.10284 16.8333 3.33333 0.002957 
45 44 2060.00 4.52769 20.5000 3.00000 0.001459 

  
Table 8. Criteria for classifying subjects into best 5 terminal nodes 

 
Terminal Node Fit Criterion 

29 1179.78 67697.5 < total_cases <= 71006.5 
1 2.55 total_cases <= 467.5 
28 1165.73 64137 < total_cases <= 67697.5 
26 1127.00 61088 < total_cases <= 62297.5 
45 2060.00 total_cases > 162438 

 
4. Conclusion 
 

The COVID-19 cases and deaths exhibited non-stationarity. The Autoregressive Integrated Moving Average 
(ARIMA) proposed by Box-Jenkins was employed to analyse COVID-19 cases and deaths from March 2020. The 
study is mainly to model and forecast the monthly covid cases and deaths for twelve months. Moreover, several 
models were developed but based on minimum corrected Akaike Information Criteria (AIC) value, estimation of 
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necessary parameters and series of diagnostic tests were performed. It was observed that ARIMA (3,1,0) model 
was the best model for modelling covid cases, while ARIMA (1,1,0) model was the best model for modelling 
covid deaths. 

The CART model gave a 99.97% accuracy score for the training set and a 99.93% accuracy score the test set. 
Each round square box represents a node, with a number at the top indicating the node's ID. The value on the box's 
first line represents the mean of all observations in that node (if it is a leaf node, the mean is utilized for prediction). 
Unpruned trees produce better forecasts than trimmed ones. The tree model predicts the same thing for all 
observations that occur under the same leaf node, which approximates the underlying pattern to a large extent. A 
larger sample size would be necessary to obtain a more precise estimate. By tracking the overall drop in the 
optimization criterion, an aggregate measure may be developed to emphasize the significance of each feature in 
the model. 
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